首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The primate endometrium is characterized in pregnancy by a tissue-specific population of CD56(bright) natural killer (NK) cells. These cells are observed in human, rhesus, and other nonhuman primate decidua. However, other subsets of NK cells are present in the decidua and may play distinct roles in pregnancy. The purpose of this study was to define the surface marker phenotype of rhesus monkey decidual NK (dNK) cell subsets, and to address functional differences by profiling cytokine and chemokine secretion in contrast with decidual T cells and macrophages. Rhesus monkey decidual leukocytes were obtained from early pregnancy tissues, and were characterized by flow cytometry and multiplex assay of secreted factors. We concluded that the major NK cell population in rhesus early pregnancy decidua are CD56(bright) CD16(+)NKp30(-) decidual NK cells, with minor CD56(dim) and CD56(neg) dNK cells. Intracellular cytokine staining demonstrated that CD56(dim) and not CD56(bright) dNK cells are the primary interferon-gamma (IFNG) producers. In addition, the profile of other cytokines, chemokines, and growth factors secreted by these two dNK cell populations was generally similar, but distinct from that of peripheral blood NK cells. Finally, analysis of multiple pregnancies from eight dams revealed that the decidual immune cell profile is characteristic of an individual animal and is consistently maintained across successive pregnancies, suggesting that the uterine immune environment in pregnancy is carefully regulated in the rhesus monkey decidua.  相似文献   

3.
During pregnancy, the maternal immune system has to tolerate the persistence of fetal alloantigens. Many mechanisms contribute to the prevention of a destructive immune response mediated by maternal alloreactive lymphocytes directed against the allogeneic fetus. Murine studies suggest that CD4(+)CD25(+) T cells provide mechanisms of specific immune tolerance to fetal alloantigens during pregnancy. Previous studies by our group demonstrate that a significantly higher percentage of activated T cells and CD4(+)CD25(bright) T cells are present in decidual tissue in comparison with maternal peripheral blood in human pregnancy. In this study, we examined the phenotypic and functional properties of CD4(+)CD25(bright) T cells derived from maternal peripheral blood and decidual tissue. Depletion of CD4(+)CD25(bright) T cells from maternal peripheral blood demonstrates regulation to third party umbilical cord blood cells comparable to nonpregnant controls, whereas the suppressive capacity to umbilical cord blood cells of her own child is absent. Furthermore, maternal peripheral blood shows a reduced percentage of CD4(+)CD25(bright)FOXP3(+) and CD4(+)CD25(bright)HLA-DR(+) cells compared with peripheral blood of nonpregnant controls. In contrast, decidual lymphocyte isolates contain high percentages of CD4(+)CD25(bright) T cells with a regulatory phenotype that is able to down-regulate fetus-specific and fetus-nonspecific immune responses. These data suggest a preferential recruitment of fetus-specific regulatory T cells from maternal peripheral blood to the fetal-maternal interface, where they may contribute to the local regulation of fetus-specific responses.  相似文献   

4.
Human CD56(bright) NK cells accumulate in the maternal decidua during pregnancy and are found in direct contact with fetal trophoblasts. Several mechanisms have been proposed to explain the inability of NK cells to kill the semiallogeneic fetal cells. However, the actual functions of decidual NK (dNK) cells during pregnancy are mostly unknown. Here we show that dNK cells, but not peripheral blood-derived NK subsets, regulate trophoblast invasion both in vitro and in vivo by production of the interleukin-8 and interferon-inducible protein-10 chemokines. Furthermore, dNK cells are potent secretors of an array of angiogenic factors and induce vascular growth in the decidua. Notably, such functions are regulated by specific interactions between dNK-activating and dNK-inhibitory receptors and their ligands, uniquely expressed at the fetal-maternal interface. The overall results support a 'peaceful' model for reproductive immunology, in which elements of innate immunity have been incorporated in a constructive manner to support reproductive tissue development.  相似文献   

5.
6.
NK cells recognize virus-infected cells with germline-encoded activating and inhibitory receptors that do not undergo genetic recombination or mutation. Accordingly, NK cells are often considered part of the innate immune response. The innate response comprises rapid early defenders that do not form immune memory. However, there is increasing evidence that experienced NK cells provide increased protection to secondary infection, a hallmark of the adaptive response. In this study, we compare the dynamics of the innate and adaptive immune responses by examining the kinetic profiles of the NK and T cell response to murine CMV infection. We find that, unexpectedly, the kinetics of NK cell proliferation is neither earlier nor faster than the CD4 or CD8 T cell response. Furthermore, early NK cell contraction after the peak of the response is slower than that of T cells. Finally, unlike T cells, experienced NK cells do not experience biphasic decay after the response peak, a trait associated with memory formation. Rather, NK cell contraction is continuous, constant, and returns to below endogenous preinfection levels. This indicates that the reason why Ag-experienced NK cells remain detectable for a prolonged period after adoptive transfer and infection is in part due to the high precursor frequency, slow decay rate, and low background levels of Ly49H(+) NK cells in recipient DAP12-deficient mice. Thus, the quantitative contribution of Ag-experienced NK cells in an endogenous secondary response, with higher background levels of Ly49H(+) NK cells, may be not be as robust as the secondary response observed in T cells.  相似文献   

