首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Immunohistochemical localization of collagen types I, II, and X, aggrecan, versican, dentin matrix protein (DMP)-1, martix extracellular phosphoprotein (MEPE) were performed for Meckel’s cartilage, cranial base cartilage, and mandibular condylar cartilage in human midterm fetuses; staining patterns within the condylar cartilage were compared to those within other cartilaginous structures. Mandibular condylar cartilage contained aggrecan; it also had more type I collagen and a thicker hypertrophic cell layer than the other two types of cartilage; these three characteristics are similar to those of the secondary cartilage of rodents. MEPE immunoreactivity was first evident in the cartilage matrix of all types of cartilage in the human fetuses and in Meckel’s cartilage of mice and rats. MEPE immunoreactivity was enhanced in the deep layer of the hypertrophic cell layer and in the cartilaginous core of the bone trabeculae in the primary spongiosa. These results indicated that MEPE is a component of cartilage matrix and may be involved in cartilage mineralization. DMP-1 immunoreactivity first became evident in human bone lacunae walls and canaliculi; this pattern of expression was comparable to the pattern seen in rodents. In addition, chondroid bone was evident in the mandibular (glenoid) fossa of the temporal bone, and it had aggrecan, collagen types I and X, MEPE, and DMP-1 immunoreactivity; these findings indicated that chondroid bone in this region has phenotypic expression indicative of both hypertrophic chondrocytes and osteocytes.Key words: condylar cartilage, human fetus, extracellular matrix, MEPE, DMP-1  相似文献   

2.
The extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase pathway, also known as the MEK-ERK cascade, has been shown to regulate cartilage differentiation in embryonic limb mesoderm and several chondrogenic cell lines. In the present study, we employed the micromass culture system to define the roles of MEK-ERK signaling in the chondrogenic differentiation of neural crest-derived ectomesenchyme cells of the embryonic chick facial primordia. In cultures of frontonasal mesenchyme isolated from stage 24/25 embryos, treatment with the MEK inhibitor U0126 increased type II collagen and glycosaminoglycan deposition into cartilage matrix, elevated mRNA levels for three chondrogenic marker genes (col2a1, aggrecan, and sox9), and increased expression of a Sox9-responsive collagen II enhancer-luciferase reporter gene. Transfection of frontonasal mesenchyme cells with dominant negative ERK increased collagen II enhancer activation, whereas transfection of constitutively active MEK decreased its activity. Thus, MEK-ERK signaling inhibits chondrogenesis in stage 24/25 frontonasal mesenchyme. Conversely, MEK-ERK signaling enhanced chondrogenic differentiation in mesenchyme of the stage 24/25 mandibular arch. In mandibular mesenchyme cultures, pharmacological MEK inhibition decreased cartilage matrix deposition, cartilage-specific RNA levels, and collagen II enhancer activity. Expression of constitutively active MEK increased collagen II enhancer activation in mandibular mesenchyme, while dominant negative ERK had the opposite effect. Interestingly, MEK-ERK modulation had no significant effects on cultures of maxillary or hyoid process mesenchyme cells. Moreover, we observed a striking shift in the response of frontonasal mesenchyme to MEK-ERK modulation by stage 28/29 of development.  相似文献   

3.
Hajjar D  Santos MF  Kimura ET 《Biorheology》2006,43(3-4):311-321
Functional orthopedic appliances correct dental malocclusion partially by exerting indirect mechanical stimulus on the condylar cartilage, modulating growth and the adaptation of orofacial structures. However, the exact nature of the biological responses to this therapy is not well understood. Insulin-like growth factors I and II (IGF-I and II) are important local factors during growth and differentiation in the condylar cartilage [D. Hajjar, M.F. Santos and E.T. Kimura, Propulsive appliance stimulates the synthesis of insulin-like growth factors I and II in the mandibular condylar cartilage of young rats, Arch. Oral Biol. 48 (2003), 635-642]. The bioefficacy of IGFs at the cellular level is modulated by IGF binding proteins (IGFBP). The aim of this study was to verify the mRNA and protein expression of IGFBP-3, IGFBP-4, IGFBP-5 and IGFBP-6 in the condylar cartilage of young male Wistar rats that used a mandibular propulsive appliance for 3, 9, 15, 20, 30 or 35 days. For this purpose, sagittal sections of decalcified and paraffin-embedded condyles were submitted to immunohistochemistry and the condylar cartilage to RT-PCR. The control group showed a gradual increase in the protein expression of all IGFBPs, except IGFBP-4. Following use of the appliance, IGFBP-3 and IGFBP-6 expression decreased in the early stage of the treatment. At 20 days of treatment there was a decline in the IGFs and IGFBP-3, IGFBP-4 and IGFBP-5 expression and at 30 days there was a peak in the IGFs and all IGFBPs expression except for IGFBP-3 where the peak was observed in the control animals. The expression patterns of all IGFBPs in the condylar cartilage were similar. The modulation of IGFBP-3, -4, -5 and -6 expression in the condylar cartilage in response to the propulsive appliance suggests that those peptides are involved in the mandibular adaptation during this therapy.  相似文献   

