首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A linear endothelin (ET) analog, N-acetyl-LeuMetAspLysGluAlaValTyrPheAlaHisLeu-AspIleIleTrp (BQ-3020), is highly selective for ETB receptors. BQ-3020 displaces [125I]ET-1 binding to ETB receptors (nonselective to ET isopeptides) in porcine cerebellar membranes (IC50: 0.2nM) at a concentration 4,700 times lower than that to ETA receptors (selective to ET-1) on aortic vascular smooth muscle cells (VSMC) (IC50: 940nM). BQ-3020 as well as ET-1 and ET-3 elicits vasoconstriction in the rabbit pulmonary artery. The ETA antagonist BQ-123 failed to inhibit this BQ-3020-induced vasoconstriction. Furthermore, BQ-3020 elicits endothelium-dependent vasodilation. These data indicate that BQ-3020 has ETB agonistic activity. The radioligand [125I]BQ-3020 binds to cerebellar membranes at single high affinity sites (Kd = 34.4pM), whereas it scarcely binds to VSMC. [125I]BQ-3020 binding to the cerebellum was displaced by BQ-3020, ET-1 and ET-3 in a nonselective manner (IC50: 0.07-0.17nM). However, the binding of [125I]BQ-3020 was insensitive to the ETA antagonist BQ-123 and other bioactive peptides. Both [125I]ET-1 and [125I]BQ-3020 show slow onset and offset binding kinetics to ETB receptors. These data indicate that the radioligand [125I]BQ-3020 selectively labels ETB receptors and that the slow binding kinetics of ET-1 are dependent on the peptide sequence from Leu6 to Trp21, but not on the structure formed by its two disulfide bridges.  相似文献   

2.
A linear peptide analog of endothelin (ET)-1, [Ala1,3,11,15]ET-1 (4AlaET-1), and its truncated peptide analogs were synthesized to study the structural requirements of ET-1 for the recognition of ETs-nonselective ETB receptors. ET-1 exhibited sub-nanomolar binding to two distinct ET receptor subtypes (ETA and ETB), but 4AlaET-1 bound to ETB with an affinity 1,700 times higher than that seen during binding to ETA. The truncated linear peptides 4AlaET-1(6-21), 4AlaET-1(8-21) and N-acetyl-4AlaET-1(10-21) still had high affinity for ETB, whereas 4AlaET-1(6-20) and 4AlaET-1(11-21) displayed remarkably reduced affinity for ETB. Therefore, ET-1 requires the Glu10-Trp21 sequence for ETB binding, but not the disulfide bridges. These ETB-binding peptides elicit endothelium-dependent vasorelaxation of porcine pulmonary arteries in parallel with the binding affinity for ETB, suggesting that they are ETB agonists.  相似文献   

3.
Endothelin (ET) causes contraction of the muscularis mucosae in the guinea pig esophagus, but its role in the human esophagus remains unknown. To investigate effects of ET in the human esophagus, we measured contraction of isolated human esophageal muscularis mucosae strips caused by ET related peptides and binding of 125I-ET-1 to cell membranes prepared from the human esophageal muscularis mucosae. Autoradiography demonstrated specific binding of 125I-ET-1 to the muscularis mucosae and muscularis propria (muscularis externa) of the human esophagus. ET-1 caused tetrodotoxin and atropine-insensitive contraction of muscularis mucosae strips. In terms of the maximal tension of contraction, ET-1 and ET-2 were equal in efficacy. The relative potencies for ET related peptides to cause contraction were ET-1=ET-2>ET-3>sarafotoxin S6c (SX6c), an ETB receptor agonist. ET-1 caused contraction was mildly inhibited by BQ-123, an ETA receptor antagonist, and not by BQ-788, an ETB receptor antagonist. It was moderately inhibited by the combination of both antagonists, indicating synergistic inhibition. Furthermore, desensitization to SX6c with SX6c pretreatment failed to abolish the contractile response to ET-1, which was completely inhibited by BQ-123. These indicate the involvement of both ETA and ETB receptors in the contraction. Binding of 125I-ET-1 to cell membranes of the muscularis mucosae was saturable and specific. Analysis of dose-inhibition curves demonstrated the presence of ETA and ETB receptors. This study demonstrates that, the muscularis mucosae of the human esophagus, similar to that of the guinea pig esophagus, possesses both ETA and ETB receptors mediating muscle contraction.  相似文献   

