首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adaptive response of organisms to unpredictable environments is increasingly recognized as a central topic in fundamental and applied evolutionary ecology. Selection due to environmental unpredictability can act on multiple traits of an organism's life cycle to reduce the impact of high environmental variance. The aim of this research was to study how unpredictability selects for diapause traits: 1) the timing of sex (a proxy of the timing of diapausing egg production), and 2) the diapausing egg hatching fraction (a proxy of diapause duration). We used an experimental evolution approach with the facultative sexual rotifer Brachionus plicatilis. Laboratory populations experiencing two contrasting regimes of environmental fluctuation (predictable versus unpredictable) evolved divergently over a short time span (< 77 days). The populations under the unpredictable regime showed an earlier initiation of sexual reproduction and a lower hatching fraction of diapausing eggs than populations under the predictable regime. These findings demonstrate empirically the existence of bet‐hedging strategies in B. plicatilis regarding both traits, consistent with theoretical predictions of bet‐hedging evolution under conditions of unpredictable environmental variance. Given that scenarios of increased environmental variability are expected to occur in the near future, a comprehensive understanding of the role of bet‐hedging strategies is necessary for predicting population responses to environmental change.  相似文献   

2.
Uncertainty is a problem not only in human decision-making, but is a prevalent quality of natural environments and thus requires evolutionary response. Unpredictable natural selection is expected to result in the evolution of bet-hedging strategies, which are adaptations to long-term fluctuating selection. Despite a recent surge of interest in bet hedging, its study remains mired in conceptual and practical difficulties, compounded by confusion over what constitutes evidence for its existence. Here, I attempt to resolve misunderstandings about bet hedging and its relationship with other modes of response to environmental change, identify the challenges inherent to its study and assess the state of existing empirical evidence. The variety and distribution of plausible bet-hedging traits found across 16 phyla in over 100 studies suggest their ubiquity. Thus, bet hedging should be considered a specific mode of response to environmental change. However, the distribution of bet-hedging studies across evidence categories-defined according to potential strength-is heavily skewed towards weaker categories, underscoring the need for direct appraisals of the adaptive significance of putative bet-hedging traits in nature.  相似文献   

3.
The seasonal life cycle of the cabbage butterfly, Pieris melete is complicated because there are three options for pupal development: summer diapause, winter diapause, and nondiapause. In the present study, we tested the influence of temperature, day length, and seasonality on the expression of alternative developmental pathways and compared the differences in life history traits between diapausing and directly developing individuals under laboratory and field conditions. The expression of developmental pathway strongly depended on temperature, day length, and seasonality. Low temperatures induced almost all individuals to enter diapause regardless of day length; relatively high temperatures combined with intermediate and longer day lengths resulted in most individuals developing without diapause in the laboratory. The field data revealed that the degree of phenotypic plasticity in relation to developmental pathway was much higher in autumn than in spring. Directly developing individuals showed shorter development times and higher growth rates than did diapausing individuals. The pupal and adult weights for both diapausing and directly developing individuals gradually decreased as rearing temperature increased, with the diapausing individuals being slightly heavier than the directly developing individuals at each temperature. Female body weight was slightly lower than male body weight. The proportional weight losses from pupa to adult were almost the same in diapausing individuals and in directly developing individuals, suggesting that diapause did not affect weight loss at metamorphosis. Our results highlight the importance of the expression of alternative developmental pathways, which not only synchronizes this butterfly's development and reproduction with the growth seasons of the host plants but also exhibits the bet‐hedging tactic against unpredictable risks due to a dynamic environment.  相似文献   

