首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relationships between weather parameters andairborne pollen loads of Pinus inBrisbane, Australia have been investigated overthe five-year period, June 1994–May 1999.Pinus pollen accounts for 4.5% of the annualairborne pollen load in Brisbane where thePinus season is confined to the winter months,July–early September. During the samplingperiod loads of 11–>100 grains m3 wererecorded on 24 days and 1–10 grains m3 on204 days. The onset and peak dates wereconsistent across each season, whereas the enddates varied. The onset of the Pinuspollen season coincided with the coolestaverage monthly temperatures (< 22°C),lowest rainfall (< 7mm), and four weeks afterdaily minimum temperatures fell to 5–9°Cin late autumn. Correlations obtained betweendaily airborne Pinus pollen counts andtemperature/rainfall parameters show thatdensities of airborne Pinus pollen arenegatively correlated with maximum temperature(p < 0.0001), minimum temperature (p < 0.0001)and rainfall (p < 0.05) during the mainpollination period. The mean duration of eachpollen season was 52 days; longer seasons wereshown to be directly related to lower averageseasonal maximum temperatures (r2 = 0.85,p = 0.025). These results signify that maximumand minimum temperatures are the majorparameters that influence the onset andduration of the Pinus pollen season inthe environs of Brisbane. Respiratory allergyis an important health issue in Brisbane,Australia, but it remains unknown whether ornot airborne Pinus pollen is acontributing factor.  相似文献   

2.
Aerobiological study of Fagaceae pollen in the middle-west of Spain   总被引:1,自引:0,他引:1  
The concentration of airborne Fagaceae pollen in Salamanca and the correlations with some meteorological parameters have been examined. Castanea and Quercus pollen grains were collected from 1998 to 2004 using a Burkard spore trap. No pollen grains of Fagus were found. The main pollen season took place in April and May for Quercus and in June and July for Castanea. Yearly variations on these dates could be related to the influence of meteorological factors such as rainfall, temperature, or dominant winds. The highest values appeared in the year 2004 for both taxa. The Fagaceae airborne content was mainly due to Quercus pollen, Castanea having a scarce pollen content in the city of Salamanca. The highest counts of Fagaceae pollen grains were found from mid May to early June due to the pollen behavior of oaks. The cumulative counts varied over the years, with a mean value of 2,384 pollen grains, a highest total of 6,036 in 2004 and a lowest total of 954 in 2001. No cyclic variations were observed. Daily pollen concentrations presented positive correlation with temperature, negative with relative humidity and slightly negative with rainfall using Spearman's correlation coefficients, only in the case of Castanea, because the particular hourly distribution of rainfall during the spring might affect Quercus airborne pollen.  相似文献   

3.
Olive and grass pollen grains are the major causes of hay fever in the Mediterranean region. A number of samplers and methods have been developed in recent years in order to obtain reliable data regarding airborne allergen concentrations. This paper reports on a detailed comparison of two samplers—Cyclone and ChemVol—and on the parameters that could influence their efficiency. Airborne concentrations of two key olive and grass allergens, Ole e 1 and Phl p 5, respectively, were monitored over two years with different weather patterns, 2012 and 2014. Allergenic particles were quantified by ELISA assay, and results were compared with pollen concentrations monitored using a Hirst-type volumetric spore trap over the same study periods. The influence of weather-related parameters on local airborne pollen and allergen concentrations was also analysed. Although a positive correlation was detected between results obtained using the two samplers during the pollen season, results for the cumulative annual Allergen Index varied considerably. The two samplers revealed a positive correlation between pollen concentrations and both minimum temperature during the warmer year (2012) and maximum temperature during the cooler year (2014); a negative significant correlation was observed in both cases with rainfall and relative humidity. In summary, although some differences were observed between the two samplers studied, both may be regarded as suitable for allergen detection.  相似文献   