4.
We describe novel potent endothelin (ET) antagonists that are highly potent and selective for the ETA receptor (selective to ET-1). Of the synthetic analogs based on ETA antagonist BE-18257A isolated from Streptomyces misakiensis (IC50 value for ETA receptor on porcine aortic smooth muscle cells (VSMCs); 1.4 microM), the compounds BQ-123 and BQ-153 greatly improved the binding affinity of [125I]ET-1 for ETA receptors on VSMCs (IC50; 7.3 and 8.6 nM, respectively), whereas they barely inhibited [125I]ET-1 binding to ETB receptors (nonselective with respect to isopeptides of ET family) in the cerebellar membranes (IC50; 18 and 54 microM, respectively). Associated with the increased affinity for ETA receptors, these peptides antagonized ET-1-induced constriction of isolated porcine coronary artery. However, there was a small amount of ET-1-induced vasoconstriction resistant to these antagonists, which paralleled the incomplete inhibition of [125I]ET-1 binding in the membrane of the aortic smooth muscle layer. These data suggest that the artery has both ETA and ETB receptors responsible for ET-1-induced vasoconstriction. The antagonists shifted the concentration-response curve to the right for ET-1 in the coronary artery, and increased the apparent dissociation constant in the Scatchard analysis of [125I]ET-1 binding on the VSMCs without affecting the binding capacity, indicative of the competitive antagonism for ETA receptor. In conscious rats, pretreatment with the antagonists markedly antagonized ET-1-induced sustained pressor responses in dose-dependent fashion without affecting ET-1-induced transient depressor action, suggesting that the pressor action is mediated by ETA receptors, while the depressor action is mediated by ETB receptors. In addition, pretreatment with the potent antagonists prevented ET-1-induced sudden death in mice. Thus, these potent ETA antagonists should provide a powerful tool for exploring the therapeutic uses of ETA antagonists in putative ET-1-related disorders.  相似文献   

5.
Pharmacological evidence has suggested that endothelin-3 (ET-3) may act via a novel form of ET receptor that is shared by ETA receptor antagonists but not by ETB receptor selective agonists. This study analyses the properties of interaction of ET-3 with recombinant bovine ETA receptor. Apparent Kd(ET-3) values as low as 50 nM were defined from [125I]ET-1 binding experiments performed at low (5 microg/ml) protein concentrations in the assays. Larger (up to 1 microM) values were artefactually obtained in experiments performed at larger protein concentrations. The three monoiodo ET-3 derivatives were synthetized. ([125I]Y14)ET-3 did not recognize ETA receptors. ([125I]Y6)ET-3 labelled 18% of [125I]ET-1 binding sites with a Kd value of 320 pM. ([125I]Y13)ET-3 labelled 44% of [125I]ET-1 binding sites with a Kd value of 130 pM. High affinity ([125I]Y6)ET-3 and ([125I]Y13)ET-3 bindings were prevented by ET-1 (Kd = 5-7 pM), ET-3 (Kd = 70-250 pM), BQ-123 (Kd = 2 nM) and FR139317 (Kd = 2 nM) but not by low concentrations of 4-AlaET-1, sarafotoxin S6c or IRL1620. The three monoiodo ET-3 derivatives bound to recombinant rat ETB receptors with a pM affinity. The results suggest that ET-3, ([125I]Y6)ET-3 and ([125I]Y13)ET-3 should not be considered as ETB receptor specific ligands.  相似文献   

6.
Upon maintained on a 1% NaCl drinking solution beginning at 7 weeks of age, the stroke-prone spontaneously hypertensive rat (SHRsp) developed severe hypertension and stroke; most died by 16 weeks. The mechanism by which these diseases evolve remains unclear. Endothelin-1 (ET-1) is a potent, peptidic vasoconstrictor and is implicated in the pathogenesis of various cardiovascular, renal, and central nervous system diseases. The purpose of the present study was to compare the binding of [125I]ET-1 to the brain, heart, kidney, liver, and spleen membrane preparations of 16-week-old SHRsp and age-matched normotensive Wistar-Kyoto rats (WKY). The KD values for [125I]ET-1 binding to the corresponding tissues of the two strains were not significantly different, except in the brain (SHRsp: 17 +/- 1 pM; WKY: 24 +/- 1 pM). In contrast, the Bmax values measured in the brain, heart, kidney, and liver of SHRsp were 1.5- to 2.1-fold greater than those of their WKY counterparts. Competition of [125I]ET-1 binding to the membrane preparations by the specific ETA receptor antagonist BQ-123 or the specific ETB receptor agonist sarafotoxin S6c revealed a similar proportion of ETA and ETB receptor subtypes in the corresponding tissues of the two rat strains. These results indicate that ET-1 binding is upregulated in SHRsp and suggest that ET-1 may play a pathophysiological role in this animal model of genetic hypertension.  相似文献   