4.
Two ways in which organisms adapt to variable environments are phenotypic plasticity and bet‐hedging. Theory suggests that bet‐hedging is expected to evolve in unpredictable environments for which reliable cues indicative of future conditions (or season length) are lacking. Alternatively, if reliable cues exist indicating future conditions, organisms will be under selection to produce the most appropriate phenotype —that is, adaptive phenotypic plasticity. Here, we experimentally test which of these modes of adaptation are at play in killifish that have evolved an annual life cycle. These fish persist in ephemeral pools that completely dry each season through the production of eggs that can remain in developmental arrest, or diapause, buried in the soil, until the following rainy season. Consistent with diversified bet‐hedging (a risk spreading strategy), we demonstrate that the eggs of the annual killifish Nothobranchius furzeri exhibit variation at multiple levels—whether or not different stages of diapause are entered, for how long diapause is entered, and the timing of hatching—and this variation persists after controlling for both genetic and environmental sources of variation. However, we show that phenotypic plasticity is also present in that the proportion of eggs that enter diapause is influenced by environmental factors (temperature and light level) that vary seasonally. In nature there is typically a large parameter zone where environmental cues are somewhat correlated with seasonality, but not perfectly so, such that it may be advantageous to have a combination of both bet‐hedging and plasticity.  相似文献   

5.
Age and size at reproduction are important components of fitness, and are variable both within and among angiosperm species. The fitness consequences of such life-history variation are most readily studied in organisms that reproduce only once in their lifetime. The timing of the onset of reproduction (bolting) in the monocarpic perennial, Lobelia inflata, occurs over a range of dates within a season, and may be postponed to a later year. Empirical relationships among life-history traits, derived from over 950 wild-growing and experimentally manipulated plants in the field, are used to model an optimal changing size threshold (norm of reaction) for bolting over the growing season. Comparisons are made between observed and expected norms of reaction governing bolting. An apparently suboptimal bolting schedule that precludes bolting beyond an early (conservative) date is observed, and is found to be qualitatively consistent with conservative bet hedging under unpredictable season lengths. On this basis we propose the schedule of bolting as a plausible example of a conservative bet-hedging strategy. The results underscore the critical need for long-term studies of fluctuating selection to distinguish suboptimality from bet hedging.  相似文献   

6.
Cyclical parthenogens, which combine asexual and sexual reproduction, are good models for research into the ecological and population processes affecting the evolutionary maintenance of sex. Sex in cyclically parthenogenetic rotifers is necessary for diapausing egg production, which is essential to survive adverse conditions between planktonic growing seasons. However, within a planktonic season sexual reproduction prevents clonal proliferation. Hence, clones with a low propensity for sex should be selected, becoming dominant in the population as the growing season progresses. In this context, we studied the dynamics of the heritable variation in propensity for sexual reproduction among clones of a Brachionus plicatilis rotifer population in a temporary Mediterranean pond during the period the species occurred in plankton. Clonal isolates displayed high heritable variation in their propensity for sex. Moreover, the frequency of clones with low propensity for sex increased during the growing season, which supports the hypothesized short‐term selection for low investment in sex within a growing season. These results demonstrate (1) the inherent instability of the cyclical parthenogenetic life cycle, (2) the cost of sexual reproduction in cyclical parthenogens where sex produces diapausing eggs and (3) the role of the association between sexual reproduction and diapause in maintaining sex in these cyclical parthenogens.  相似文献   

7.
In variable environments, organisms must have strategies to ensure fitness as conditions change. For plants, germination can time emergence with favourable conditions for later growth and reproduction (predictive germination), spread the risk of unfavourable conditions (bet hedging) or both (integrated strategies). Here we explored the adaptive value of within‐ and among‐year germination timing for 12 species of Sonoran Desert winter annual plants. We parameterised models with long‐term demographic data to predict optimal germination fractions and compared them to observed germination. At both temporal scales we found that bet hedging is beneficial and that predicted optimal strategies corresponded well with observed germination. We also found substantial fitness benefits to varying germination timing, suggesting some degree of predictive germination in nature. However, predictive germination was imperfect, calling for some degree of bet hedging. Together, our results suggest that desert winter annuals have integrated strategies combining both predictive plasticity and bet hedging.  相似文献   