4.
Fungal spores are an ever-present component of the atmosphere, and have long been known to trigger asthma and hay fever symptoms in sensitive individuals. The atmosphere around Tulsa has been monitored for airborne spores and pollen with Burkard spore traps at several sampling stations. This study involved the examination of the hourly spore concentrations on days that had average daily concentrations near 50,000 spores/m(3) or greater. Hourly concentrations of Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, other, and total spores were determined on 4 days at three sites and then correlated with hourly meteorological data including temperature, rainfall, wind speed, dew point, air pressure, and wind direction. On each of these days there was a spore plume, a phenomenon in which spore concentrations increased dramatically over a very short period of time. Spore plumes generally occurred near midday, and concentrations were seen to increase from lows around 20,000 total spores/m(3) to highs over 170,000 total spores/m(3) in 2 h. Multiple regression analysis of the data indicated that increases in temperature, dew point, and air pressure correlated with the increase in spore concentrations, but no single weather variable predicted the appearance of a spore plume. The proper combination of changes in these meteorological parameters that result in a spore plume may be due to the changing weather conditions associated with thunderstorms, as on 3 of the 4 days when spore plumes occurred there were thunderstorms later that evening. The occurrence of spore plumes may have clinical significance, because other studies have shown that sensitization to certain spore types can occur during exposure to high spore concentrations.  相似文献   

5.
The aim of this study was to construct a picture of the influence of meteorological conditions on the start and duration of the airborne Betulaceae pollen season and the pollen concentrations in the atmosphere of Zagreb, Croatia. The study during three seasons (2002–2004) used a 7‐day Hirst‐type volumetric pollen and spore trap. Total annual airborne pollen of Alnus, Corylus and Betula greatly varied from year to year. The differences in the dates of onset of airborne pollen presence of Alnus, Corylus and Betula noted in Zagreb in 2002–2004 were controlled by weather conditions, particularly temperature and precipitation. In all years studied, airborne pollen peaks were recorded on days with temperature above 0°C and without or minimal precipitation. The mean number of days with airborne pollen concentrations exceeding levels which provoke symptoms of an allergic reaction was 15, 16 and 29 days for alder, hazel and birch, respectively. The results of the present study may provide useful data for allergologists to reach accurate diagnoses, and timely information on concentrations of airborne pollen types and concentrations for individuals with pollen hypersensitivity.  相似文献   

6.
The investigated problem was whether and to what an extent the elements of weather conditions were associated with changes in the concentration of Ambrosia pollen in air. The study was carried out in the years 1997–2004 using the volumetric method. Ragweed did not occur in the flora of the town of Rzeszów and its vicinity, but every year its pollen occurred at concentrations considerably exceeding the threshold values for the allergic response. The pollen seasons usually began from near the end of August to the first part of September. The values of daily concentrations varied greatly: days without pollen grains being frequently noted while single grains occurred long before and after the season. The effect of the elements of weather on changes in the concentration of pollen in the air was slight. Taking into account all meteorological parameters, it can be stated that an increase in the number of pollen grains is connected with increased temperature and higher wind speeds, but negatively correlated with humidity and rainfall. These relationships can usually be explained by the effects of the type of weather taking place over the wider region. The analysis of the results showed that pollen was probably transported from distant regions. The mean angle at which the greatest pollen concentrations were recorded corresponded to the SE wind direction. The analysis of synoptic phenomena during the pollen season confirms the thesis about the long-distance transport from the south, southeast and southwest. A close dependence was also found between the starting date of the season and the sum of maximum temperatures and the sum of differences between the maximum and minimum temperatures.  相似文献   

7.
Ambrosia pollen represents a significant allergenic risk for pollen-sensitive people also in Slovakia. The aim of this study was to compare the results of the monitoring of Ambrosia pollen concentrations and pollen seasons in Bratislava during years 2002–2007. Measurements were performed by the volumetric method using Burkard volumetric spore trap at the height of 10 m above ground level. During six monitored years, a total of 11,334 Ambrosia pollen grains per cubic meter of air were recorded. The highest total ragweed pollen amount was detected in 2002 (2,577 pollen grains of the total annual pollen concentration) and the lowest ragweed pollen concentration (1,213 pollen grains) was determined in 2007. However, mentioned year was represented as the year with the longest pollen season among the all monitored years in Bratislava (41 days). The pollen season peak day of 2002, 2004, 2005 and 2006 was recorded at the beginning of September; in 2003 and 2007 the peak was at the second half of August. The highest daily amount of Ambrosia pollen grains (more than 100 grains per cubic meter of air) was in 2002 (12 days). The results can be utilized to help to prevent symptoms of allergic reactions to Ambrosia pollen and improve quality of life during seasonal allergic diseases in ragweed pollen-sensitive people.  相似文献   

