首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibrosis, tightly associated with wound healing, is a significant symptomatic clinical problem. Inflammatory response was reported to be one of the reasons. MiR-155 is relatively related with the development and requirement of inflammatory cells, so we thought reduce the expression of miR-155 in wound sites could improve the quality of healing through reduce inflammatory response. To test this hypothesis, locally antagonizing miR-155 by directly injecting antagomir to wound edge was used to reduce the expression of miR-155. We found wounds treated with miR-155 antagomir had an obvious defect in immune cells requirements, pro-inflammatory factors IL-1β and TNF-α reduced while anti-inflammatory factor IL-10 increased. With treatment of miR-155 antagomir, the expression of α-smooth muscle actin (α-SMA), Col1 and Col3 at wound sites all reduced both from mRNA levels and protein expressions. Wounds injected with antagomir resulted in the structure improvement of collagen, the collagen fibers were more regularly arranged. Meanwhile the rate of healing did not change significantly. These results provide direct evidences that miR-155 play an important role in the pathogenesis of fibrosis and show that miR-155 antagomir has the potential therapy in prevention and reduction of skin fibrosis.  相似文献   

2.
3.
Although macrophage migration inhibitory factor (MIF) is known to have antioxidant property, the role of MIF in cardiac fibrosis has not been well understood. We found that MIF was markedly increased in angiotension II (Ang-II)-infused mouse myocardium. Myocardial function was impaired and cardiac fibrosis was aggravated in Mif-knockout (Mif-KO) mice. Functionally, overexpression of MIF and MIF protein could inhibit the expression of fibrosis-associated collagen (Col) 1a1, COL3A1 and α-SMA, and Smad3 activation in mouse cardiac fibroblasts (CFs). Consistently, MIF deficiency could exacerbate the expression of COL1A1, COL3A1 and α-SMA, and Smad3 activation in Ang-II-treated CFs. Interestingly, microRNA-29b-3p (miR-29b-3p) and microRNA-29c-3p (miR-29c-3p) were down-regulated in the myocardium of Ang-II-infused Mif-KO mice but upregulated in CFs with MIF overexpression or by treatment with MIF protein. MiR-29b-3p and miR-29c-3p could suppress the expression of COL1A1, COL3A1 and α-SMA in CFs through targeting the pro-fibrosis genes of transforming growth factor beta-2 (Tgfb2) and matrix metallopeptidase 2 (Mmp2). We further demonstrated that Mif inhibited reactive oxygen species (ROS) generation and Smad3 activation, and rescued the decrease of miR-29b-3p and miR-29c-3p in Ang-II-treated CFs. Smad3 inhibitors, SIS3 and Naringenin, and Smad3 siRNA could reverse the decrease of miR-29b-3p and miR-29c-3p in Ang-II-treated CFs. Taken together, our data demonstrated that the Smad3-miR-29b/miR-29c axis mediates the inhibitory effect of macrophage migration inhibitory factor on cardiac fibrosis.  相似文献   

4.
Hypertrophic scar (HS) is a severe fibrotic skin disease. It has always been a major problem in clinical treatment, mainly because its pathogenesis has not been well understood. The roles of bacterial contamination and prolonged wound inflammation were considered significant. IL-10 is a potent anti-inflammatory cytokine and plays a pivotal role in wound healing and scar formation. Here, we investigate whether IL-10 alleviates lipopolysaccharide (LPS)-induced inflammatory response and skin scarring and explore the possible mechanism of scar formation. Our results showed that the expression of TLR4 and pp65 was higher in HS and HS-derived fibroblasts (HSFs) than their counterpart normal skin (NS) and NS-derived fibroblasts (NSFs). LPS could up-regulate the expression of TLR4, pp65, Col I, Col III and α-SMA in NSFs, but IL-10 could down-regulate their expression in both HSFs and LPS-induced NSFs. Blocking IL-10 receptor (IL-10R) or the phosphorylation of STAT3, their expression was up-regulated. In addition, in vitro and in vivo models results showed that IL-10 could alleviate LPS-induced fibroblast-populated collagen lattice (FPCL) contraction and scar formation. Therefore, IL-10 alleviates LPS-induced skin scarring via IL-10R/STAT3 axis regulating TLR4/NF-κB pathway in dermal fibroblasts by reducing ECM proteins deposition and the conversion of fibroblasts to myofibroblasts. Our results indicate that IL-10 can alleviate the LPS-induced harmful effect on wound healing, reduce scar contracture, scar formation and skin fibrosis. Therefore, the down-regulation of inflammation may lead to a suitable scar outcome and be a better option for improving scar quality.  相似文献   