7.
Dendritic cell (DC)-dependent activation of liver NKT cells triggered by a single i.v. injection of a low dose (10-100 ng/mouse) of alpha-galactosyl ceramide (alphaGalCer) into mice induces liver injury. This response is particularly evident in HBs-tg B6 mice that express a transgene-encoded hepatitis B surface Ag in the liver. Liver injury following alphaGalCer injection is suppressed in mice depleted of NK cells, indicating that NK cells play a role in NK T cell-initiated liver injury. In vitro, liver NKT cells provide a CD80/86-dependent signal to alphaGalCer-pulsed liver DC to release IL-12 p70 that stimulates the IFN-gamma response of NKT and NK cells. Adoptive transfer of NKT cell-activated liver DC into the liver of nontreated, normal (immunocompetent), or immunodeficient (RAG(-/-) or HBs-tg/RAG(-/-)) hosts via the portal vein elicited IFN-gamma responses of liver NK cells in situ. IFN-beta down-regulates the pathogenic IL-12/IFN-gamma cytokine cascade triggered by NKT cell/DC/NK cell interactions in the liver. Pretreating liver DC in vitro with IFN-beta suppressed their IL-12 (but not IL-10) release in response to CD40 ligation or specific (alphaGalCer-dependent) interaction with liver NKT cells and down-regulated the IFN-gamma response of the specifically activated liver NKT cells. In vivo, IFN-beta attenuated the NKT cell-triggered induction of liver immunopathology. This study identifies interacting subsets of the hepatic innate immune system (and cytokines that up- and down-regulate these interactions) activated early in immune-mediated liver pathology.  相似文献   

8.
Successful pregnancy in placental mammals substantially depends on the establishment of maternal immune tolerance to the semi-allogenic fetus. Disorders in this process are tightly associated with adverse pregnancy outcomes including recurrent miscarriage(RM). However, an indepth understanding of the systematic and decidual immune environment in RM remains largely lacking. In this study, we utilized single-cell RNA-sequencing(sc RNA-seq) to comparably analyze the cellular and molecular signatures of decidual and peripheral leukocytes in normal and unexplained RM pregnancies at the early stage of gestation. Integrative analysis identifies 22 distinct cell clusters in total, and a dramatic difference in leukocyte subsets and molecular properties in RM cases is revealed. Specifically, the cytotoxic properties of CD8+effector T cells, nature killer(NK), and mucosal-associated invariant T(MAIT) cells in peripheral blood indicates apparently enhanced pro-inflammatory status, and the population proportions and ligand–receptor interactions of the decidual leukocyte subsets demonstrate preferential immune activation in RM patients.The molecular features, spatial distribution, and the developmental trajectories of five decidual NK(d NK) subsets have been elaborately illustrated. In RM patients, a d NK subset that supports embryonic growth is diminished in proportion, while the ratio of another d NK subset with cyto-toxic and immune-active signature is significantly increased. Notably, a unique pro-inflammatory CD56+CD16+d NK subset substantially accumulates in RM decidua. These findings reveal a comprehensive cellular and molecular atlas of decidual and peripheral leukocytes in human early pregnancy and provide an in-depth insight into the immune pathogenesis for early pregnancy loss.  相似文献   

9.
Progesterone and the immunology of pregnancy   总被引:5,自引:0,他引:5  
The foetal–placental unit is a semi-allograft and the immunological recognition of pregnancy, together with the subsequent response of the maternal immune system, is necessary for a successful pregnancy. This recognition of pregnancy results in an upregulation of progesterone receptors on activated lymphocytes amongst placental cells and decidual CD56+ cells. In the presence of sufficient progesterone, these cells synthesise progesterone induced blocking factor (PIBF), a mediator that exerts substantial anti-abortive activities. PIBF affects B cells and induces an increased production of asymmetric, non-cytotoxic antibodies. It also alters the profile of cytokine secretion by activated lymphocytes resulting in an increase in the production of non-inflammatory, non-cytotoxic interleukins (IL) (e.g. IL-3, IL-4 and IL-10) and a reduction in the production of inflammatory, cytotoxic cytokines (e.g. interferon (IFN)-δ, tumour necrosis factor (TNF)- and IL-2). PIBF also inhibits the cytotoxity of natural killer (NK) cells by blocking their degranulation and perforin release, as well as inhibiting IFN-δ, TNF- and IL-2-mediated transformation of NK cells into detrimental lymphokine activated killer (LAK) cells.  相似文献   

