首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytoskeleton inhibitors were tested in chicken embryo fibroblast cultures for possible effects on the import of the precursor of mitochondrial aspartate aminotransferase into mitochondria. Vinblastine (50 μM) increased the steady-state pool of the precursor 2.5-fold in pulse experiments with [35S]methionine. If the precursor was accumulated during a pulse in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) and then chased under diluting CCCP, vinblastine (50 μM) prolonged the half-life of the precursor from 0.5 min in the control to 3 min. Other cytoskeleton inhibitors, i.e. vincristine (25 to 150 μM), colchicine (50 μM), nocodazole (50 μM), podophyllotoxin (50 μM), taxol (45 μM), cytochalasin D (20 μM) and phalloidin (25 μM) did not show this effect. The observed inhibition by vinblastine does not seem to relate to its action on microtubuli.  相似文献   

2.
The import of the precursor of mitochondrial aspartate aminotransferase was reconstituted in vitro with isolated mitochondria thus corroborating the earlier conclusion of a post-translational uptake. The higher Mr precursor was synthesized in a reticulocyte lysate programmed with free polysomes from chicken liver. After incubation with intact mitochondria from chicken heart about 50% of the precursor was converted to the mature form in a time-dependent process, its rate being a function of the amount of mitochondria added. The same amount of precursor was processed to the mature form on addition of a mitochondrial extract. No conversion to the mature enzyme took place when the precursor was incubated with intact mitochondria in the presence of the uncoupling agent carbonyl cyanide m-chlorophenylhydrazone or of the chelator o-phenanthroline which penetrates the mitochondrial inner membrane. In contrast, the chelator bathophenanthroline disulfonate which does not diffuse into the mitochondrial matrix did not inhibit the appearance of the mature form. The results indicate that that precursor must pass through an energized inner mitochondrial membrane before it is processed by a chelator-sensitive protease in the mitochondrial matrix. Excess mature mitochondrial aspartate aminotransferase did not compete with the precursor for its uptake into mitochondria. Mature mitochondrial aspartate aminotransferase is an alpha 2-dimer with Mr = 2 X 45,000. Both the precursor synthesized in a rabbit reticulocyte lysate and the precursor accumulated in the cytosol of carbonyl cyanide m-chlorophenylhydrazone-treated chicken embryo fibroblasts were found to exist as homodimer or hetero-oligomer and high Mr complexes (Mr greater than 300,000).  相似文献   

3.
4.
The synthesis of murine ferrochelatase in vitro and in vivo.   总被引:5,自引:0,他引:5       下载免费PDF全文
Ferrochelatase (protohaem ferro-lyase, EC 4.99.1.1), the terminal enzyme of the haem-biosynthetic pathway, is an integral membrane protein of the mitochondrial inner membrane. When murine erythroleukaemia cells are labelled in vivo with [35S]methionine, lysed, and the extract is immunoprecipitated with rabbit anti-(mouse ferrochelatase) antibody, a protein of Mr 40,000 is isolated. However, when isolated mouse RNA is translated in a cell-free reticulocyte extract, a protein of Mr 43,000 is isolated. Incubation of this Mr 43,000 protein with isolated mitochondria resulted in processing of the Mr 43,000 precursor to the Mr 40,000 mature-sized protein. Addition of carbonyl cyanide m-chlorophenylhydrazone and/or phenanthroline inhibits this processing. These data indicate that ferrochelatase, like most mitochondrial proteins, is synthesized in the cytoplasm as a larger precursor and is then translocated and processed to a mature-sized protein in an energy-required step.  相似文献   

