首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the growing field of eco-evolutionary dynamics, evidence for an influence of rapid shifts in phenotype on ecological processes is accumulating, yet, the contributions of phenotypic plasticity versus genetic change to these observed ecological changes are unclear. In one of the best studied ecosystems in terms of eco-evolutionary dynamics, landlocked versus anadromous alewife (Alosa pseudoharengus) have caused strong evolutionary divergence in their key zooplankton prey (Daphnia ambigua). We previously showed that such evolutionary differences have cascading ecological effects on consumer-resource dynamics and primary production. Yet, these locally adapted populations of Daphnia also differ in trait plasticity, which may, in turn, modify the pathway from evolution to ecology. Here we compared Daphnia from lakes with landlocked versus anadromous alewife for differences in rates of population growth in the presence and absence of predator cues over the course of a 39-day experiment. We predicted that predator-induced shifts in life history traits would facilitate faster rates of population growth. Contrary to our expectations, predator cue exposure did not alter rates of population growth. We instead found that Daphnia from lakes with landlocked alewife ultimately attained higher population densities (and exhibited faster population growth) when compared with Daphnia from lakes with anadromous alewife. Based on our previous work, these population level responses were unexpected, as Daphnia from lakes with landlocked alewife exhibit slower rates of somatic growth and delayed maturation. We discuss our results in lieu of the known differences in plasticity and how the population growth patterns may be influenced by resource limitation.  相似文献   

2.
Sven Becker 《Hydrobiologia》2010,644(1):159-168
Bioassays with the toxic cyanobacterium Microcystis aeruginosa PCC 7806, its non-toxic mutant ΔmcyB, and Daphnia magna as grazer were used to evaluate biotic factors in induced defence, in particular cyanobacterial and grazer-released info-chemicals. Three main questions were addressed in this study: Does Daphnia grazing lead to a loss of cyanobaterial biomass? Is the survival time of Daphnia shorter in a culture of the toxic cyanobacterium? Does direct grazing or the presence of spent Daphnia medium or a high number of disrupted toxic Microcystis cells in the assays lead to an increase in the cellular microcystin content in the remaining intact cells? The biovolume (growth) as well as size and abundance of Microcystis aggregates were determined by particle analysis, while the survival time of Daphnia individuals was recorded by daily observation and counting, with the relative concentration of cell-bound microcystin-LR, was measured by HPLC analysis. Compared to some recent studies in the field of induced defence, in this study, evidence was found for a direct grazing effect, i.e. the loss of biovolume in the toxic culture. In addition, Daphnia magna ingested more non-toxic than toxic cells, and survived longer with non-toxic cells. In terms of increased cell-bound toxin concentration as a means of defence reported in some studies, a higher cell-bound microcystin-LR content was not measured in this study in any of the treatments (P > 0.05). Under low light conditions with impaired growth of Microcystis, and the presence of a high number of particles with less than 1-μm diameter (possibly heterotrophic bacteria), Daphnia medium was associated with a strong reduction in cell-bound toxin concentration (P < 0.05). This study showed no increased cell aggregation under direct grazing (P > 0.05), but increased aggregation with spent Daphnia medium under high light conditions (P < 0.05). Further, the addition of cell-free extract from disrupted toxic Microcystis cells strongly increased the aggregation of the intact cells under low light (P < 0.05). These findings are discussed with the possible role of microcystin and other infochemicals in the expression of proteins and morphology changes in Microcystis.  相似文献   

3.
4.

Background

Numerous cases of predator-induced polyphenisms, in which alternate phenotypes are produced in response to extrinsic stimuli, have been reported in aquatic taxa to date. The genus Daphnia (Branchiopoda, Cladocera) provides a model experimental system for the study of the developmental mechanisms and evolutionary processes associated with predator-induced polyphenisms. In D. pulex, juveniles form neckteeth in response to predatory kairomones released by Chaoborus larvae (Insecta, Diptera).

Results

Previous studies suggest that the timing of the sensitivity to kairomones in D. pulex can generally be divided into the embryonic and postembryonic developmental periods. We therefore examined which of the genes in the embryonic and first-instar juvenile stages exhibit different expression levels in the presence or absence of predator kairomones. Employing a candidate gene approach and identifying differentially-expressed genes revealed that the morphogenetic factors, Hox3, extradenticle and escargot, were up-regulated by kairomones in the postembryonic stage and may potentially be responsible for defense morph formation. In addition, the juvenile hormone pathway genes, JHAMT and Met, and the insulin signaling pathway genes, InR and IRS-1, were up-regulated in the first-instar stage. It is well known that these hormonal pathways are involved in physiological regulation following morphogenesis in many insect species. During the embryonic stage when morphotypes were determined, one of the novel genes identified by differential display was up-regulated, suggesting that this gene may be related to morphotype determination. Biological functions of the up-regulated genes are discussed in the context of defense morph formation.