7.
Endothelin-1 (ET-1) is a 21-amino acid residue (ET-1[1-21]) hypertensive peptide, which together with its receptor subtypes A and B (ETA and ETB) is expressed in the rat adrenal cortex, where it stimulates steroid-hormone (aldosterone and corticosterone) secretion through the ETB receptor and the growth (proliferative activity) of the zona glomerulosa (ZG) through the ETA receptor. ET-1[1-21] is generated from bigET-1 by the endothelin-converting enzyme (ECE-1). However, recent evidence indicates the existence of an alternative chymase-mediated biosynthetic pathway leading to the production of an ET-1[1-31] peptide, which was found to reproduce the ETA receptor-mediated vascular effects of ET-1[1-21]. We found that ET-1[1-21], but not ET-1[1-31], concentration-dependently raised steroid secretion from dispersed rat adrenocortical cells, its effect being blocked by the ETB-receptor selective antagonist BQ-788. Both ET-1s concentration-dependently increased the number of "S-phase" cells (as detected by the 5-bromo-2'-deoxyuridine immunocytochemical method) in capsule-ZG strips within a 240 min incubation. The ZG proliferogenic action of both ET-1s was blocked by the ETA-receptor antagonist BQ-123, and ET-1[1-31] was found to be significantly more potent than ET-1[1-21]. Autoradiography showed that in the rat adrenal ET-1[1-21] displaced the binding of selective ligands to both ETA ([125I]PD-151242) and ETB receptors ([125I]BQ-3020), while ET-1[1-31] eliminates only the binding to ETA receptors. Collectively, our findings provide strong evidence that ET-1[1-31] acts in the rat adrenal glands as a selective ETA-receptor agonist, mainly involved in the stimulation of ZG proliferative activity.  相似文献   

8.
S Eguchi  Y Hirata  M Ihara  M Yano  F Marumo 《FEBS letters》1992,302(3):243-246
The effects of a novel cyclic pentapeptide (BQ-123), an endothelin (ET) antagonist selective for the ETA receptor subtype, on phosphoinositide breakdown and DNA synthesis stimulated by ET-1 were studied in cultured rat vascular smooth muscle cells (VSMC). BQ-123 competitively inhibited the binding of [125I]ET-1 to VSMC with the apparent Ki of 4 x 10(-9) M. BQ-123 dose-dependently inhibited formation of inositol-1,4,5-trisphosphate and [3H]thymidine uptake stimulated by ET-1. These data suggest that the ET-1-induced DNA synthesis in VSMC is mainly mediated by ETA receptor subtype.  相似文献   

9.
We examined the effects of a novel ETA-selective endothelin (ET) antagonist, BQ-153, on vascular responses to ET-1 and ET-3 in isolated porcine coronary and pulmonary blood vessels, to clarify the roles of ET receptor subtypes in the regulation of vascular smooth muscle tension. With endothelium-denuded vascular tissues, the concentration-contraction curve (CCC) for ET-1 appeared as a single sigmoidal shape for all types of tissue. The CCC for ET-1 was antagonized by BQ-153 (2 and 10 microM) in all tissues, but part of the contraction was resistant. The CCC for ET-3 usually consisted of two different phases with higher (first phase) and lower (second phase) sensitivities to the peptide. Only the second phase of CCC for ET-3 was completely inhibited by BQ-153 (2 microM) in all tissues, while the first phase was resistant. The BQ-153-resistant contractile phases of ET-1 and ET-3-induced vasoconstriction appeared to have similar sensitivity in all tissues, and the contractile activity varied with each type of tissue. With endothelium-intact materials, the potencies of ET-1 and ET-3 for endothelium-dependent vasorelaxation in pulmonary artery were almost equivalent. BQ-153 (10 microM) did not inhibit ET-induced vasorelaxation. These results indicate that ET-induced vasoconstriction is mediated not only through ETA but also through ETnonA (probably ETB), and that the relative proportions of the ET-receptor subtypes mediating contractions vary in different vascular areas. In addition, results showed that ET-induced endothelium-dependent vasorelaxation is mediated through ETB.  相似文献   