5.
The interaction between apoaspartate aminotransferase and pyridoxal 5′-phosphate at either pH 8.3 (active form of holoenzyme) or pH 5.0 (inactive form) corresponds to a strong quenching of tryptophan fluorescence. The hybrid molecule containing one pyridoxal 5′-phosphate bound per dimer has been prepared both by electrofocusing and by ion exchange chromatography. At both pH values, the fluorescence of the hybrid is 80 to 85% of the arithmetic mean between the fluorescence of the symmetrical holoenzyme and apoenzyme. This is direct evidence of energy transfer from tryptophan residues of the subunit of apoenzyme to the coenzyme of the other subunit.Fluorescence intensity was used to determine the quantity of hybrid holoapoenzyme formed during titration of the apoenzyme by pyridoxal 5′-phosphate. At pH 8.3 a non-linear decrease in the fluorescence is observed, corresponding to 60% of hybrid for the point of half reactivation; this value corresponds to the percentage obtained by electrofocusing (Schlegel & Christen, 1974). At pH 5.0, the decrease in fluorescence is linear during pyridoxal binding; this indicates that at this pH the hybrid is never obtained at detectable concentrations. These results indicate strong interactions between subunits of aspartate aminotransferase corresponding to a weakly negative co-operativity at alkaline pH and a positive cooperativity at acidic pH for the binding of the coenzyme.  相似文献   

6.
Processing and uptake of the precursor of serine: pyruvate aminotransferase [EC 2.6.1.51] by mitochondria were studied in vitro and in vivo. Serine: pyruvate aminotransferase was synthesized mainly on free ribosomes as judged by immunoprecipitation of puromycin-labeled nascent peptides prepared from free and bound ribosomes. The precursor of rat liver serine:pyruvate aminotransferase (pSPT) synthesized in vitro was post-translationally processed to an apparently mature form by isolated rat liver mitochondria. Available evidence indicated that the processed product was localized in the matrix of mitochondria. Mature serine:pyruvate aminotransferase did not inhibit the in vitro processing, suggesting that the extra peptide was necessary for the mitochondrial uptake of the precursor. In the livers of rats fed a vitamin B6-deficient high-protein diet, the induction by glucagon of serine:pyruvate aminotransferase occurred and most of the induced enzyme existed in mitochondria as the apo-form, suggesting that pSPT was taken up by mitochondria and processed in the apo-form under the conditions employed. In the in vitro system, on the other hand, the processing of pSPT proceeded both in the absence and presence of pyridoxal 5'-phosphate. Should the precursor also bind the prosthetic molecule, therefore, it would be transported into mitochondria in both the apo- and holo-forms. When isolated rat hepatocytes were labeled with [35S]methionine, labeled pSPT appeared in the cytosolic fraction and was transported rapidly into mitochondria in association with the processing. This uptake and processing were inhibited by a fluorescent laser dye, rhodamine 123, and the precursor accumulated in the cytosol in the presence of the dye.  相似文献   

7.
A convenient method for the purification of aspartate aminotransferase [L-aspartate-2-oxoglutarate aminotransferase (EC 2.6.1.1)] from wheat germ is described. An overall purification of 150 fold was achieved. On polyacrylamide gel electrophoresis at pH 8.9 the purified enzyme revealed two protein bands both provided with enzymatic activity. The holoenzyme is readily resolved on conversion to the aminic form and gel-filtration. The apoenzyme is reactivated by pyridoxal-5-phosphate. Kinetic data indicate that a Ping-Pong mechanism is operative similar to that found for the tyrosine aminotransferase by Litwack and Cleland (1968). Phosphate ion behaves as a competitive inhibitor towards the coenzyme. The relatively low affinity between coenzyme and apoenzyme from wheat germ allowed the determination of the dissociation constants for coenzymes (pyridoxal-5'-phosphate and pyridoxamine-5'-phosphate) and of the inhibition constant for phosphate.  相似文献   

8.
Mitochondrial aspartate aminotransferase from beef kidney is 50% inhibited after 2 hr treatment with 2.5 mM tetranitromethane at pH 8. Two tyrosine residues per enzyme protomer (46,000 daltons) are modified by the reagent either in the holoenzyme or in the apoenzyme. In both cases the five SH groups titratable with p-mercuribenzoate are not modified by the reagent. However, with a tetranitromethane concentration higher than 2.5 mM and 10 mM mercaptoethanol, an additional tyrosine residue is nitrated in both holo- and apoenzymes. These results are not affected by the presence in the incubation mixture of the substrates alpha-ketoglutarate and glutamate both at ten times their Km values. Mercaptoethanol does not impair the recombination of native or nitrated apoenzyme with the coenzyme and does not reduce the coenzyme moiety of native or nitrated holoenzyme, but promotes a conformational change in the nitrated holoenzyme which causes inactivation. Hydrosulfite promotes the reduction of the coenzyme moiety of native and nitro holoenzyme resulting in their inactivation, largely in the nitrated form. The recombination of the coenzyme with native or nitrated apoenzyme is not influenced by hydrosulfite.  相似文献   