8.
This study sought to compare airborne pollen counts for a number of common herbaceous species (Plantago, Chenopodiaceae–Amaranthaceae, Rumex, and Urticaceae) in two cities with differing weather conditions, Córdoba (Southwestern Spain) and Poznan (Western Poland). Pollen seasons for these species were studied from 1995 to 2005. Aerobiological sampling was performed using a Hirst type 7-day spore trap, in accordance with the procedure developed by the European Aerobiology Network. A Spearman correlation test was used to test for correlations between meteorological parameters and daily airborne pollen counts. The Spearman correlation test and the Wilcoxon signed ranks test were also used to compare mean daily pollen counts for the two study sites. In Córdoba, the pollen season generally started around two months earlier than in Poznan, and also lasted longer. These findings were attributed to the presence of a larger number of species in Córdoba, with overlapping pollen seasons, and also to more favorable weather conditions. Trends in pollen season start dates were fairly stable over the study period, with a slight tendency to delayed onset in Córdoba and a modest advance in start date in Poznan. The pollen season end date also remained reasonably stable over the study, with only a slight tendency for the season to end earlier in Córdoba and later in Poznan. A clear trend towards declining annual pollen counts was recorded over the study period for all pollen types in both cities.  相似文献   

9.
Knowledge of airborne pollen concentrations and the weather conditions influencing them is important for air quality forecasters, allergists and allergy sufferers. For this reason, a 7-day recording volumetric spore trap of the Hirst design was used for pollen monitoring between January 2006 and December 2007 in Kastamonu, Turkey. A total of 293,427 pollen grains belonging to 51 taxa were recorded during the study period. In the 2?years of study, the period March–August was identified as the main pollination season for Kastamonu. The highest monthly pollen counts were observed in May in both years. Six taxa made up 86.5% of the total amount of pollen recorded in the atmosphere of Kastamonu. These were as follows: Pinaceae (42.9%), Cupressaceae (20.6%), Poaceae (9.7%), Quercus (5.5%) Betula (5.3%) and Carpinus (2.6%). Four of these are considered to be highly allergenic (Betula, Carpinus, Cupressaceae and Poaceae). There were also a greater percentage of highly allergenic taxa found within the city, including Betula pendula that is not part of the local flora. This shows that through urban planting, the public and municipalities can unconsciously create a high risk for allergy sufferers. Daily average pollen counts from the six most frequently recorded pollen types were entered into Spearman’s correlation analysis with meteorological data. Mean daily temperature, relative humidity, daily rainfall and wind speed were found to significantly (p?<?0.05) affect atmospheric pollen concentrations, but the relationships between pollen concentrations and meteorological variables can vary and so there is a need for more local studies of this nature.  相似文献   

10.
The aim of this study was to determine the onset, length and end of the ragweed pollen season, taking into account diurnal, day-to-day, monthly and annual pollen variations, the effect of some meteorological parameters on atmospheric pollen concentrations and possible differences in the airborne pollen season and concentration due to sampling site. Airborne pollen was collected at three sites in central Croatia (Zagreb, Samobor and Ivanić Grad) during three pollen seasons (2002–2004). Seven-day Hirst-type volumetric pollen traps were used for pollen sampling. Ragweed pollen was the third most abundant pollen type to occur in the atmosphere of central Croatia. Total Ambrosia pollen concentration was the highest in the 2003 pollen season and the lowest in 2004 at all sampling sites. Maximum emissions were restricted to August and September. Intradiurnal periodicity showed a peak from 1000 to 1200 hours. The concentration of ragweed pollen during the pollen season was greatly influenced by temperature and precipitation: on rainy days accompanied by temperature decline, the air pollen concentration decreased abruptly. The results of this study are aimed at helping to alleviate the symptoms of allergic reactions in individuals with ragweed pollen hypersensitivity, thus improving their quality of life.  相似文献   