4.
Immunohistochemical localization of type I and type II collagens was examined in the rat mandibular condylar cartilage (as the secondary cartilage) and compared with that in the tibial growth plate (as the primary cartilage) using plastic embedded tissues. In the condylar cartilage, type I collagen was present not only in the extracellular matrix (ECM) of the fibrous, proliferative, and transitional cell layers, but also in the ECM of the maturative and hypertrophic cell layers. Type II collagen was present in the ECM of the maturative and hypertrophic cell layers. In the growth plate, type II collagen was present in the ECM of whole cartilaginous layers; type I collagen was not present in the cartilage but in the perichondrium and the bone matrices. These results indicate that differences exist in the components of the ECM between the primary and secondary cartilages. It is suggested that these two tissues differ in the developmental processes and/or in the reactions to their own local functional needs.  相似文献   

5.
Summary Immunohistochemical localization of type I and type II collagens was examined in the rat mandibular condylar cartilage (as the secondary cartilage) and compared with that in the tibial growth plate (as the primary cartilage) using plastic embedded tissues. In the condylar cartilage, type I collagen was present not only in the extracellular matrix (ECM) of the fibrous, proliferative, and transitional cell layers, but also in the ECM of the maturative and hypertrophic cell layers. Type II collagen was present in the ECM of the maturative and hypertrophic cell layers. In the growth plate, type II collagen was present in the ECM of whole cartilaginous layers; type I collagen was not present in the cartilage but in the perichondrium and the bone matrices. These results indicate that differences exist in the components of the ECM between the primary and secondary cartilages. It is suggested that these two tissues differ in the developmental processes and/or in the reactions to their own local functional needs.  相似文献   

6.
7.
A disintegrin and metalloproteinase with thrombospondin motif (adamalysin–thrombospondins, ADAMTS) degrades aggrecan, one of the major extracellular matrix (ECM) components in cartilage. Mandibular condylar cartilage differs from primary cartilage, such as articular and growth plate cartilage, in its metabolism of ECM, proliferation, and differentiation. Mandibular condylar cartilage acts as both articular and growth plate cartilage in the growing period, while it remains as articular cartilage after growth. We hypothesized that functional and ECM differences between condylar and primary cartilages give rise to differences in gene expression patterns and levels of aggrecan and ADAMTS-1, -4, and -5 during growth and aging. We employed in situ hybridization and semiquantitative RT-PCR to identify mRNA expression for these molecules in condylar cartilage and primary cartilages during growth and aging. All of the ADAMTSs presented characteristic, age-dependent expression patterns and levels among the cartilages tested in this study. ADAMTS-5 mainly contributed to ECM metabolism in growth plate and condylar cartilage during growth. ADAMTS-1 and ADAMTS-4 may be involved in ECM turn over in articular cartilage. The results of the present study reveal that ECM metabolism and expression of related proteolytic enzymes in primary and secondary cartilages may be differentially regulated during growth and aging.  相似文献   

8.
The immunohistochemical localization of types I and II collagen was examined in the following 4 cartilaginous tissues of the rat craniofacial region: the nasal septal cartilage and the spheno-occipital synchondrosis (primary cartilages), and the mandibular condylar cartilage and the cartilage at the intermaxillary suture (secondary cartilages). In both primary cartilages, type II collagen was present in the extracellular matrix (ECM) of the whole cartilaginous area, but type I collagen was completely absent from the ECM. In the secondary cartilages, type I collagen was present throughout the cartilaginous cell layers, and type II collagen was restricted to the ECM of the mature and hypertrophic cell layers. These observations indicate differences in the ECM components between primary and secondary craniofacial cartilages, and that these differences may contribute to their modes of chondrogenesis.  相似文献   