9.
The effect of pyridoxal depletion and supplementation on the intracellular level of mitochondrial and cytosolic aspartate aminotransferase in cultured chicken embryo fibroblasts was examined. No apoenzyme was detected in cells grown in the presence of pyridoxal, and the specific activity of total enzyme did not vary profoundly from primary to quaternary cultures. Under pyridoxal depletion, up to 40% apoenzyme was found in tertiary cultures which was entirely due to the mitochondrial isoenzyme. Cytosolic apoenzyme was never detected. Total aspartate aminotransferase relative to total protein was increased 2-fold in secondary cultures; only the mitochondrial isoenzyme contributed to the increased specific activity. The cytosolic isoenzyme decreased steadily and was below the limit of detection in quaternary cultures. The changes are attributed to an increased and decreased synthesis of mitochondrial and cytosolic isoenzyme, respectively. No induction of either isoenzyme was observed after incubating the cells with different hormones and substrates. In secondary cultures, no degradation of mitochondrial isoenzyme could be detected under pyridoxal deficiency or supplementation during 4.4 days, an interpassage duration. The cytosolic aspartate aminotransferase was degraded initially with an apparent half-life of approximately 0.9 day under both sets of conditions. The pronounced stability of mitochondrial aspartate aminotransferase, even though one-third of it was present as apoenzyme, excludes the formation of the apoform to be the rate-limiting step in its degradation. The present results show that pyridoxal affects the synthesis of mitochondrial and cytosolic aspartate aminotransferase, but differently.  相似文献   

10.
The active site of Sulfolobus solfataricus aspartate aminotransferase   总被引:1,自引:0,他引:1  
Aspartate aminotransferase from the archaebacterium Sulfolobus solfataricus binds pyridoxal 5' phosphate, via an aldimine bond, with Lys-241. This residue has been identified by reducing the enzyme in the pyridoxal form with sodium cyanoboro[3H]hydride and sequencing the specifically labeled peptic peptides. The amino acid sequence centered around the coenzyme binding site is highly conserved between thermophilic aspartate aminotransferases and differs from that found in mesophilic isoenzymes. An alignment of aspartate aminotransferase from Sulfolobus solfataricus with mesophilic isoenzymes, attempted in spite of the low degree of similarity, was confirmed by the correspondence between pyridoxal 5' phosphate binding residues. Using this alignment it was possible to insert the archaebacterial aspartate aminotransferase into a subclass, subclass I, of pyridoxal 5' phosphate binding enzymes comprising mesophilic aspartate aminotransferases, tyrosine aminotransferases and histidinol phosphate aminotransferases. These enzymes share 12 invariant amino acids most of which interact with the coenzyme or with the substrates. Some enzymes of subclass I and in particular aspartate aminotransferase from Sulfolobus solfataricus, lack a positively charged residue, corresponding to Arg-292, which in pig cytosolic aspartate aminotransferase interacts with the distal carboxylate of the substrates (and determines the specificity towards dicarboxylic acids). It was confirmed that aspartate aminotransferase from Sulfolobus solfataricus does not possess any arginine residue exposed to chemical modifications responsible for the binding of omega-carboxylate of the substrates. Furthermore, it has been found that aspartate aminotransferase from Sulfolobus solfataricus is fairly active when alanine is used as substrate and that this activity is not affected by the presence of formate. The KM value of the thermophilic aspartate aminotransferase towards alanine is at least one order of magnitude lower than that of the mesophilic analogue enzymes.  相似文献   