Conclusions

It is suggested that, following the reception of kairomone signals, the identified genes are involved in a series of defensive phenotypic alterations and the production of a defensive phenotype.
  相似文献   

5.
The rare and endangered plant, Begonia fimbristipula, shows red and green phenotypes, differentiated by a coloration of the abaxial leaf surface. In this study, we compared morphological and physiological traits of both phenotypes. The results showed that the red phenotype contained a significantly higher chlorophyll content, closer arrangement of chloroplasts, and a more developed grana. In addition, the red phenotype transferred significantly more light energy into the electron transport during the photoreaction. Similarly, the maximum photosynthetic rate, instantaneous water-use and light-use efficiencies of the red B. fimbristipula were all significantly higher than those of the green individuals. The differentiation between these two phenotypes could be caused by their different survival strategies under the same conditions; epigenetic variations may be in some correlation with this kind of phenotype plasticity. Red B. fimbristipula has an advantage in resource acquisition and utilization and possesses a better self-protection mechanism against changes in environmental conditions, therefore, it might adapt better to global climate change compared to the green phenotype. Further studies on the possible epigenetic regulation of those phenotypic differentiations are needed.  相似文献   

6.
It is assumed that daphnids adjust the filter screen morphology in order to minimize the interference with cyanobacterial filaments. The aim of this study was to investigate the impact of filamentous cyanobacteria (Aphanizomenon gracile Lemmermann, Cylindrospermopsis raciborskii Woloszynska Seenaya et Subba Raju) on the thickness and length of setae of the third pair of thoracic limbs of Daphnia magna. The second objective was to assess whether the setae modifications could improve the performance of daphnids in the presence of cyanobacteria. Three clones of Daphnia magna Straus were cultured with: green algae; green algae with filaments of Cylindrospermopsis; and green algae with filaments of Aphanizomenon. The size and age of animals in the first reproduction cycle as well as the number of offspring were recorded. Setae thickness and length were measured in the central part of each endopodite. Additionally, we analyzed how the changes in setae morphology affect the fitness of experimental animals using the intrinsic rate of population increase calculated with the Euler–Lotka equation. The results showed that the thickness and length of setae increased in the presence of filamentous cyanobacteria. Moreover, cyanobacteria-induced setae thickening was positively correlated to the fitness of daphnids, which may indicate setae thickening as a phenotypic adaptation to cope with food stress caused by filamentous cyanobacteria.  相似文献   

7.
Daphnia perform diel vertical migration (DVM), a predator-avoidance strategy to migrate towards deeper and colder layers in the water column in the morning and movement to the algae-rich surface layers in the evening. However, individuals performing DVM incur several trade-offs since they might suffer from resource limitation and a slower instantaneous birth rate in deeper depths. DVM patterns may be modified by abiotic factors such as temperature, food concentration, or pH and vary among different Daphnia species and genotypes. Furthermore, Daphnia host a variety of microparasites that might pose an additional factor influencing DVM behaviour. For infected individuals, migration into cooler temperature layers might slow down parasite growth. Moreover, parasites can increase opacity of their hosts. Non-migrating individuals might then be selectively purged from the upper layers by visually hunting predators. With these premises we asked, whether epidemics of the ichthyosporean parasite Caullerya mesnili affect or are affected by the DVM behaviour of Daphnia in Lake Greifensee, Switzerland by analysing the vertical distribution of Daphnia during day and night on two dates. Furthermore, we were interested whether a potential interaction depends on host genotype. We therefore studied the genotypic composition of the integrated population in regular sampling intervals over the course of one year and on a fine-grained vertical resolution during the Caullerya epidemic in late summer. Since Caullerya-infected Daphnia migrated equally well as uninfected ones, the findings of this study suggest that Caullerya epidemics neither affected nor were affected by the DVM behaviour of Daphnia. We observed clonal succession in the lake but could not link this succession to the Caullerya epidemic; all except one of the common multilocus genotypes were under-infected. In addition, outbreak and course of this Caullerya epidemic seemed to rely mainly on environmental cues. Because this first study only provides a snapshot of time, we hope that further studies will be done to verify our results.  相似文献   