10.
Venous smooth muscle contains vasoconstrictor ETB-like receptors.   总被引:30,自引:0,他引:30  
Two endothelin (ET) receptor subtypes have been identified to date: the ETA receptor which preferentially binds ET-1 over ET-3, and the ETB receptor which is non-selective. This study characterized the ET receptor subtypes present in several vascular smooth muscle preparations using standard in vitro techniques. In all but one of the arteries tested, ET-3 was significantly less potent than ET-1. In contrast, the potency of ET-3 was very similar to that of ET-1 in all of the veins. The selective ETA receptor antagonist BQ-123 blunted the ET-1 contractions in rabbit carotid artery, but not in saphenous vein. The selective ETB receptor ligand sarafotoxin S6c contracted the rabbit saphenous vein, but not the carotid artery. These data suggest that vascular smooth muscle cells express ETA and ETB receptors. Stimulation of either receptor subtype can result in force development.  相似文献   

11.
We examined gene and surface expression and activity of the endothelin (ET)-1 receptors (ETA and ETB) in subendothelial (L1) and inner medial (L2) cells from the main pulmonary artery of sheep with continuous air embolization (CAE)-induced chronic pulmonary hypertension (CPH). According to quantitative real-time RT-PCR, basal gene expression of both receptors was significantly higher in L2 than L1 cells, and hypertensive L2 cells showed significantly higher gene expression of ETB than controls. Expression of both genes in hypertensive L1 cells was similar to controls. Fluorescence-activated cell sorter analysis confirmed the increased distribution of ET(B) in hypertensive L2 cells. Although only the ETA receptors in control L2 cells showed significant binding of [125I]-labeled ET-1 at 1 h, both receptors bound ET-1 to hypertensive cells. Exposure to exogenous ET-1 for 18 h revealed that only the L2 cells internalized ET-1, and internalization by hypertensive L2 cells was significantly reduced when compared with controls. Treatment with ETA (BQ-610) and ETB (BQ-788) receptor antagonists demonstrated that both receptors contributed to internalization of ET-1 in control L2 cells, whereas in hypertensive cells only when both receptor antagonists were used in combination was significant suppression of ET-1 internalization found. We conclude that in sheep receiving CAE, alterations in ETB receptors in cells of the L2 layer may contribute to the maintenance of CPH via alterations in their expression, distribution, and activity.  相似文献   

12.
Endothelin-1 (ET-1)[1-31] is a novel hypertensive peptide that mimics many of the vascular effects of the classic 21 amino acid peptide ET-1[1-21]. However, at variance with ET-1[1-21] that enhances aldosterone secretion from cultured rat zona glomerulosa (ZG) cells by acting via ETB receptors, ET-1[1-31] did not elicit such effect. Both ET-1[1-21] and ET-1[1-31] raised the proliferation rate of cultured ZG cells, the maximal effective concentration being 10(-8) M. This effect was blocked by the ETA-receptor antagonist BQ-123 and unaffected by the ETB-receptor antagonist BQ-788. Quantitative autoradiography showed that ET-1[1-21] displaced both [(125)I]PD-151242 binding to ETA receptors and [(125)I]BQ-3020 binding to ETB receptors in both rat ZG and adrenal medulla, while ET-1[1-31] displaced only [(125)I]BQ-3020 binding. The tyrosine kinase (TK) inhibitor tyrphostin-23 and the p42/p44 mitogen-activated protein kinase (MAPK) inhibitor PD-98059 abolished the proliferogenic effect of ET-1[1-31], while the protein kinase-C (PKC) inhibitor calphostin-C significantly reduced it. ET-1[1-31] (10(-8) M) stimulated TK and MAPK activity of dispersed ZG cells, an effect that was blocked by BQ-123. The stimulatory action of ET-1[1-31] on TK activity was annulled by tyrphostin-23, while that on MAPK activity was reduced by calphostin-C and abolished by either tyrphostin-23 and PD-98059. These data suggest that ET-1[1-31] is a selective agonist of the ETA-receptor subtype, and enhances proliferation of cultured rat ZG cells through the PKC- and TK-dependent activation of p42/p44 MAPK cascade.  相似文献   