11.
Frontal and zonal analysis of the chromatography of aspartate aminotransferase (EC2.61.1), pig heart cytosolic enzyme, on Bio-Gel P150 shows that holo- and apoenzyme can dissociate at pH 8.3. Ultracentrifugation and fluorescence depolarization confirm this result. Kinetic analysis of the fluorescence depolarization experiments favors a biphasic phenomenon: a few minutes for the faster one and several hours for the slower one. The apparent dissociation constant is 0.8 muM for the apoenzyme and 0.18 muM for the pyridoxal 5'-phosphate form of the holoenzyme. In the presence of sucrose or 0.1 M L-aspartate or a mixture of 70 mM L-glutamate and 2 mM alpha-ketoglutarate, the holoenzyme is dimeric at concentrations higher than 5 nM. The addition of a mixture of the substrates L-glutamate and alpha-ketoglutarate to a monomeric holoenzyme leads to dimerization. The stability of the dimeric form is in the order: holoenzyme + substrates greater than apoenzyme.  相似文献   

12.
Conditions for reductive methylation of amine groups in proteins using formaldehyde and cyanoborohydride can be chosen to modify selectively the active site lysyl residue of aspartate aminotransferase among the 19 lysyl residues in each subunit of this protein. Apoenzyme must be treated, under mildly acidic conditions (pH = 6), at a relatively low molar ratio of formaldehyde to protein (40:1); and, upon reduction with sodium cyanoborohydride, 85% of the formaldehyde is incorporated at Lysine 258 and 15% at the amino-terminal alanyl residue. The modified protein, characterized after tryptic hydrolysis, separation of the peptides by high performance liquid chromatography procedures and subsequent amino acid analysis, shows that lysine 258 is preferentially modified as a dimethylated derivative. Modified apoenzyme can accept and tightly bind added coenzyme pyridoxal phosphate, as measured by circular dichroism procedures. The methylated enzyme is essentially catalytically inactive when measured by standard enzymatic assays. On the other hand, addition of the substrate, glutamate, produces the characteristic absorption spectral shifts for conversion of the active site-bound pyridoxal form of the coenzyme (absorbance at 400 nm) to its pyridoxamine form (absorbance at 330 nm). Such a half-transamination-like process occurs as in native enzyme, albeit at several orders of magnitude lower rate. This event takes place even though the characteristic internal holoenzyme Schiff's base between Lys-258 and aldehyde of bound pyridoxal phosphate does not exist in methylated, reconstituted holoenzyme. It is concluded that this chemically transformed enzyme can undergo a half-transamination reaction with conversion of active site-bound coenzyme from a pyridoxal to a pyridoxamine form, even when overall catalytic turnover transamination cannot be detected.  相似文献   

13.
We have recorded 1H NMR spectra in H2O for exchangeable protons of four pyridoxal phosphate-dependent enzymes: D-serine dehydratase, aspartate aminotransferase, tryptophan: indole-lyase and glutamate decarboxylase. The molecular masses range from 48-250 kDa. In every case there are downfield peaks which are lost when the apoenzyme is formed. In most cases some peaks shift in response to interactions with substrates and inhibitors and with changes in pH. We associate one downfield resonance with the proton on the ring nitrogen of the coenzyme and others with imidazole groups that interact with coenzyme or substrates. The chemical shift for the coenzyme-bound proton differs for free enzyme, substrate Schiff base or quinonoid forms.  相似文献   

14.
Alanine:glyoxylate aminotransferase was present as the apoenzyme in the peroxisomes and as the holoenzyme in the mitochondria in chick embryos. The peroxisomal enzyme predominated in the early stage and gradually decreased during embryonic development and disappeared after hatching. In contrast, the mitochondrial enzyme gradually increased and predominated in the later stage of chick embryos. Peroxisomal alanine:glyoxylate aminotransferase in chick embryos was a single peptide with a molecular weight of about 40,000. The enzyme differed from the mitochondrial enzyme in the embryos, and mammalian alanine:glyoxylate aminotransferases 1 (with a molecular weight of about 80,000 with two identical subunits) and 2 (with a molecular weight of about 200,000 with four identical subunits) in molecular weights and immunological properties. Mitochondrial alanine:glyoxylate aminotransferase in chick embryos had an identical molecular weight and immunologically cross-reacted with mammalian mitochondrial alanine:glyoxylate aminotransferase 2. Pyridoxal 5'-phosphate dissociated easily from the peroxisomal enzyme saturated with pyridoxal 5'-phosphate. Hepatic aspartate:2-oxoglutarate aminotransferase and alanine:2-oxoglutarate aminotransferase in chick embryos, and hepatic alanine:glyoxylate aminotransferases in different animal species were all present as the holoenzyme.  相似文献   