5.
白细胞介素10(IL-10)是一种多效细胞因子,在炎症、免疫反应以及在疾病的发生过程中发挥着重要作用,RGD是能够特异与新生血管内皮细胞整合素结合的多肽序列。将RGD连接到IL-10的羧基端,期望构建新生血管内皮细胞特异导向结合型融合蛋白。以人外周血淋巴细胞cDNA为模板,扩增的PCR产物经克隆载体pMD18-T,连至原核表达载体pET-22b(+),转化大肠杆菌BL21(DE3),构建了pET-IL10-RGD表达载体的重组菌(pET-IL10-RGD/BL21)。SDS-PAGE分析表明:在19.3 kDa处有明显的新生蛋白带,符合理论预期。Western blot分析表明:诱导表达、分离纯化的目的蛋白能够与IL-10抗体特异结合,且纯化产物IL10-RGD具有与IL-10相同的生物学活性。利用培养的人皮肤成纤维细胞,观察了IL10-RGD对TGF-β1刺激成纤维细胞的I型胶原(Col1)、III型胶原(Col3)、α-平滑肌肌动蛋白(α-SMA)、结体组织生长因子(CTGF)蛋白水平及α-SMA免疫细胞化学的变化。结果表明:纯化产物IL10-RGD能够明显抑制TGF-β1刺激的成纤维细胞Col1、Col3、CTGF和α-SMA蛋白水平的升高;抑制TGF-β1诱导的成纤维细胞向肌成纤维细胞的转化。可见,成功克隆、表达并纯化了IL10-RGD融合蛋白,该融合蛋白能够明显拮抗TGF-β1诱导的纤维化,预示着该蛋白在瘢痕增生及皮肤纤维化治疗方面有着较好的应用前景。  相似文献   

6.
Pulmonary fibrosis (PF) is a fibroproliferative disease that can eventually lead to fatal lung failure. It is characterized by abnormal proliferation of fibroblasts, dysregulated fibroblast differentiation to myofibroblast, and disorganized collagen and extracellular matrix production, deposition and degradation. There is still a lack of effective treatment strategies for PF. Extracellular high-mobility group box protein 1 (HMGB1) induces PF through NF-κB-mediated TGF-β1 release. Herein, we first validate the suppressive effect of HMGB1 knockdown on TGF-β1-induced α-smooth muscle actin (α-SMA) and collagen I protein expression. In PF, miRNAs exert different effects through targeting various downstream target messenger RNAs. We searched an online database for dysregulated miRNAs in PF tissues; among them, miR-627 was predicted by online tools to target HMGB1 to inhibit its expression. miR-627 overexpression could partially reverse TGF-β1-induced normal human lung fibroblast proliferation, as well as α-SMA and collagen I protein expression. miR-627 inhibition could partially reverse the suppressive effect of HMGB1 knockdown on TGF-β1-induced α-SMA and collagen I protein expression through direct binding to the 3′-untranslated region of HMGB1. Moreover, miR-627/HMGB1 affected TGF-β1 release through RAGE/NF-κB signaling; miR-627/HMGB1 and RAGE/NF-κB signaling formed a regulatory loop to modulate TGF-β1-induced PF in vitro. In conclusion, miR-627 may be a potential agent that targets HMGB1 to inhibit its expression, thereby improving TGF-β1-induced PF in vitro.  相似文献   