8.
Adaptive phenotypic plasticity evolves when cues reliably predict fitness consequences of life‐history decisions, whereas bet hedging evolves when environments are unpredictable. These modes of response should be jointly expressed, because environmental variance is composed of both predictable and unpredictable components. However, little attention has been paid to the joint expression of plasticity and bet hedging. Here, I examine the simultaneous expression of plasticity in germination rate and two potential bet‐hedging traits – germination fraction and within‐season diversification in timing of germination – in seeds from multiple seed families of five geographically distant populations of Lobelia inflata (L.) subjected to a thermal gradient. Populations differ in germination plasticity to temperature, in total germination fraction and in the expression of potential diversification in the timing of germination. The observation of a negative partial correlation between the expression of plasticity and germination variance (potential diversification), and a positive correlation between plasticity and germination fraction is suggestive of a trade‐off between modes of response to environmental variance. If the observed correlations are indicative of those between adaptive plasticity and bet hedging, we expect an optimal balance to exist and differ among populations. I discuss the challenges involved in testing whether the balance between plasticity and bet hedging depends on the relative predictability of environmental variance.  相似文献   

9.
Jens Joschinski  Dries Bonte 《Oikos》2021,130(8):1240-1250
Many organisms escape from lethal climatological conditions by entering a resistant resting stage called diapause, which needs to be optimally timed with seasonal change. As climate change exerts selection pressure on phenology, the evolution of mean diapause timing, but also of phenotypic plasticity and bet-hedging strategies is expected. The potential of the latter strategy as a means of coping with environmental unpredictability has received little attention in the climate change literature. Populations should be adapted to spatial variation in local conditions; contemporary patterns of phenological strategies across a geographic range may hence provide information about their evolvability. We thus extracted 458 diapause reaction norms from 60 studies. First, we correlated mean diapause timing with mean winter onset. Then we partitioned the reaction norm variance into a temporal component (phenotypic plasticity) and among-offspring variance (diversified bet-hedging) and correlated this variance composition with variability of winter onset. Mean diapause timing correlated reasonably well with mean winter onset, except for populations at high latitudes, which apparently failed to track early onsets. Variance among offspring was, however, limited and correlated only weakly with environmental variability, indicating little scope for bet-hedging. The apparent lack of phenological bet-hedging strategies may pose a risk in a less predictable climate, but we also highlight the need for more data on alternative strategies.  相似文献   

10.
A combination of founder effects and local adaptation – the Monopolization hypothesis – has been proposed to reconcile the strong population differentiation of zooplankton dwelling in ponds and lakes and their high dispersal abilities. The role genetic drift plays in genetic differentiation of zooplankton is well documented, but the impact of natural selection has received less attention. Here, we compare differentiation in neutral genetic markers (FST) and in quantitative traits (QST) in six natural populations of the rotifer Brachionus plicatilis to assess the importance of natural selection in explaining genetic differentiation of life‐history traits. Five life‐history traits were measured in four temperature × salinity combinations in common‐garden experiments. Population differentiation for neutral genetic markers – 11 microsatellite loci – was very high (FST = 0.482). Differentiation in life‐history traits was higher in traits related to sexual reproduction than in those related to asexual reproduction. QST values for diapausing egg production (a trait related to sexual reproduction) were higher than their corresponding FST in some pairs of populations. Our results indicate the importance of divergent natural selection in these populations and suggest local adaptation to the unpredictability of B. plicatilis habitats.  相似文献   