9.
The ability of insulin-like growth factor I (IGF-I) to stimulate cartilage matrix synthesis is reduced in aged and osteoarthritic cartilage. Aging and osteoarthritis are associated with an increase in reactive oxygen species, which we hypothesized would interfere with normal IGF-I signaling. We compared IGF-I signaling in normal and osteoarthritic human articular chondrocytes and investigated the effects of oxidative stress induced by tert-butylhydroperoxide (tBHP). In normal human chondrocytes, IGF-I initiated a strong and sustained phosphorylation of IRS-1 (Tyr-612) and Akt (Ser-473) and transient ERK phosphorylation. In contrast, in osteoarthritic chondrocytes, which possessed elevated basal IRS-1 (Ser-312) and ERK phosphorylation, IGF-I failed to stimulate IRS-1 (Tyr-612) or Akt phosphorylation. In normal human chondrocytes, tBHP triggered strong IRS-1 (Ser-312 and Ser-616) and ERK phosphorylation and inhibited IGF-I-induced IRS-1 (Tyr-612) and Akt phosphorylation. Lentivirus-mediated overexpression of constitutively active (CA) Akt significantly enhanced proteoglycan synthesis, whereas both dominant negative Akt and CA MEK inhibited proteoglycan synthesis. CA Akt also promoted type II collagen and Sox9 expression, whereas tBHP treatment and CA MEK inhibited aggrecan, collagen II, and Sox9 mRNA expression. In osteoarthritic chondrocytes, the antioxidants Mn(III) tetrakis(4-benzoic acid)porphyrin and N-acetylcysteine increased the ratio of Akt to ERK phosphorylation and promoted IGF-I-mediated proteoglycan synthesis. Chemical inhibition of ERK significantly enhanced IGF-I phosphorylation of Akt and alleviated tBHP inhibition of Akt phosphorylation. These results demonstrate opposing roles for phosphatidylinositol 3-kinase-Akt and MEK-ERK in cartilage matrix synthesis and suggest that elevated levels of reactive oxygen species cause chondrocyte IGF-I resistance by altering the balance of Akt to ERK activity.  相似文献   

10.
11.
12.
Overcoming the limited ability of articular cartilage to self-repair may be possible through tissue engineering. However, bioengineered cartilage formed using current methods does not match the physical properties of native cartilage. In previous studies we demonstrated that mechanical stimulation improved cartilage tissue formation. This study examines the mechanisms by which this occurs. Application of uniaxial, cyclic compression (1 kPa, 1 Hz, 30 min) significantly increased matrix metalloprotease (MMP)-3 and MMP-13 gene expression at 2 h compared to unstimulated cells. These returned to constitutive levels by 6 h. Increased MMP-13 protein levels, both pro- and active forms, were detected at 6 h and these decreased by 24 h. This was associated with tissue degradation as more proteoglycans and collagen had been released into the culture media at 6 h when compared to the unstimulated cells. This catabolic change was followed by a significant increase in type II collagen and aggrecan gene expression at 12 h post-stimulation and increased synthesis and accumulation of these matrix molecules at 24 h. Mechanical stimulation activated the MAP kinase pathway as there was increased phosphorylation of ERK1/2 and JNK as well as increased AP-1 binding. Mechanical stimulation in the presence of the JNK inhibitor, SP600125, blocked AP-1 binding preventing the increased gene expression of MMP-3 and -13 at 2 h and type II collagen and aggrecan at 12 h as well as the increased matrix synthesis and accumulation. Given the sequence of changes, cyclic compressive loading appears to initiate a remodelling effect involving MAPK and AP-1 signalling resulting in improved in vitro formation of cartilage.  相似文献   

13.
There is a growing body of evidence supporting the involvement of the Wnt signaling pathway in various aspects of skeletal and joint development; however, it is unclear whether it is involved in the process of temporomandibular joint development. In order to clarify this issue, we examined the spatio-temporal distribution of mRNAs and proteins of the Wnt family during the formation of the mandibular condylar cartilage at the prenatal and postnatal stages. An in situ hybridization test revealed no mRNAs of β-catenin and Axin2 during early mesenchymal condensation; the ligands surveyed in this study (including Wnt-4, 5a, and 9a) were clearly detected at various ranges of expression, mainly in the condylar blastema and later distinct cartilaginous layers. Apart from β-catenin and Axin2, the Wnt family members surveyed in this study, including Lef-1, were found to be immunopositive during early chondrogenesis in the condylar cartilage at E14.5. After distinct chondrocyte layers were identified within the cartilage at E16.5, the expression of the Wnt signaling members was different and mainly restricted to proliferating cells and mineralized hypertrophic chondrocytes. In the adult mandibular condylar cartilage, the Wnt-4 mRNA, as well as the Wnt-4 and Wnt-9a proteins, was not observed. Our findings demonstrated that the Wnt signaling pathway was associated with the development of mandibular condylar cartilage.  相似文献   