8.
The data on the genetic polymorphism of the most widespread Daphnia species occupying different water bodies of Russia are presented. The phylogenetic relationships between the examined species were established, and the haplotype networks were constructed. A fragment of the 16S mitochondrial DNA gene was used as a genetic marker. The results of molecular phylogenetic analysis generally coincided with modern concepts in the systematics of the genus Daphnia. The representatives of the divergent mitochondrial lineages within the D. longispina, D. pulex, and D. magna complex remain poorly investigated morphologically. For D. dentifera, a new habitat on the territory of Russia, namely, the water bodies of the Lake Baikal basin, was identified. A conclusion was made that the 16S mtDNA gene could be successfully used in phylogeographic analysis of the genus Daphnia.  相似文献   

9.
In aquatic systems, tilapia introductions may result in marked changes in the structure of prey communities. In this study, we experimentally examined the effects of tilapia-mediated water at the individual and population levels of prey by exposing three Daphnia species to predation cues. We hypothesized that tilapia-mediated water determines reduced age and size at primipara, greater and faster reproduction, enhanced intrinsic rates of population increase (r), and longer tail spines in Daphnia; but that the magnitude of these changes would be species and clone-dependent. When three tropical D. laevis and one temperate D. similis clones were exposed to predation cues, adaptive changes were observed in some of the aforementioned parameters for each clone. The three D. laevis clones exhibited changes in all life-history and morphological measures. Temperate Daphnia spinulata displayed no changes but decreased r values in the presence of predators. The observed changes in the species and clones tested here suggest that, overall, both temperate and tropical Daphnia can detect and adaptively react to the risk of tilapia predation. However, only a fraction of the possible defenses may be displayed by individual clones. In contrast, D. spinulata seems more vulnerable to tilapia predation, given its long body length and absence of adaptive changes. Our study indicates that Daphnia can respond to tilapia-mediated water, and that interspecific and clonal variation exists between temperate and tropical species.  相似文献   

10.
Waterbird response indicates floodplain wetland restoration   总被引:1,自引:0,他引:1  
Filamentous cyanobacteria disturb food collection in Daphnia by mechanical interference with the filtering apparatus by the long trichomes. The intensity of this interference depends on the water temperature and the Daphnia body size. However, Daphnia are capable of breaking down the filaments, therefore improving the palatability of the cyanobacteria. The main objective of this study was to test whether the shortening of cyanobacterial filaments and the ensuing clearance rate of Daphnia would increase at higher temperatures to a greater degree in small-bodied Daphnia species than in large-bodied one. Laboratory feeding experiments were conducted in order to measure variation in the length of Cylindrospermopsis raciborskii trichomes and to calculate clearance rate. The filament length and the cyanobacteria clearance rate by Daphnia were calculated following their exposure to grazing by large-bodied D. pulicaria and small-bodied D. longispina in 20, 24, and 28°C. Rising temperature did not affect the intensity of breakage of C. raciborskii trichomes by D. pulicaria and caused decrease in clearance rate of this species, whereas for D. longispina, the temperature increase enhanced both filament breakage and clearance rate. We suggest that these temperature-related changes may affect relative competitive performance of Daphnia species in the presence of cyanobacteria.  相似文献   

11.

Key message

Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4.

Abstract

While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.
  相似文献   

12.
The nutritional quality of daphnids diet can influence their growth, reproduction and survival. In aquatic ecosystems, bacteria can contribute significantly to Daphnia diet by supporting, for instances, their high needs for phosphorus. The laboratory feeding of the model organisms Daphnia spp. is algal based, but should be improved to allow their better performance. The aim of this study was to evaluate the potential of two planctomycetes, Gemmata obscuriglobus and Rhodopirellula rubra, from exponential and stationary growth phases as alternative or supplementary food source for Daphnia magna. The actinobacterium Arthrobacter sp. was used for comparison. The feeding with only bacteria showed the inefficacy of both planctomycetes and actinobacteria as the only food source. However, when used in supplement to Raphidocelis subcapitata, a decrease in the age of first reproduction, a significant increase in reproductive output, in somatic growth and in rate of population increase was found for the highest cell densities of bacteria tested. The typical pink coloration of these bacteria present in daphnids body and eggs confirmed bacterial absorption and metabolization of their pigment. Planctomycetes yielded better results than the actinobacteria Arthrobacter but G. obscuriglobus that possesses sterols did not induce a better performance comparatively to R. rubra. No relation could be established between the feeding treatments that allowed improvement of Daphnia performance and the different kind of Daphnia’ Fatty Acid Methyl Esters. The use of sonication to separate planctomycetal cells before feeding the daphnids proved to be efficient. We confirmed that R. subcapitata supplemented by bacteria allows a better growth performance of D. magna.  相似文献   