13.
We studied whether specific receptors for endothelins (ETs) exist in human parathyroid tissues and whether ETs may have any effect on secretion of PTH from parathyroid cells. Binding studies using [125I]ET-1 to the parathyroid membranes obtained from patients with hyperparathyroidism (2 adenomas, 2 hyperplasias) revealed that ET-1 competitively inhibited the binding of [125I]ET-1 to the membranes (the apparent Kd: 62 +/- 18 pM), whereas ET-3 showed biphasic and less steep inhibition curve than ET-1 in all tissue membranes examined. Northern blot analysis of poly(A)+ RNA from the parathyroid adenoma clearly demonstrated gene expression of both ETA and ETB receptors as well as preproET-1. ET-1 inhibited basal PTH secretion from dispersed adenoma cells more potently than ET-3. The present study clearly demonstrates the presence of both ETA and ETB receptor subtypes in human parathyroid tissues through which ETs may modulate PTH secretion in an autocrine and/or paracrine manner.  相似文献   

14.
The purpose of this study was to examine the specificity of the cyclic pentapeptide ET(A) receptor antagonist BQ-123. BQ-123 competitively antagonized endothelin-1-induced contractions in rabbit aorta, increases in inositol phosphates in cultured rat vascular smooth muscle A10 cells, and binding of [125I]endothelin-1 to the cloned ETA receptor cDNA expressed in Cos 7 cells. In contrast, BQ-123 was a weak antagonist of [125I]endothelin-3 binding to rat cerebellar membranes and to membranes from Cos 7 cells transfected with the cloned ETB receptor cDNA. BQ-123 shifted concentration-response curves in isolated rabbit aorta elicited by angiotensin II, but did not bind to angiotensin II receptors nor affect angiotensin II-induced increases in inositol phosphates. BQ-123 also did not affect contractions induced by KCl or norepinephrine. These data suggest that endothelin may play a role in angiotensin II-induced contractions of rabbit aorta.  相似文献   

15.
Because of some isofunctional similarities with endothelin-1 (ET-1), it has been suggested that PTHrP(1-16) and PTHrP(1-23) could interact with osteoblast cells via ETA receptors. To document this interaction, we used the thoracic rat aorta and the guinea-pig lung parenchyma paradigms as ETA and ETB models, respectively. In addition, we also performed a series of competition experiments against [125I]ET-1, using transfected cells expressing the ETA or ETB receptor. So far, no agonistic nor antagonistic activities were observed in the ETA and ETB bioassays with the PTHrP fragments. Furthermore, both fragments were unable to displace [125I]ET-1 bound to cells expressing the ETA or ETB receptor.  相似文献   

16.
A series of C-terminal linear peptides of endothelin (ET)-1 and their N alpha-succinyl (Suc) analogs were synthesized and their binding affinities for the two subtypes of ET receptor, ETA and ETB, in porcine lung membranes were examined. Among the synthetic analogs, Suc-[Glu9,Ala11,15]-ET-1(8-21), IRL 1620, was the most potent and specific ligand for the ETB receptor (KiETA/KiETB approximately equal to 120,000) as judged by the Ki values for ETA (1.9 microM) and ETB (16 pM) receptors. IRL 1620 was 60 times more selective for the ETB receptor than ET-3 (KiETA/KiETB approximately equal to 1,900). IRL 1620 (10(-9)-10(-7) M) induced contractions of the guinea pig trachea with a comparable potency to those of ET-1 or ET-3, suggesting that IRL 1620 is a potent ETB receptor agonist.  相似文献   

17.
The endothelin (ET) analog ET-1[1,3,11,15-Ala] was compared with ET-1, ET-2, ET-3 and sarafotoxins (SRTX) S6b and S6c for receptor binding and function. All the peptides exhibited high affinity binding and contracted rabbit pulmonary artery with near equal potency. In rat aorta both ET-3 and ET-1 [1,3,11,15-Ala] bound with much lower affinity than ET-1 while ET-3 displayed weak contractile potency and ET-1 [1,3,11,15-Ala] and SRTX-c were inactive. In rat left atria, ET-1 [1,3,11,15-Ala] and SRTX-c were weak inhibitors of binding and were also functionally inactive, whereas ET-1, ET-2, ET-3, and SRTX-b were equipotent in producing contractile responses. The data support the idea of there being a predominance of ETA receptors in rat aorta and ETB receptors in rabbit pulmonary artery. In rat left atria, the ET receptor could not be readily classified into ETA or ETB and suggests the existence of a new receptor subtype.  相似文献   