14.
Utilizing ATDC5 murine chondrogenic cells and human articular chondrocytes, this study sought to develop facile, reproducible three-dimensional models of cartilage generation with the application of tissue engineering strategies, involving biodegradable poly(glycolic acid) scaffolds and rotating wall bioreactors, and micromass pellet cultures. Chondrogenic differentiation, assessed by histology, immunohistochemistry, and gene expression analysis, in ATDC5 and articular chondrocyte pellets was evident by the presence of distinct chondrocytes, expressing Sox-9, aggrecan, and type II collagen, in lacunae embedded in a cartilaginous matrix of type II collagen and proteoglycans. Tissue engineered explants of ATDC5 cells were reminiscent of cartilaginous structures composed of numerous chondrocytes, staining for typical chondrocytic proteins, in lacunae embedded in a matrix of type II collagen and proteoglycans. In comparison, articular chondrocyte explants exhibited areas of Sox-9, aggrecan, and type II collagen-expressing cells growing on fleece, and discrete islands of chondrocytic cells embedded in a cartilaginous matrix.  相似文献   

15.
Subcutaneous implantation of demineralized bone matrix in rat results in the local cartilage and bone development. This in vivo model of bone formation was used to examine the expression patterns of cartilage and bone specific extracellular matrix genes. The steady state levels of mRNA in implants for cartilage specific type II collagen, type IX collagen, proteoglycan link protein and cartilage proteoglycan core protein (aggrecan) were increased during chondrogenesis and cartilage hypertrophy. Fibronectin mRNA levels were high during mesenchymal cell migration, attachment and chondrogenesis. Integrin (beta 1 chain) mRNA was expressed throughout the endochondral bone development. Type I collagen mRNA levels in implants increased as early as day 3, reached its peak during osteogenesis. These gene markers will be useful in the study of the mechanism of action of bone morphogenetic proteins present in the demineralized bone matrix.  相似文献   

16.
Despite extensive studies on the multifaceted roles of morroniside, the main active constituent of iridoid glycoside from Corni Fructus, the effect of morroniside on osteoarthritis (OA) chondrocytes remains poorly understood. Here, we investigated the influence of morroniside on cultured human OA chondrocytes and a rat experimental model of OA. The results showed that morroniside enhanced the cell viability and the levels of proliferating cell nuclear antigen expression (PCNA), type II collagen and aggrecan in human OA chondrocytes, indicating that morroniside promoted chondrocyte survival and matrix synthesis. Furthermore, different doses of morroniside activated protein kinase B (AKT) and extracellular signal‐regulated kinase (ERK) in human OA chondrocytes, and in turn, triggered AKT/S6 and ERK/P70S6K/S6 pathway, respectively. The PI3K/AKT inhibitor LY294002 or the MEK/ERK inhibitor U0126 attenuated the effect of morroniside on human OA chondrocytes, indicating that the activation of AKT and ERK contributed to the regulation of morroniside in human OA chondrocytes. In addition, the intra‐articular injection of morroniside elevated the level of proteoglycans in cartilage matrix and the thickness of articular cartilage in a rat experimental model of OA, with the increase of AKT and ERK activation. As a consequence, morroniside has chondroprotective effect on OA chondrocytes, and may have the therapeutic potential for OA treatment.  相似文献   

17.
The articular disc in the temporomandibular joint plays an important role in mandibular growth. Functional appliances induce regeneration of the condyle even after condylectomy. The aim of this study was to examine the role of the articular disc in regeneration of the condyle after unilateral condylectomy with use of a functional appliance in growing rats. Fifty growing rats were subjected to unilateral condylectomy and then half of them underwent discectomy. The functional appliance was applied to half of the rats in each group to induce regeneration of the condyle. Four and eight weeks later, morphometric and histologic analyses of the mandible were performed. Regeneration of the condyle was demonstrated in the two condylectomy groups. In the condylectomy+appliance group, the shape and cartilage of the condyle were equivalent to a normal condyle. However, regeneration of the condyle was not observed in the two discectomy groups even with the use of the functional appliance. The articular disc appears to be crucial in the regeneration of a damaged condyle, suggesting that defects or damage to the articular disc may influence mandibular growth and regeneration or repair of the condyle.  相似文献   