15.
Post-translational phosphorylation of proteodermatan sulfate   总被引:2,自引:0,他引:2  
In cultured human skin fibroblasts, the core protein of the small proteodermatan sulfate becomes phosphorylated post-translationally but before the glycosaminoglycan chains are synthesized. This phosphorylation can occur when the intracellular transport is inhibited by carbonyl cyanide m-chlorophenylhydrazone or when the attachment of asparagine-linked oligosaccharides is prevented by tunicamycin. Serine and glycosaminoglycan chains were identified as phosphorylation sites of secreted proteodermatan sulfate. Upon alkaline borohydride treatment and degradation by chondroitin ABC lyase, the main phosphorylated product co-chromatographed with an unsulfated 3H-labeled hexasaccharide prepared analogously from [3H]galactose/[35S]sulfate-labeled proteodermatan sulfate.  相似文献   

16.
The transport of precursor proteins into mitochondria requires an energized inner membrane. We report here that the import of various precursor proteins showed a differential sensitivity to treatment of the mitochondria with the uncoupler carbonyl cyanide m-chlorophenylhydrazone. The differential inhibition by carbonyl cyanide m-chlorophenylhydrazone was not influenced by the length of the precursor, the presence of mature protein parts, or the folding state of the precursor but was specific for the presequence. Moreover, only the membrane potential delta psi and not the total proton motive force was required for the transport of precursors, indicating that protein translocation across the inner membrane is not driven by a movement of protons. We conclude that delta psi (negative inside) is needed for the translocation of the positively charged presequences, possibly via an electrophoretic effect.  相似文献   

17.
The precursor to corticotropin and beta-endorphin was synthesized in a reticulocyte cell-free system under the direction of mRNA from mouse AtT-20 pituitary tumor cells in the presence of [3H]proline, [3H]phenylalanine, [3H]leucine, [3H]valine, [3H]isoleucine or [35S]methionine. Automatic Edman degradation of the radioactive cell-free product showed the following N-terminal sequence: Pro-1, Met-2, Leu-11, Leu-12, Leu-13, Leu-15, Leu-16, Leu-17, Ile-21 and Val-23. The corticotropin-endorphin precursor was also labeled in AtT-20 cells with [3H]valine, [3H]leucine, [3H]tryptophan, [3H]serine, [35S]methionine or [35S]cysteine. Automatic Edman degradation of the radioactive intact cell form gave the following N-terminal sequence: Trp-1, Cys-2, Leu-3, Ser-5, Ser-6, Val-7, Cys-8, Leu-11, Leu-17, Leu-18 and tentatively Met-27. The sequence of the intact cell form from AtT-20 cells matches the sequence of the cell-free form of bovine pituitary precursor beginning at Trp-27, as determined by recombinant DNA technology [Nakanishi, S., Inoue, A., Kita, T., Nakamura, M., Chang, A. C. Y., Cohen, S. N., and Numa, S. (1979) Nature (Lond.) 278, 423-427]. The sequence of the mouse pituitary mRNA-directed cell-free translation product also matches the bovine precursor beginning at Pro-2. The results suggest that both the mouse and bovine precursors possess a signal sequence of 26 amino acids which is cleaved in intact cells. CNBr cleavage of [35S]cysteine-labelled intact cell precursor gave rise to an N-terminal fragment of a size compatible with the presence of a methionyl residue at or near position 27.  相似文献   