11.
To cope with temporal and spatial heterogeneity of habitats, herbivorous insects in the temperate zone usually enter diapause that facilitates synchronization of their life cycle with specific stages of host plants, such as fruit ripening. In the present study, we address those factors regulating dormancy responses as part of a ‘longer strategy’ to persist and thrive in temperate environments, focusing on Rhagoletis cerasi, a univoltine, oligophagous species, which overwinters as pupae and emerges when host fruits are available for oviposition at local scale. To ensure population survival and reproduction at habitats with ecological heterogeneity, R. cerasi has evolved a sophisticated diapause strategy based on a combination of local adaptation and diversified bet‐hedging strategies. Diapause duration is determined both by (i) the adaptive response to local host fruit phenology patterns (annual diapause) and (ii) the plastic responses to unpredictable inter‐annual (temporal) climatic variability that drives a proportion of the populations to extend dormancy by entering a second, successive, facultative cycle of prolonged diapause as part of a bet‐hedging strategy. Besides the dormant periods, post‐diapause development (which varies among populations) exerts ‘fine tune’ adjustments that assure synchronization and may correct possible errors. Adults emerging from pupae with prolonged diapause are larger in body size compared with counterparts emerging during the first year of diapause. However, female fecundity rates are reduced, followed by an extended post‐oviposition period, whereas adult longevity remains unaffected. Overall, it appears that R. cerasi populations are adapted to ecological conditions of local habitats and respond plastically to unpredictable environmental (climatic) conditions.  相似文献   

12.
Diversified bet‐hedging, a strategy that leads several individuals with the same genotype to express distinct phenotypes in a given generation, is now well established as a common evolutionary response to environmental stochasticity. Life‐history traits defined as diversified bet‐hedging (e.g. germination or diapause strategies) display marked differences between populations in spatial proximity. In order to find out whether such differences can be explained by local adaptations to spatially heterogeneous environmental stochasticity, we explored the evolution of bet‐hedging dormancy strategies in a metapopulation using a two‐patch model with patch differences in stochastic juvenile survival. We found that spatial differences in the level of environmental stochasticity, restricted dispersal, increased fragmentation and intermediate survival during dormancy all favour the adaptive diversification of bet‐hedging dormancy strategies. Density dependency also plays a major role in the diversification of dormancy strategies because: (i) it may interact locally with environmental stochasticity and amplify its effects; however, (ii) it can also generate chaotic population dynamics that may impede diversification. Our work proposes new hypotheses to explain the spatial patterns of bet‐hedging strategies that we hope will encourage new empirical studies of this topic.  相似文献   

13.
Life-history traits may have an important role in promoting species coexistence. However, the complexity of certain life cycles makes it difficult to draw conclusions about the conditions for coexistence or exclusion based on the study of short-term competitive dynamics. Brachionus plicatilis and B. manjavacasare two cryptic rotifer species co-occurring in many lakes on the Iberian Peninsula. They have a complex life cycle in which cyclical parthenogenesis occurs with diapausing stages being the result of sexual reproduction. B. plicatilis and B. manjavacasare identical in morphology and size, their biotic niches are broadly overlapping, and they have similar competitive abilities. However, the species differ in life-history traits involving sexual reproduction and diapause, and respond differently to salinity and temperature. As in the case of certain other species that are extremely similar in morphology, a fluctuating environment are considered to be important for their coexistence. We studied the long-term competitive dynamics of B. plicatilis and B. manjavacas under different salinity regimes (constant and fluctuating). Moreover, we focused on the dynamics of the diapausing egg bank to explore how the outcome of the entire life cycle of these rotifers can work to mediate stable coexistence. We demonstrated that these species do not coexist under constant-salinity environment, as the outcome of competition is affected by the level of salinity—at low salinity, B. plicatilis excluded B. manjavacas, and the opposite outcome occurred at high salinity. Competitive dynamics under fluctuating salinity showed that the dominance of one species over the other also tended to fluctuate. The duration of co-occurrence of these species was favoured by salinity fluctuation and perhaps by the existence of a diapausing egg bank. Stable coexistence was not found in our system, which suggests that other factors or other salinity fluctuation patterns might act as stabilizing processes in the wild.  相似文献   