18.
This study investigated the roles of ERK1 and ERK2 in transforming growth factor‐β1 (TGF‐β1)‐induced tissue inhibitor of metalloproteinases‐3 (TIMP‐3) expression in rat chondrocytes, and the specific roles of ERK1 and ERK2 in crosstalk with Smad2/3 were investigated to demonstrate the molecular mechanism of ERK1/2 regulation of TGF‐β1 signalling. To examine the interaction of specific isoforms of ERK and the Smad2/3 signalling pathway, chondrocytes were infected with LV expressing either ERK1 or ERK2 siRNA and stimulated with or without TGF‐β1. At indicated time‐points, TIMP‐3 expression was determined by real‐time PCR and Western blotting; p‐Smad3, nuclear p‐Smad3, Smad2/3, p‐ERK1/2 and ERK1/2 levels were assessed. And then, aggrecan, type II collagen and the intensity of matrix were examined. TGF‐β1‐induced TIMP‐3 expression was significantly inhibited by ERK1 knock‐down, and the decrease in TIMP‐3 expression was accompanied by a reduction of p‐Smad3 in ERK1 knock‐down cells. Knock‐down of ERK2 had no effect on neither TGF‐β1‐induced TIMP‐3 expression nor the quantity of p‐Smad3. Moreover, aggrecan, type II collagen expression and the intensity of matrix were significantly suppressed by ERK1 knock‐down instead of ERK2 knock‐down. Taken together, ERK1 and ERK2 have different roles in TGF‐β1‐induced TIMP‐3 expression in rat chondrocytes. ERK1 instead of ERK2 can regulate TGF‐β/Smad signalling, which may be the mechanism through which ERK1 regulates TGF‐β1‐induced TIMP‐3 expression.  相似文献   

19.
The objectives of this study were to investigate the early response to mechanical stress in neonatal rat mandibular chondrocytes by proteomic analysis. To evaluate its molecular mechanism, chondrocytes were isolated and cultured in vitro, then loaded mechanical stress by four‐point bending system on different patterns. Morphological observation, flow cytometric analysis, and MTT assays indicated that 4,000 µstrain loading for 60 min was an appropriate mechanical stimulus for the following proteome analysis, which produced a transient but obvious inhibitory effect on the cell cycle. Therefore, we took a proteomic approach to identify significantly differential expression proteins in chondrocytes under this mechanical stress. Using 2‐DE and MALDI‐TOF, we identified seven differentially expressed proteins including the MAPK pathway inhibitor RKIP, cytoskeleton proteins, actin and vimentin, and other selected proteins. Some differentially expressed proteins were validated by both Western blot analysis and fluorescent staining of cytoskeleton at different loading times. The vimentin and RKIP responsive expression were also proven in vivo in oral orthopedic treatment rats, which was in line with the result in vitro. The histological changes in cartilage also showed the inhibition effect. Furthermore, the expressional level of phosphorylated ERK was increased, which demonstrates the changes in MAPK activity. Taken together, these data indicate that mechanical stress resulted in vimentin expression changes first and then led to the subsequent changes in actin expression, MAPK pathway regulated by RKIP and heat shock protein GRP75. All those changes contributed to the cytoskeleton remolding and cell cycle inhibition, finally led to condylar remodeling. J. Cell. Physiol. 223:610–622, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
The matrix components responsible for cartilage mechanical properties, type II collagen and aggrecan, are degraded in osteoarthritis through proteolytic cleavage by matrix metalloproteinases (MMPs) and aggrecanases, respectively. We now show that aggrecan may serve to protect cartilage collagen from degradation. Although collagen in freeze-thawed cartilage depleted of aggrecan was completely degraded following incubation with MMP-1, collagen in cartilage with intact aggrecan was not. Using interleukin-1-stimulated bovine nasal cartilage explants where aggrecan depletion occurs during the first week of culture, followed by collagen loss during the second week, we evaluated the effect of selective MMP and aggrecanase inhibitors on degradation. A selective MMP inhibitor did not block aggrecan degradation but caused complete inhibition of collagen breakdown. Similar inhibition was seen with inhibitor addition following aggrecan depletion on day 6-8, suggesting that MMPs are not causing significant collagen degradation prior to the second week of culture. Inclusion of a selective aggrecanase inhibitor blocked aggrecan degradation, and, in addition, inhibited collagen degradation. When the inhibitor was introduced following aggrecan depletion, it had no effect on collagen breakdown, ruling out a direct effect through inhibition of collagenase. These data suggest that aggrecan plays a protective role in preventing degradation of collagen fibrils, and that an aggrecanase inhibitor may impart overall cartilage protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号