7.
Hyperthrophic scarring of the skin is caused by excessive activity of skin myofibroblasts after wound healing and often leads to functional and/or aesthetic disturbance with significant impairment of patient quality of life. MicroRNA (miRNA) gene therapies have recently been proposed for complex processes such as fibrosis and scarring. In this study, we focused on the role of miR-145 in skin scarring and its influence in myofibroblast function. Our data showed not only a threefold increase of miR-145 levels in skin hypertrophic scar tissue but also in transforming growth factor β1 (TGF-β1)-induced skin myofibroblasts compared with healthy skin or nontreated fibroblasts (p < 0.001). Consistent with the upregulation of miR-145 induced by TGF-β1 stimulation of fibroblasts, the expression of Kruppel-like factor 4 (KLF4) was decreased by 50% and α-smooth muscle actin (α-SMA) protein expression showed a threefold increase. Both could be reversed by miR-145 inhibition (p < 0.05). Restoration of KLF4 levels equally abrogated TGF-β1–induced α-SMA expression. These data demonstrate that TGF-β1 induces miR-145 expression in fibroblasts, which in turn inhibits KLF4, a known inhibitor of α-SMA, hence upregulating α-SMA expression. Furthermore, treatment of myofibroblasts with a miR-145 inhibitor strongly decreased their α-1 type I collagen expression, TGF-β1 secretion, contractile force generation and migration. These data demonstrate that upregulation of miR-145 plays an important role in the differentiation and function of skin myofibroblasts. Additionally, inhibition of miR-145 significantly reduces skin myofibroblast activity. Taken together, these results suggest that miR-145 is a promising therapeutic target to prevent or reduce hypertrophic scarring of the skin.  相似文献   

8.
Skin fibrosis, which is characterized by fibroblast proliferation and increased extracellular matrix, has no effective treatment. An increasing number of studies have shown that microRNAs (miRNAs/miRs) participate in the mechanism of skin fibrosis, such as in limited cutaneous systemic sclerosis and pathological scarring. The objective of the present study was to determine the role of miR-411-3p in bleomycin (BLM)-induced skin fibrosis and skin fibroblast transformation. Using Western blot analysis and real-time quantitative polymerase chain reaction assess the expression levels of miR-411-3p, collagen (COLI) and transforming growth factor (TGF)-β/Smad ubiquitin regulatory factor (Smurf)-2/Smad signalling factors both in vitro and in vivo with or without BLM. To explore the regulatory relationship between miR-411-3p and Smurf2, we used the luciferase reporter assay. Furthermore, miR-411-3p overexpression was identified in vitro and in vivo via transfection with Lipofectamine 2000 reagent and injection. Finally, we tested the dermal layer of the skin using haematoxylin and eosin and Van Gieson's staining. We found that miR-411-3p expression was decreased in bleomycin (BLM)-induced skin fibrosis and fibroblasts. However, BLM accelerated transforming growth factor (TGF)-β signalling and collagen production. Overexpression of miR-411-3p inhibited the expression of collagen, F-actin and the TGF-β/Smad signalling pathway factors in BLM-induced skin fibrosis and fibroblasts. In addition, miR-411-3p inhibited the target Smad ubiquitin regulatory factor (Smurf)-2. Furthermore, Smurf2 was silenced, which attenuated the expression of collagen via suppression of the TGF-β/Smad signalling pathway. We demonstrated that miR-411-3p exerts antifibrotic effects by inhibiting the TGF-β/Smad signalling pathway via targeting of Smurf2 in skin fibrosis.  相似文献   