14.
Many hypotheses have been proposed to explain multiple mating in females. One of them is bet hedging, that is avoiding having no or very few offspring in any given generation, rather than maximizing the expected number of offspring. However, within-generation bet hedging is generally believed to be an unimportant evolutionary force, except in very small populations. In this study, we derive predictions of the bet-hedging hypothesis for a case in which local insect populations are often small, offspring performance varies, for example, due to inbreeding depression, and the groups of gregarious larvae have to exceed a threshold size before they are likely to survive throughout the larval stage. These conditions exist for populations of the Glanville fritillary butterfly (Melitaea cinxia), potentially making bet-hedging benefits larger than usual. We observed matings in a field cage, which allowed detailed observations under practically natural conditions, and analyzed genetic paternity of egg clutches laid by females under direct observation. The egg-laying and survival patterns are in line with the predictions, supporting the hypothesis that multiple mating in M. cinxia presents a rare case of within-generation bet hedging.  相似文献   

15.
Most species of rotifers have a combination of sexual and asexual reproduction, with sexual reproduction resulting in resting eggs, which can lay dormant for long periods. The occurrence of sexual reproduction affects population dynamics through the temporary presence of male rotifers, and a reduction in the growth of the number of female rotifers. A previously published, individual-based model used dynamic energy budget theory to describe rotifer food intake, growth, egg production, and mortality, but assumed asexual reproduction only. In the current study, we have expanded the model to describe the entire reproductive cycle of the rotifers, making it usable for investigating relationships, such as those between the signal triggering mictic egg production, and the timing and number of resting eggs produced. The model is intended for use in predicting the specific future development of cultures, for instance, as a process model in rotifer or resting egg production for aquaculture. Guest editors: S. S. S. Sarma, R. D. Gulati, R. L. Wallace, S. Nandini, H. J. Dumont & R. Rico-Martínez Advances in Rotifer Research  相似文献   

16.
Many species produce eggs or seeds that refrain from hatching despite developmental preparedness and favorable environmental conditions. Instead, these propagules hatch in intervals over long periods. Such variable hatch or germination tactics may represent bet-hedging against future catastrophes. Empiricists have independently recognized these approaches in diverse species. Terms such as seed banking, delayed egg hatching, and embryonic diapause have been used to describe these tactics, but connections between fields of study have been rare. Here we suggest a general term, germ banking, to incorporate all previous terms, unifying many seemingly disparate biological strategies under a single definition. We define the phenomenon of germ banking and use several biological examples to illustrate it. We then discuss the different causes of variation in emergence timing, delineate which constitute germ banking, and distinguish between germ banking and optimal timing of diapause. The wide-ranging consequences of germ banking are discussed, including modification of the age structure of a population, the alteration of microevolutionary dynamics, the migration of alleles from the past, the maintenance of genetic and species diversity, and the promotion of species coexistence. We end by posing questions to direct future research.  相似文献   

17.
Levy SF  Ziv N  Siegal ML 《PLoS biology》2012,10(5):e1001325
Genetically identical cells grown in the same culture display striking cell-to-cell heterogeneity in gene expression and other traits. A crucial challenge is to understand how much of this heterogeneity reflects the noise tolerance of a robust system and how much serves a biological function. In bacteria, stochastic gene expression results in cell-to-cell heterogeneity that might serve as a bet-hedging mechanism, allowing a few cells to survive through an antimicrobial treatment while others perish. Despite its clinical importance, the molecular mechanisms underlying bet hedging remain unclear. Here, we investigate the mechanisms of bet hedging in Saccharomyces cerevisiae using a new high-throughput microscopy assay that monitors variable protein expression, morphology, growth rate, and survival outcomes of tens of thousands of yeast microcolonies simultaneously. We find that clonal populations display broad distributions of growth rates and that slow growth predicts resistance to heat killing in a probabalistic manner. We identify several gene products that are likely to play a role in bet hedging and confirm that Tsl1, a trehalose-synthesis regulator, is an important component of this resistance. Tsl1 abundance correlates with growth rate and replicative age and predicts survival. Our results suggest that yeast bet hedging results from multiple epigenetic growth states determined by a combination of stochastic and deterministic factors.  相似文献   