18.
Endothelin-1 (ET-1) is a potent mitogen and modulator of vascular tone. It is synthesized and released from endothelial cells and acts upon two receptor subtypes designated as ETA and ETB. In this study, a series of potent dipeptide sulfonamide dual-endothelin ETA/ETB receptor antagonists were prepared to investigate their potential benefit in vascular diseases. CGS 31398 inhibited [125I]ET-1 binding to human ETA and ETB receptors expressed in Chinese hamster ovary (CHO) cells (ETA/CHO, ETB/CHO) with respective IC50 values of 0.26 and 0.12 nM. However, in anesthetized rats, this compound markedly potentiated ET-1-induced renal vascular resistance, a response normally observed with selective ETB receptor antagonists. To determine whether species differences account for these results, a direct comparison was made between binding to rat and rabbit aortic membranes versus functional antagonism in isolated rat aortic rings. It was found that CGS 31398 had potent affinity for the ETA receptor in rat and rabbit aorta with IC50 values of 0.87 and 0.79 nM, respectively. Inhibition of ET-1-induced contractions of rat aorta by the compound was considerably weaker than expected (pKB = 6.4), while that of sarafotoxin S6c induced contraction of dog saphenous vein (100% inhibition at 100 nM) was consistent with corresponding binding data. These results suggest that although CGS 31398 is a potent dual inhibitor of ETA/ETB receptor binding, it surprisingly displays potent ETB and weak ETA receptor antagonism in functional assays.  相似文献   

19.
Changes in gastric mucosal and hepatic tissue blood flow were simultaneously determined using a laser-Doppler blood flow meter in rats given i.v. injection of endothelin-1 (ET-1) and endothelin-3 (ET-3), both at 2 nmol/kg. Gastric mucosal blood flow decreased significantly after administration of ET-1 compared to after administration of ET-3. Decreases in blood flow due to ET-1 were reversed by pre-treatment with 10 mg/kg of BQ-123 (sodium salt), an ETA receptor antagonist, to levels comparable to those induced by ET-3, but BQ-123 had no effects on decreases in blood flow due to ET-3. On the other hand, decreases in hepatic tissue blood flow by ET-3 were significant compared to those by ET-1. Decreases in hepatic tissue blood flow due to ET-1 were slightly inhibited by pre-treatment with 10 mg/kg of BQ-123, but it had no effect at all on decreases due to ET-3. These findings indicate that decreases in gastric mucosal blood flow are mainly caused by ET-1 via ETA receptors inhibited by BQ-123, while decreases in hepatic tissue blood flow are caused mainly by ET-3 via non-ETA receptors not inhibited by BQ-123. The fact that ET-3 decreases blood flow more significantly than ET-1 suggests the involvement of ET-3 selective receptors (ETc). The findings obtained in the present study indicate that complex mechanisms are involved in the regulation of tissue blood flow by ET, with different receptor subtypes and ET family peptides being involved according to the type of tissue.  相似文献   

20.
Huang SC 《Regulatory peptides》2003,113(1-3):131-138
Endothelin (ET) causes contraction of the gallbladder. To investigate effects of ET in the common bile duct, we measured contraction of longitudinal muscle strips from guinea pig common bile ducts induced by ET-related peptides and binding of 125I-ET-1 to cell membranes prepared from the common bile duct. Visualization of 125I-ET-1 binding sites in tissue was performed by autoradiography. ET-1 caused tetrodotoxin and atropine-insensitive contraction. In terms of maximal tension of contraction, ET-1, ET-2 and ET-3 were equal in efficacy. However, sarafotoxin S6c, a selective ET(B) receptor agonist, caused only a negligible contraction. The relative potencies for ET isopeptides to cause contraction were ET-1=ET-2>ET-3. The ET-1-induced contraction was inhibited by BQ-123, an ET(A)-receptor-selective antagonist, but not by BQ-788, an ET(B)-receptor-selective antagonist. In addition, the combination of both antagonists, BQ-123 and BQ-788, inhibited ET-1 induced contraction but did not potentiate the inhibition caused by BQ-123 alone. These indicate that ET(A) but not ET(B) receptors mediate the contraction. Autoradiography localized 125I-ET-1 binding to the smooth muscle layer. Binding of 125I-ET-1 to the smooth muscle cell membranes was saturable and specific. Analysis of dose-inhibition curves indicated the presence of ET(A) and ET(B) receptors. These results demonstrate that ET causes contraction of longitudinal muscle of the common bile duct. Different from the gallbladder, which possesses both ET(A) and ET(B) receptors cooperating to mediate muscle contraction, the common bile duct possesses two classes of ET receptors, but only the ET(A) receptor mediates the contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号