9.
《Cellular signalling》2014,26(1):141-148
MicroRNAs (miRNAs) attract more attention in the pathophysiology of liver fibrosis and miR-33a has been previously demonstrated as involved in the regulation of cholesterol and lipid metabolism. Transforming growth factor-beta1 (TGF-β1) is generally accepted to be the main stimulating factor in the hepatic stellate cells (HSCs) activation, which plays an important role in hepatic fibrosis. However, the involvement and underlying mechanism of miR-33a and its role in TGF-β1-induced hepatic fibrogenesis remains unknown. Here, we investigate the role of miR-33a in the activation of immortalized human HSCs, Lx-2 cells. Our findings have shown that the expression of miR-33a with its host gene sterol regulatory element-binding protein 2 (SREBP2) was more highly expressed in activation of Lx-2 cells than in quiescent cells. The expression of miR-33a on TGF-β1-induced HSCs activation may be modulated via the activation of PI3K/Akt pathway. In addition, miR-33a significantly correlated with TGF-β1-induced expression of α1 (I) collagen (Col1A1) and α-SMA in HSCs. Bioinformatics analyses predict that peroxisome proliferator activated receptor-alpha (PPAR-α) is the potential target of miR-33a. We further found that anti-miR-33a significantly increases target gene PPAR-α mRNA and protein level, suggesting that miR-33a involved in HSCs function might be modulated by targeting PPAR-α. Finally, our results indicate that the expression of miR-33a increased with the progression of liver fibrosis. These results suggested that anti-miR-33a inhibit activation and extracellular matrix production, at least in part, via the activation of PI3K/Akt pathway and PPAR-α and anti sense of miR-33a may be a novel potential therapeutic approach for treating hepatic fibrosis in the future.  相似文献   

10.
11.
Recent studies have investigated the ability of extracellular vesicles (EVs) in regulating neighboring cells by transferring signaling molecules, such as microRNAs (miRs) in renal fibrosis. EVs released by bone marrow mesenchymal stem cells (BMSCs) contain miR-181d, which may represent a potential therapy for renal fibrosis. miR-181d has been speculated to regulate Krüppel-like factor 6 (KLF6), which activates the nuclear factor-kappa B (NF-κB) signaling pathway. Luciferase assays were performed to confirm the relationship between miR-181d and KLF6. Gain- and loss-of-function studies in vivo and in vitro were performed to assess the effect of BMSC-derived EVs (BMSC-EVs), which contained miR-181d, on KLF6, NF-κB, and renal fibrosis. Transforming growth factor-β (TGF-β)-induced renal tubular epithelial HK-2 cells were treated with EVs derived from BMSCs followed by evaluation of collagen type IV α1 (Col4α1), Collagen I and α-smooth muscle actin (α-SMA) as indicators of the extent of renal fibrosis. Renal fibrosis was induced in rats by unilateral ureteral obstruction (UUO) followed by the subsequent analysis of fibrotic markers. BMSC-EVs had higher miR-181d expression. Overexpression of miR-181d correlated with a decrease in KLF6 expression as well as the levels of IκBα phosphorylation, α-SMA, Col4α1, TGF-βR1 and collagen I in HK-2 cells. In vivo, treatment with miR-181d-containing BMSC-derived EVs was able to restrict the progression of fibrosis in UUO-induced rats. Together, BMSC-EVs suppress fibrosis in vitro and in vivo by delivering miR-181d to neighboring cells, where it targets KLF6 and inhibits the NF-κB signaling pathway.Subject terms: Cell biology, Biotechnology  相似文献   

12.
Fibrosis, tightly associated with fibroblasts collagen synthesis, is related closely with inflammatory response. Our previously study found that acute downregulation of miR-155 at wound sites leads to a reduced fibrosis, however its particular mechanism is unclear. Herein, we aimed to explore the mechanism of miR-155 in reducing fibrosis. We first found that down-regulation of miR-155 inhibited macrophages transforming growth factor-β1 (TGF-β1) and IL-1β secretion. Next, we found that co-cultured with macrophages increased the proliferation and collagen synthesis of fibroblasts, and downregulation of miR-155 in macrophages could effectively attenuate the accelerative effects. We further identified SH2 domain containing inositol-5-phosphatase 1 (SHIP1) as a direct target of miR-155 in macrophages, and the expression of SHIP1 was negatively correlated with the level of miR-155. We further confirmed that PI3K/Akt pathway was involved in this process. Last, we found that downregulation of miR-155 leads to a reduced fibrosis in sever burn rat. Taken together, these results indicate that down-regulation of miR-155 leads to a reduced fibroblasts proliferation and collagen synthesis through attenuating macrophages TGF-β1 and IL-1β secretion by targeting SHIP1 via PI3K/Akt pathway, suggesting its potential therapeutic effects on the treatment of skin fibrosis.  相似文献   