13.
A traditional genomewide association study (GWAS) detects genotype–phenotype associations by the vast number of genotyped individuals. This method requires large-scale samples and considerable sequencing costs. Extreme phenotypic sampling proposes make GWAS more cost-efficient and are applied more widely. With extreme phenotypic sampling, we performed a GWAS for n-3 highly unsaturated fatty acids (HUFA) and eviscerated weight (EW) traits in the large yellow croaker population. Of the 32,249 and 29,748 detected SNPs for the two traits, three candidate regions were found in each trait. Three candidate regions associated with HUFA were known near genes on chromosomes 4 and 11, and three candidate regions were on chromosome 6, and 15 for the EW trait. By combing through our GWAS results and the biological functional analysis of the genes, we suggest that the FABP, DGAT, ATP8B1, FAF2 and CERS2 genes,  as well as the IGF2, BORA, CYP1A1, GRTP1 and HOX genes are promising candidate genes for n-3 HUFA and EW, respectively, in the large yellow croaker. Moreover, compared with the different numbers of the extreme phenotypic sampling, we conclude that 60% of the extreme phenotypic subsample can obtain a similar result as GWAS with whole phenotypes. Thus, extreme phenotypic sampling could save 40% of the cost for genotyping and DNA extraction without loss of the candidate regions and functional genes. Our study may provide a basis for further genomic breeding and a reference for others who want to perform GWAS with extreme phenotypes.  相似文献   

14.
Dated sediment cores from acidified and fishless Lake Gaffeln and Lake Härsvatten, SW Sweden, were analyzed for Daphnia ephippia and Chaoborus mandibles to test whether acidification history and fish extirpations could be reconstructed in a paleo-study using these easily identifiable animal remains. According to monitoring data fish were lost in both lakes from the 1950s to the 1970s. Progressive acidification prior to monitoring was confirmed by a gradual decrease and eventual loss of Daphnia ephippia in both study lakes during the first half of the twentieth century. In Lake Gaffeln mandibles of C. obscuripes appeared immediately after fish loss in 1973, and the regular presence of this species confirmed the succeeding fishless state of this lake. In Lake Härsvatten sediments C. obscuripes appeared only recently, i.e. three decades after fish extirpation, showing that the absence of C. obscuripes mandibles is not a trustworthy indicator of fish presence. Hence, the appearance of C. obscuripes was not temporally related to fish loss but confirmed the present fishless condition. Known historical presence of cyprinid fish in Lake Gaffeln was confirmed by a significantly higher proportion of fragmented mandibles of C. flavicans compared to the historically cyprinid-free Lake Härsvatten. In addition, both lake profiles displayed zero-proportions of fragmented mandibles during fishless periods. We conclude that acidification history and fish extirpations can be inferred by integrated studies on subfossil Daphnia ephippia and Chaoborus mandibles. However, during extreme ultra-oligotrophic conditions in acidified clear-water lakes subfossil Chaoborus mandibles may be too scarce to infer fish absence/presence.  相似文献   

15.

Objective

To explore the combined effects of temperature and Daphnia-associated infochemicals on colony formation of Scenedesmus obliquus to faciliate harvesting the algal biomass.

Results

A three-parameter modified Gaussian model fitted the changes of the number of cells per particle in S. obliquus induced by Daphnia culture filtrate well under any temperature. Decreases in temperature enhanced the induced–colony formation of Scenedesmus. The maximum colony size at 15–25 °C was significantly larger than those at 30–35 °C. An additional 1 or 2 days at low temperature was needed to reach the maximum colony size, which indicates the best harvest time for algal biomass.

Conclusion

Induced-colony formation of Scenedesmus by Daphnia culture filtrate at 15–25 °C is recommended to settle algal cells. This condition facilitates harvesting the biomass.
  相似文献   

16.
The results of laboratory experiments on studying the characteristics of feeding of natural populations of Daphnia galeata from the freshwater Curonian Lagoon on cyanobacteria using the counting and radioisotope methods are discussed. The consumption and assimilation of the cyanobacterium Aphanizomenon flos-aquae by Daphnia have been revealed, as has the inhibition of feeding in Daphnia by species of the genus Microcystis. The results of PCR analysis of the total DNA of plankton from the Curonian Lagoon and enzyme-linked immunosorbent assay have proved the ability of Microcystis populations to produce microcystins, while no genes involved in the synthesis of cyanotoxins have been found in A. flos-aquae.  相似文献   