18.
Theoretical studies suggest that the timing of entering hibernation by arthropods has large effects on long-term fitness, incurring strong selection pressure on diapause attributes every year. On the other hand, diapause attributes are often genetically correlated with other important life-history traits such as fecundity or development time. To understand the evolutionary process of life cycle formation, there is a need to investigate not only diapause attributes themselves but also their genetic association with other life-history traits. The Kanzawa spider mite, Tetranychus kanzawai Kishida (Acari: Tetranychidae), is a small herbivore that lives on the undersurface of host plant leaves. This mite has been investigated for the mode of inheritance of diapause attributes, but scarcely for genetic correlations with other life-history traits. Here, I investigated whether diapause proneness, measured as the proportion of diapausing females under short-day conditions, is genetically correlated with fecundity or development time under long-day conditions using artificial selection experiments. Diapause incidence responded to the selection for both increasing and decreasing directions, suggesting that high genetic variance in diapause proneness is maintained in the study population. However, the change in proportion of diapausing females during the selection period was not associated with responses in fecundity or development time. These results suggest that diapause proneness and other life-history traits have different genetic backgrounds, and thus diapause proneness may freely evolve without being constrained by changes in other life-history traits.  相似文献   

19.
Female two‐spotted spider mite Tetranychus urticae are grown under different photoperiods and the photoperiodic regulation of diapause is examined. The photoperiodic response curve for diapause induction was of the long day–short day type, with critical day lengths (CDLs) of 2 and 12.5 h; diapause was induced between these CDLs. The preimaginal period is significantly longer in diapausing females than in non‐diapausing females; moreover, a significant positive correlation is detected between diapause incidence and deutonymphal period. Diapause incidence is high when long‐night photoperiods are applied against a background of continuous darkness in the stages including the deutonymph; this stage appears to be the most sensitive to photoperiod. These observations suggest that diapause‐inducing conditions inhibit nymphal development, particularly in the deutonymphal stage when photoperiodic time measurement for determination of reproduction or diapause is carried out.  相似文献   

20.
  1. A review of research on life-cycle events in field and laboratory populations of monogonont rotifers shows that there is great variation at multiple levels: (1) degree of sexual dimorphism; (2) occurrence and timing of sex; (3) propensity for sex during sexual periods; (4) factors controlling initiation of sex; and (5) timing and extent of emergence from diapause. There is no regular pattern where: (1) fertilised resting eggs hatch to start the growing season; (2) populations develop via female parthenogenesis during favourable conditions; and then (3) bisexual reproduction with resting-egg production occurs during later, unfavourable conditions.
  2. Sexual reproduction in natural populations can occur throughout much of the growing season, be restricted to some period(s) during the growing season, or be completely absent. During sexual reproduction in both natural and laboratory populations, only some fraction of females produces males or resting eggs. This bet-hedging strategy can prevent a population crash and permits future population growth via female parthenogenesis. Selection against sexual reproduction, and rapid loss of sex, can occur.
  3. Laboratory experiments with pond-dwelling species have identified specific environmental factors that induce sex in different species: (1) increasing population density; (2) dietary tocopherol (vitamin E) and (3) long photoperiods. These factors generally are associated with favourable conditions for population growth and production of energy-rich resting eggs: (1) large population size; (2) high probability of contacts between males and fertilisable females; and (3) nutritious diets. Endogenous factors can inhibit responses to these environmental inducers, and thus favour female parthenogenesis.
  4. The timing of resting-egg hatching depends on: (1) occurrence of specific environmental conditions; (2) the minimum duration of obligate diapause; and (3) the genotype and physiology of females producing resting eggs. Hatching may occur shortly after oviposition, after a long diapause before or at the start of a new growing season, or throughout the growing season. Hatching can be massive and contribute substantially to population growth and genetic diversity.
  5. Areas for future research include: (1) determining the timing and extent of sex and resting-egg hatching in more natural populations, especially those that are marine, benthic, sessile, and interstitial; and (2) identifying environmental and physiological factors controlling these events.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号