13.
Cardiac fibrosis is a pathophysiological process characterized by excessive deposition of extracellular matrix. We developed a cardiac hypertrophy model using transverse aortic constriction (TAC) to uncover mechanisms relevant to excessive deposition of extracellular matrix in mouse myocardial cells. TAC caused upregulation of Tripartite motif protein 72 (TRIM72), a tripartite motif-containing protein that is critical for proliferation and migration. Importantly, in vivo silencing of TRIM72 reversed TAC-induced cardiac fibrosis, as indicated by markedly increased left ventricular systolic pressure and decreased left ventricular end-diastolic pressure. TRIM72 knockdown also attenuated deposition of fibrosis marker collagen type I and α-smooth muscle actin (α-SMA). In an in vitro study, TRIM72 was similarly upregulated in cardiac fibroblasts. Knockdown of TRIM72 markedly suppressed collagen type I and α-SMA expression and significantly decreased the proliferation and migration of cardiac fibroblasts. However, TRIM72 overexpression markedly increased collagen type I and α-SMA expression and increased the proliferation and migration of cardiac fibroblasts. Further study demonstrated that TRIM72 increased phosphorylated STAT3 in cardiac fibroblasts. TRIM72 knockdown in cardiac fibroblasts resulted in increased expression of Notch ligand Jagged-1 and its downstream gene and Notch-1 intracellular domain. Inhibition of Notch-1 abrogated sh-TRIM72-induced cardiac fibrosis. Together, our results support a novel role for TRIM72 in maintaining fibroblast-to-myofibroblast transition and suppressing fibroblast growth by regulating the STAT3/Notch-1 pathway.  相似文献   

14.
目的: 探讨糖原合成酶激酶-3(GSK3β)/真核延伸因子激酶2(eEF2K)信号通路对肺纤维化进程的影响,为临床治疗肺纤维化寻找新的思路。方法: 采用一次性气管注射法构建C57BL/6雄性小鼠博莱霉素肺纤维化模型,造模14 d后将动物分成模型组、阴性抑制组与抑制组(n=5),另设空白组不作处理。抑制组使用腹腔注射TDZD-8(4 mg/kg),阴性抑制组腹腔注射二甲基亚砜(DMSO)溶液,28 d后处死采集指标。采用苏木精-伊红染色法检测小鼠肺脏病变情况;试剂盒水解法检测肺组织中羟脯氨酸(Hyp)的含量;采用Western blot法检测肺脏中GSK3β、磷酸化GSK3β(p-GSK3β)、eEF2K、p-eEF2K(Ser70)、p-eEF2K(Ser392)、p-eEF2K(Ser470)、基质金属蛋白酶-2前体蛋白(pro-MMP-2)、基质金属蛋白酶-2(MMP-2)蛋白表达水平,使用免疫组织化学法检测肺脏中MMP-2、胶原蛋白I(Col I)、胶原蛋白Ⅲ(Col Ⅲ)、α-平滑肌蛋白(α-SMA)的表达。结果: 与空白组相比,模型组中GSK3β、p-GSK3β、p-eEF2K(Ser70)、p-eEF2K(Ser392)、p-eEF2K(Ser470)、pro-MMP-2、MMP-2、Col I、Col Ⅲ、α-SMA蛋白表达水平升高,eEF2K蛋白表达水平降低(P<0.05);与模型组相比,抑制组GSK3β、p-GSK3β、p-eEF2K(Ser70)、p-eEF2K(Ser392)、p-eEF2K(Ser470)、pro-MMP-2、MMP-2、Col I、Col Ⅲ、α-SMA蛋白表达降低,eEF2K蛋白表达升高(P< 0.05)。结论: GSK3β能通过Ser70、Ser392、Ser470这3个位点磷酸化激活eEF2K,增加纤维化指标含量,促进肺纤维化形成,加重肺组织病变。  相似文献   