11.
Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic plant that is spreading throughout Europe. Ragweed pollen can be transported over large distances by the wind. Even low pollen concentrations of less than 10 pollen m(-3) can lead to health problems in sensitive persons. Therefore, forecasting the airborne concentrations of ragweed pollen is becoming more and more important for public health. The question remains whether distant pollen sources need to be considered in reliable forecasts. We used the extended numerical weather prediction system COSMO-ART to simulate the release and transport of ragweed pollen in central Europe. A pollen episode (September 12-16, 2006) in north-eastern Germany was modeled in order to find out where the pollen originated. For this purpose, several different source regions were taken into account and their individual impact on the daily mean pollen concentration and the performance of the forecast were studied with the means of a 2?×?2 contingency table and skill scores. It was found that the majority of the pollen originated in local areas, but up to 20% of the total pollen load came from distant sources in Hungary. It is concluded that long-distance transport should not be neglected when predicting pollen concentrations.  相似文献   

12.
Hazel (Corylus avellana L.) and black alder (Alnus glutinosa (L.) Gaertn.) are important sources of airborne pollen and represent an allergen threat during the flowering period. Researches on airborne pollen concentrations in both species are useful in allergology, as well as for fruit production for hazel. The aims of the present study were: (1) to investigate the relationships between environmental conditions and the airborne pollen concentration of hazel and black alder during the flowering period by correlation and multiple regression analysis and (2) to predict the pollen season start (PSS) by using a sequential model, in order to obtain a helpful tool in allergology and hazel cultivation. In this study, the applied method defines the pollen season as the period in which 90 % of the total season’s catch occurred, using a data set of 18 years (1996–2014). The relationships between daily meteorological parameters (temperature, humidity, rainfall and wind speed) during the 14-day period that precedes the PSS and the PSS of hazel and black alder (day of the year) were investigated. The results showed that mean temperature and the number of rainy days before the PSS are the main factors influencing PSS for both taxa. Moreover, the chilling and heat needed to break dormancy were estimated in order to predict the PSS of both species. Different years and different thresholds of temperature and chill days were used to calibrate and validate the model.  相似文献   

13.
Constructing accurate predictive models for grass and birch pollen in the air, the two most important aeroallergens, for areas with variable climate conditions such as the United Kingdom, require better understanding of the relationships between pollen count in the air and meteorological variables. Variations in daily birch and grass pollen counts and their relationship with daily meteorological variables were investigated for nine pollen monitoring sites for the period 2000–2010 in the United Kingdom. An active pollen count sampling method was employed at each of the monitoring stations to sample pollen from the atmosphere. The mechanism of this method is based on the volumetric spore traps of Hirst design (Hirst in Ann Appl Biol 39(2):257–265, 1952). The pollen season (start date, finish date) for grass and birch were determined using a first derivative method. Meteorological variables such as daily rainfall; maximum, minimum and average temperatures; cumulative sum of Sunshine duration; wind speed; and relative humidity were related to the grass and birch pollen counts for the pre-peak, post peak and the entire pollen season. The meteorological variables were correlated with the pollen count data for the following temporal supports: same-day, 1-day prior, 1-day mean prior, 3-day mean prior, 7-day mean prior. The direction of influence (positive/negative) of meteorological variables on pollen count varied for birch and grass, and also varied when the pollen season was treated as a whole season, or was segmented into the pre-peak and post-peak seasons. Maximum temperature, sunshine duration and rainfall were the most important variables influencing the count of grass pollen in the atmosphere. Both maximum temperature (pre-peak) and sunshine produced a strong positive correlation, and rain produced a strong negative correlation with grass pollen count in the air. Similarly, average temperature, wind speed and rainfall were the most important variables influencing the count of birch pollen in the air. Both wind speed and rain produced a negative correlation with birch pollen count in the air and average temperature produced a positive correlation.  相似文献   