18.
The conformational responses of aspartate aminotransferase (cytosolic isoenzyme from pig) to the binding of the coenzyme and competitive inhibitors and to the bond rearrangement steps during the transamination reaction were probed by the method of peptide hydrogen deuterium exchange. Binding of the coenzyme to the apoenzyme results in a marked retardation of hydrogen exchange; binding of the competitive inhibitor maleate to the pyridoxal enzyme induces a retardation of exchange somewhat exceeding that observed in the presence of the transaminating substrate pair glutamate and 2-oxoglutarate (Pfister, K., K?gi, J.H.R., and Christen, P. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 145-148). On formation of the complex of apoenzyme with N-(5'-phosphopyridoxyl)-L-glutamate or-L-aspartate, analogs of the covalent coenzyme substrate intermediates, a similar exchange retardation occurs. The extent of the exchange retardation in these different functional states of the enzyme correlates with previous results of differential chemical and proteolytic modifications. Apparently, the diverse methods register shifts in one and the same conformational equilibrium. Moreover, the conditions under which peptide hydrogen exchange indicates a pronounced tightening of the protein matrix correspond with those inducing crystallization of the enzyme in the "closed" form. Thus, the transition between the "open" and "closed" form of the enzyme, i.e. the bulk movement of the small domain, as observed and defined by x-ray crystallography (Kirsch, J. F., Eichele, G., Ford, G. C., Vincent, M. G., Jansonius, J. N., Gehring, H., and Christen, P. (1984) J. Mol. Biol. 174, 497-525) is the major structural correlate of the conformational changes undergone by the enzyme in solution.  相似文献   

19.
Aspartate aminotransferase from the archaebacterium Sulfolobus solfataricus, a thermoacidophilic organism isolated from an acidic hot spring (optimal growth conditions: 87 degrees C, pH 3.5) was purified to homogeneity. The enzyme is a dimer (Mr subunit = 53,000) showing microheterogeneity when submitted to chromatofocusing and/or isoelectric focusing analysis (two main bands having pI = 6.8 and 6.3 were observed). The N-terminal sequence (22 residues) does not show any homology with any stretch of known sequence of aspartate aminotransferases from animal and bacterial sources. The apoenzyme can be reconstituted with pyridoxamine 5'-phosphate and/or pyridoxal 5'-phosphate, each subunit binding 1 mol of coenzyme. The absorption maxima of the pyridoxamine and pyridoxal form are centered at 325 and 335 nm, respectively; the shape of the pyridoxal form band does not change with pH. The enzyme has an optimum temperature higher than 95 degrees C, and at 100 degrees C shows a half-inactivation time of 2 h. The above properties seem to be unique even for enzymes from extreme thermophiles (Daniel, R. M. (1986) in Protein Structure, Folding, and Design (Oxender, D. L., ed) pp. 291-296, Alan R. Liss, Inc., New York) and lead to the conclusion that aspartate aminotransferase from S. solfataricus is one of the most thermophilic and thermostable enzymes so far known.  相似文献   

20.
Rat liver tyrosine aminotransferase and alanine aminotransferase are similar enzymes in most properties, but they differ markedly in their ease of coenzyme dissociation and rate of metabolic turnover. Dissociation of coenzyme does not determine rate of turnover (K.L. Lee, P. L. Darke, and F. T. Kenney, 1977, J. Biol. Chem.252, 4958–4961), but these parameters may reflect structural properties of the enzymes which determine both. To explore this possibility we studied these enzymes in livers of rats fed a pyridoxine-deficient diet in which both enzymes were largely in apoenzyme form. This form of alanine aminotransferase, not previously characterized, was identified as an immunologically cross-reactive material which was converted to active enzyme when extracts were incubated with pyridoxal phosphate in vitro. This apoenzyme behaved like the active holoenzyme in chromatographic and electrophoretic analyses but was more sensitive than the holoenzyme to heat, low pH, or proteolysis by trypsin or chymotrypsin. Relative rates of reconstitution of the two holoenzymes in vivo after injection of pyridoxine were determined as a measure of conformational stability of the two enzymes as they exist in the intracellular environment. Restoration of the tyrosine aminotransferase holoenzyme was completed within 30 to 45 min, but that of the alanine enzyme required 8 h. These results suggest that tyrosine aminotransferase in vivo is a relaxed structure which facilitates both coenzyme dissociation and rapid metabolic turnover, whereas alanine aminotransferase assumes a taut structure resistant to both dissociation and degradative processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号