15.
16.
Fibroblast-myofibroblast transdifferentiation (FMT) is widely recognized as the major pathological feature of renal fibrosis. Although melatonin has exerted antifibrogenic activity in many diseases, its role in renal FMT remains unclear. In the present study, the aim was to explore the effect of melatonin on renal FMT and the underlying mechanisms. We established the transforming growth factor (TGF)-β1 stimulated rat renal fibroblast cells (NRK-49F) model in vitro and unilateral ureteral obstruction (UUO) mice model in vivo. We assessed levels of α-smooth muscle actin (α-SMA), col1a1 and fibronectin, STAT3 and AP-1, as well as miR-21-5p and its target genes (Spry1, PTEN, Smurf2 and PDCD4). We found that melatonin reduced the expression of α-SMA, col1a1 and fibronectin, as well as the formation of α-SMA filament in TGF-β1-treated NRK-49F cells. Meanwhile, melatonin inhibited STAT3 phosphorylation, down-regulated miR-21-5p expression, and up-regulated Spry1 and PTEN expression. Moreover, miR-21-5p mimics partially antagonized the anti-fibrotic effect of melatonin. For animal experiments, the results revealed that melatonin remarkably ameliorated UUO-induced renal fibrosis, attenuated the expression of miR-21-5p and pro-fibrotic proteins and elevated Spry1 and PTEN expression. Nevertheless, agomir of miR-21-5p blocked the renoprotective effect of melatonin in UUO mice. These results indicated that melatonin could alleviate TGF-β1-induced renal FMT and UUO-induced renal fibrosis through down-regulation of miR-21-5p. Regulation of miR-21-5p/PTEN and/or miR-21-5p/Spry1 signal might be involved in the anti-fibrotic effect of melatonin in the kidneys of UUO mice.  相似文献   

17.
Hypertrophic scar (HS) is a serious skin fibrotic disease characterized by the excessive proliferation of fibroblasts and often considered as a kind of benign skin tumor. microRNA-155 (miR-155) is usually served as a promising marker in antitumor therapy. In view of the similarities of hypertrophic scar and tumor, it is predicted that miR-155 may be a novel therapeutic target in clinical trials. Here we found the expression levels of miR-155 was gradually down regulated and HIF-1α was upregulated in HS tissue and HS derived fibroblasts (HFs). And cell proliferation was inhibited when miR-155 was overexpressed or HIF-1α was silenced. Moreover, overexpression of miR-155 in HFs could reduce the expression of collagens in vitro and inhibit the collagen fibers arrangement in vivo, whereas miR-155 knockdown gave opposite results. Furthermore, we found that miR-155 directly targeted the HIF-1α, which could also independently inhibit the expression of collagens in vitro and obviously improved the appearance and architecture of the rabbit ear scar in vivo when it was silencing. Finally, we found that PI3K/AKT pathway was enrolled in these processes. Together, our results indicated that miR-155 was a critical regulator in the formation and development of hypertrophic scar and might be a potential molecular target for hypertrophic scar therapy.  相似文献   