14.
Aerobiological studies carried out in the atmosphere of Granada using a Hirst-type volumetric spore trap during the period 1993-1996 show that there is not a single diurnal pattern for olive pollen (Olea europaea L.) over the course of the main pollen season. Examination of the behaviour of airborne olive pollen concentration allows the establishment of either regular (54.4% of the studied days) or irregular (45.6% of the time) patterns of diurnal variation. On a given day, the pattern found will depend on a combination of different factors: the origin of the captured pollen (either local or regional), source distribution in relation to the pollen sampler, topography, and different meteorological variables (mean air temperature, sunshine hours, total rainfall, relative humidity, wind speed and direction, and periods of calm). Regional sources were significant contributors to city centre pollen concentrations when moderate (< 10 km/h) winds from the 4th quadrant and warm temperatures (19-26 C) allow swift transport from the W-NW of the province.  相似文献   

15.
This study compares phenological observations of Corylus (hazel) and Alnus (alder) flowering with airborne pollen counts of these taxa recorded using volumetric spore traps (2009–2011). The work was carried out in the Polish cities of Szczecin and Rzeszów that are located in different climatic regions. Correlations between pollen concentrations and meteorological data were investigated using Spearman’s rank correlation analysis. The timings of hazel and alder pollination and the occurrence of airborne pollen varied greatly and were significantly influenced by meteorological conditions (p < 0.05). The flowering synchronization of hazel and alder pollination in Szczecin and Rzeszów varied over the study period. Hazel and alder trees flowered notably earlier in stands located in places that were exposed to sunlight (insolated) and sheltered from the wind. On the other hand, a delay in the timing of pollination was observed in quite sunny but very windy sites. In Rzeszów, maximum hazel pollen concentrations did not coincide with the period of full pollination (defined as between 25 % hazel and alder and 75 % of flowers open). Conversely, in Szczecin, the highest hazel pollen concentrations were recorded during phenophases of the full pollination period. The period when the highest alder pollen concentrations were recorded varied between sites, with Rzeszów recording the highest concentrations at the beginning of pollination and Szczecin recording alder pollen throughout the full pollination period. Substantial amounts of hazel and alder pollen grains were recorded in the air of Rzeszów (but not Szczecin) before the onset of the respective pollen seasons.  相似文献   

16.
The airborne ragweed pollen spectrum was investigated in the air of Ankara, Turkey for aperiod of ten years (1990-1999) using a Burkard seven-day volumetric recording trap. In our study period,long distance transported Ambrosia pollen has been registered. Daily pollen levels varied from low to highin Burge's system. In last three years, the pollen concentration of Ambrosia showed a clear increasingtendency. Our results prove that ragweed pollen may be an important threat for ragweed sensitive patientsin Ankara city in near future.  相似文献   

17.

Climate and weather directly impact plant phenology, affecting airborne pollen. The objective of this systematic review is to examine the impacts of meteorological variables on airborne pollen concentrations and pollen season timing. Using PRISMA methodology, we reviewed literature that assessed whether there was a relationship between local temperature and precipitation and measured airborne pollen. The search strategy included terms related to pollen, trends or measurements, and season timing. For inclusion, studies must have conducted a correlation analysis of at least 5 years of airborne pollen data to local meteorological data and report quantitative results. Data from peer-reviewed articles were extracted on the correlations between seven pollen indicators (main pollen season start date, end date, peak date, and length, annual pollen integral, average daily pollen concentration, and peak pollen concentration), and two meteorological variables (temperature and precipitation). Ninety-three articles were included in the analysis out of 9,679 articles screened. Overall, warmer temperatures correlated with earlier and longer pollen seasons and higher pollen concentrations. Precipitation had varying effects on pollen concentration and pollen season timing indicators. Increased precipitation may have a short-term effect causing low pollen concentrations potentially due to “wash out” effect. Long-term effects of precipitation varied for trees and weeds and had a positive correlation with grass pollen levels. With increases in temperature due to climate change, pollen seasons for some taxa in some regions may start earlier, last longer, and be more intense, which may be associated with adverse health impacts, as pollen exposure has well-known health effects in sensitized individuals.