17.
Maternal environmental effects reflect the contribution of the maternal environment to the offspring phenotype. Maternal effects are prevalent in plants and animals and may undergo adaptive evolution and affect patterns of natural selection within and across generations. Here, we raise two generations of a rapeseed (Brassica rapa) population derived from a cross between a rapid-cycling and an oilseed genotype in competitive and noncompetitive settings. Maternal environment had little effect on average offspring phenotypes. Maternal genotypes, however, differed in the sensitivity of almost all offspring phenotypes to the maternal environment, demonstrating genetic variation in maternal effects for traits expressed throughout ontogeny. Maternal environment did not significantly affect progeny seed production, and maternal genotypes were not variable for this trait, indicating no evidence for direct maternal effects on offspring fitness. Maternal environment influenced natural selection in the progeny generation; disruptive selection acted on seed mass among seeds matured in the noncompetitive maternal environment versus no significant selection on this trait for seeds matured in the competitive maternal environment. Although maternal effects did not directly increase fitness, they did affect evolutionary potential and selection in the progeny generation. These results suggest that diverse phenotypes of both wild and cultivated B. rapa genotypes will depend on the maternal environment in which the seeds are matured.  相似文献   

18.
Haploinsufficiency of the short stature homeobox contaning SHOX gene has been shown to result in a spectrum of phenotypes ranging from Leri–Weill dyschondrosteosis (LWD) at the more severe end to SHOX-related short stature at the milder end of the spectrum. Most alterations are whole gene deletions, point mutations within the coding region, or microdeletions in its flanking sequences. Here, we present the clinical and molecular data as well as the potential molecular mechanism underlying a novel microdeletion, causing a variable SHOX-related haploinsufficiency disorder in a three-generation family. The phenotype resembles that of LWD in females, in males, however, the phenotypic expression is milder. The 15523-bp SHOX intragenic deletion, encompassing exons 3–6, was initially detected by array-CGH, followed by MLPA analysis. Sequencing of the breakpoints indicated an Alu recombination-mediated deletion (ARMD) as the potential causative mechanism.  相似文献   

19.
Nine Klebsiella pneumoniae isolates coproducing NDM-1 and OXA-232 carbapenemases were successively isolated from a single patient. Although they were isolated simultaneously and were isogenic, they presented different colony phenotypes (matt and mucoid). All nine isolates were resistant to most antibiotics except colistin and fosfomycin. In addition, matt-type isolates were resistant to tigecycline. No differences were detected in the cps cluster sequences, except for the insertion of IS5 in the wzb gene of two matt-type isolates. In vitro virulence assays based on production of capsular polysaccharide, biofilm formation, and resistance to human serum indicated that the mucoid-type isolates were significantly more virulent than the matt-type. In addition, mucoid-type isolates showed higher survival rates than the matt-type ones in infection experiments in the fruit fly, suggesting a higher virulence of K. pneumoniae isolates with a mucoid phenotype. To our knowledge, this is the first report of K. pneumoniae colonies with different phenotypes being isolated from the same sample. In addition, we show that virulence varies with colony phenotype. Dissemination of K. pneumoniae isolates expressing both antibiotic resistance and high virulence would constitute a great threat.  相似文献   

20.
By considering the relative abundance of elements in trophic interactions, ecological stoichiometry makes predictions about key ecological processes such as biomass production and consumer-driven nutrient recycling. Theoretical and empirical work has focused on interspecific variation in elemental composition, and stoichiometric imbalances between resources and consumers in determining productivity, particularly at the base of foodwebs. Recent work has found considerable intraspecific variation in elemental composition. We know little about the ecological relevance of such variation, and whether predictions of stoichiometric theory hold at the intraspecific level. Here, we used two genotypes of a primary producer Chlamydomonas reinhardtii, and two genotypes of a primary consumer Daphnia pulex, which are already known to vary considerably in their phosphorus (P) use physiology, under conditions of P abundance and limitation, to explore whether such intraspecific differences alter primary as well as secondary production. Specifically, we tested whether there are intraspecific differences in the carbon: phosphorus (C:P) stoichiometry of Chlamydomonas genotypes, whether such differences affect growth and abundance of the two Daphnia genotypes, and whether the two Daphnia genotypes had distinct effects on primary production and growth of the two Chlamydomonas genotypes. We found significant differences in C:P stoichiometry between the two Chlamydomonas genotypes in both P supply conditions. Such intraspecific differences altered the growth of Daphnia genotypes, and affected the outcome of genotypic competition. Finally, Daphnia genotype affected primary production, and interacted with P supply to distinctly affect the growth of the two Chlamydomonas genotypes. Together, our results highlight the potential ecological relevance of intraspecific differences in nutrient use physiology and elemental composition, and the utility of ecological stoichiometry in understanding such consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号