18.
MicroRNAs (miRNAs) participate in the regulation of cellular functions including proliferation, apoptosis, and migration. It has been previously shown that the miR-29 family is involved in regulating type I collagen expression by interacting with the 3′UTR of its mRNA. Here, we investigated the roles of miR-29b in the activation of mouse primary-cultured hepatic stellate cells (HSCs), a principal collagen-producing cell in the liver. Expression of miR-29b was found to be down-regulated during HSC activation in primary culture. Transfection of a miR-29b precursor markedly attenuated the expression of Col1a1 and Col1a2 mRNAs and additionally blunted the increased expression of α-SMA, DDR2, FN1, ITGB1, and PDGFR-β, which are key genes involved in the activation of HSCs. Further, overexpression of miR-29b led HSCs to remain in a quiescent state, as evidenced by their quiescent star-like cell morphology. Although phosphorylation of FAK, ERK, and Akt, and the mRNA expression of c-jun was unaffected, miR-29b overexpression suppressed the expression of c-fos mRNA. These results suggested that miR-29b is involved in the activation of HSCs and could be a candidate molecule for suppressing their activation and consequent liver fibrosis.  相似文献   

19.
The soluble ectodomain of fibroblast growth factor receptor-IIIc (sFGFR2c) is able to bind to fibroblast growth factor (FGF) ligands and block the activation of the FGF-signaling pathway. In this study, sFGFR2c inhibited lung fibrosis dramatically in vitro and in vivo. The upregulation of α-smooth muscle actin (α-SMA) in fibroblasts by transforming growth factor-β1 (TGF-β1) is an important step in the process of lung fibrosis, in which FGF-2, released by TGF-β1, is involved. sFGFR2c inhibited α-SMA induction by TGF-β1 via both the extracellular signal-regulated kinase 1/2 (ERK1/2) and Smad3 pathways in primary mouse lung fibroblasts and the proliferation of mouse lung fibroblasts. In a mouse model of bleomycin (BLM)-induced lung fibrosis, mice were treated with sFGFR2c from d 3 or d 10 to 31 after BLM administration. Then we used hematoxylin and eosin staining, Masson staining and immunohistochemical staining to evaluate the inhibitory effects of sFGFR2c on lung fibrosis. The treatment with sFGFR2c resulted in significant attenuation of the lung fibrosis score and collagen deposition. The expression levels of α-SMA, p-FGFRs, p-ERK1/2 and p-Smad3 in the lungs of sFGFR2c-treated mice were markedly lower. sFGFR2c may have potential for the treatment of lung fibrosis as an FGF-2 antagonist.  相似文献   

20.
Diabetic cardiomyopathy (DCM) is characterized by myocardial hypertrophy and fibrosis. This study aimed to investigate the effects of microRNA (miR)-34a on myocardial fibrosis in DCM and its potential mechanism of targeting Pin-1 signaling. Vimentin and Pin-1 proteins in mouse cardiac tissues were detected by immunohistochemical staining. Locked nucleic acid in situ hybridization was used to measure miR-34a expression in cardiac tissues. Primary mouse cardiac fibroblasts (CFs) were transfected with a mimics control/miR-34a mimics or Pin-1 plasmid and cultured in high-glucose (HG) Dulbecco's modified Eagle's medium. The miR-34a levels were measured by quantitative polymerase chain reaction. The apoptosis and viability of transfected cells were detected by the terminal deoxynucleotidyl transferase dUTP nick end labeling and Cell Counting Kit-8 assays respectively. A cell migration experiment and dual-luciferase reporter assay were also performed. The body weight and fasting blood glucose of DCM mice were significantly higher than those in the control (CTL) group. In addition, DCM mice had decreased serum insulin levels and impaired cardiac function. The number of CFs in the DCM group was higher than in the CTL group and Pin-1 expression was upregulated. The expression level of miR-34a in the cardiac tissue of mice in the DCM group was obviously downregulated compared with the CTL group. The HG stimulation of CFs for 48 h significantly downregulated the expression level of miR-34a and was associated with increased Type I collagen expression, cell viability, and migration and decreased apoptosis. However, these effects could be reversed by overexpressing miR-34a in HG-induced CFs. Furthermore, we found that Pin-1 was a direct target of miR-34a. Our results suggest that miR-34a can attenuate myocardial fibrosis in DCM by reducing Type I collagen production, cell viability, and migration and increasing the apoptosis of CFs by targeting Pin-1 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号