  相似文献   

18.
The influence of meteorological parameters on the dispersion of airborne pollen has been studied by several authors. Olive pollen is the major cause of allergy in southern Spain, where a large part of the arable surface area is given over to olive cultivation. Daily pollen forecasts provide important information both for pollen-allergy sufferers and for agronomists trying to achieve a better biological understanding of variations in airborne olive pollen levels. The main purpose of this paper is to study, by means of short-term statistical analysis, the effect of meteorological parameters on airborne olive pollen concentrations in the city of Cordoba (south-western Spain). Twenty-one-year (1982–2002) aerobiological and meteorological databases were used. Correlation and multiple regression analyses were used to study the relationships between olive pollen levels and several meteorological parameters. Statistical analysis was applied both to the whole pollen season and to the pre-peak period. Daily meteorological parameters, such as accumulated mean temperature, accumulated sunlight hours, and accumulated rainfall were used as independent variables in both statistical analyses. Accumulated meteorological variables were of the greatest value in most regression analysis equations, heat-related variables being the most important.  相似文献   

19.
The aim of this study is to supply detailed information about oak (Quercus sp.) pollen seasons in Poznań, Poland, based on a 16-year aerobiological data series (1996–2011). The pollen data were collected using a volumetric spore trap of the Hirst design located in Poznań city center. The limits of the pollen seasons were calculated using the 95 % method. The influence of meteorological parameters on temporal variations in airborne pollen was examined using correlation analysis. Start and end dates of oak pollen seasons in Poznań varied markedly from year-to-year (14 and 17 days, respectively). Most of the pollen grains (around 75 % of the seasonal pollen index) were recorded within the first 2 weeks of the pollen season. The tenfold variation was observed between the least and the most intensive pollen seasons. These fluctuations were significantly related to the variation in the sum of rain during the period second fortnight of March to first fortnight of April the year before pollination (r = 0.799; p < 0.001). During the analyzing period, a significant advance in oak pollen season start dates was observed (?0.55 day/year; p = 0.021), which was linked with an increase in the mean temperature during the second half of March and first half of April (+0.2 °C; p = 0.014). Daily average oak pollen counts correlated positively with mean and maximum daily temperatures, and negatively with daily rainfall and daily mean relative humidity.  相似文献   

20.
A pollen calendar has been constructed for the area of Thessaloniki and relationships between pollen transport and meteorological parameters have been assessed. Daily airborne pollen records were collected over a 15-year period (1987-2001), using a Burkard continuous volumetric pollen trap, located in the centre of the city. Sixteen allergenic pollen types were identified. Simultaneously, daily records of five main meteorological parameters (mean air temperature, relative humidity, rainfall, sunshine, wind speed) were made, and then correlated with fluctuations of the airborne pollen concentrations. For the first time in Greece, a pollen calendar has been constructed for 16 pollen types, from which it appears that 24.9% of the total pollen recorded belong to Cupressaceae, 20.8% to Quercus spp., 13.6% to Urticaceae, 9.1% to Oleaceae, 8.9% to Pinaceae, 6.3% to Poaceae, 5.4% to Platanaceae, 3.0% to Corylus spp., 2.5% to Chenopodiaceae and 1.4% to Populus spp. The percentages of Betula spp., Asteraceae (Artemisia spp. and Ambrosia spp.), Salix spp., Ulmaceae and Alnus spp. were each lower than 1%. A positive correlation between pollen transport and both mean temperature and sunshine was observed, whereas usually no correlation was found between pollen and relative humidity or rainfall. Finally, wind speed was generally found to have a significant positive correlation with the concentrations of 8 pollen types. For the first time in the area of Thessaloniki, and more generally in Greece, 15-year allergenic pollen records have been collected and meteorological parameters have been recorded. The airborne pollen concentration is strongly influenced by mean air temperature and sunshine duration. The highest concentrations of pollen grains are observed during spring (May).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号