10.
Maternal immune tolerance towards the fetus and placenta is thought to be established in part by pathways that attenuate T cell priming to antigens released from the placenta into maternal blood. These pathways remain largely undefined and their existence, at face value, seems incompatible with a mother''s need to maintain a functional immune system during pregnancy. A particular conundrum is evident if we consider that maternal antigen presenting cells, activated in order to prime T cells to pathogen-derived antigens, would also have the capacity to prime T cells to co-ingested placental antigens. Here, we address this paradox using a transgenic system in which placental membranes are tagged with a strong surrogate antigen (ovalbumin). We find that although a remarkably large quantity of acellular ovalbumin-containing placental material is released into maternal blood, splenic CD8 T cells in pregnant mice bearing unmanipulated T cell repertoires are not primed to ovalbumin even if the mice are intravenously injected with adjuvants. This failure was largely independent of regulatory T cells, and instead was linked to the intrinsic characteristics of the released material that rendered it selectively non-immunogenic, potentially by sequestering it from CD8α+ dendritic cells. The release of ovalbumin-containing placental material into maternal blood thus had no discernable impact on CD8 T cell priming to soluble ovalbumin injected intravenously during pregnancy, nor did it induce long-term tolerance to ovalbumin. Together, these results outline a major pathway governing the maternal immune response to the placenta, and suggest how tolerance to placental antigens can be maintained systemically without being detrimental to host defense.  相似文献   

11.
12.

Problem

Recurrent spontaneous abortion (RSA) is associated with immune imbalance at the maternal–fetal interface. Decidual immune cells and cytokines expressed at this interface regulate the response of the maternal immune system to the fetus. However, the populations and cytokine expression levels of these lymphocytes in miscarriage with normal and abnormal chromosome karyotypes remain unclear.

Methods

We assessed the populations and cytokine expression levels of Natural Killer (NK), Natural Killer T (NKT), Helper T (Th) and Cytotoxic T (Tc) cells in the decidua of RSA by flow cytometry and simultaneously analyzed the fetal chromosome karyotypes of these miscarriages.

Results

Flow cytometry showed no significant difference between RSA and normal pregnancy in the percentages of Th, Tc, NK, and NKT cells. Type-1 cells decreased significantly in the decidua of normal pregnancy, and NK2 and NKT2 cells increased significantly in the normal pregnancy group. We also found no difference in the lymphocyte composition and the proportion of types 1 and 2 subsets of the four lymphocytes in the decidua between RSA with abnormal chromosome karyotypes of villous trophoblasts (RSA-A) and RSA with normal chromosome karyotypes of villous trophoblasts (RSA-N), but the proportion of type-1 cells in both groups was significantly higher than that in normal pregnancy.

Conclusion

No difference existed between the type-1 immune response of RSA in normal and abnormal chromosome karyotypes of villous trophoblasts.  相似文献   

13.
Altered immune and/or inflammatory response plays an important role in cases of recurrent pregnancy loss (RPL) and repeated implantation failure (RIF). Exacerbation of the maternal immune response through increased NK cell activity and inflammatory cytokines can cause embryo rejection leading to abortion or embryo implantation failure. Immunosuppressors or immunomodulators can help or prevent this condition. Currently, lipid emulsion therapy (LET) has emerged as a treatment for RPL and RIF in women with abnormal NK cell activity, by decreasing the exacerbated immune response of the maternal uterus and providing a more receptive environment for the embryo. However, the mechanisms by which the intralipid acts to reduce NK cell activity are still unclear. In this review, we focus on the studies that conducted LET to treat patients with RPL and RIF with abnormal NK cell activity. We find that although some authors recommend LET as an effective intervention, more studies are necessary to confirm its effectiveness in restoring NK cell activity to normal levels and to comprehend the underlying mechanisms of the lipids action in ameliorating the maternal environment and improving the pregnancy rate.  相似文献   

14.
To analyze the mechanisms by which cancer cells escape from hosts' immune surveillance, we investigated the changes in immune status during the progression of leukemia induced by injecting mice with WEHI-3B cells. In the bone marrow (BM) of leukemic mice, only DX5(+)CD3(-) cells were continuously increased, despite the progression of leukemia. In addition, DX5(+)CD3(-) cells were rapidly increased in peripheral blood (PB) 20 days after inoculation. We also found that myeloid dendritic cells (DCs) expressing low levels of I-A(d) and having low allo-T cell stimulatory activity were markedly increased in PB and spleen. The increase in DX5(+) cells in BM was thought to be induced by soluble factors from leukemic cells. DX5(+) cells from leukemic mice were CD3(-), B220(-), Gr-1(-), CD14(-), CD94(-), Ly-49C/F(-), asialo GM1(+), CD25(+), CD122(+), Thy-1(bright), and c-kit(dim) and showed low killing activity against YAC-1 cells, suggesting that those DX5(+) cells were immature NK cells. NK cells from leukemic PB down-regulated the expression of I-A(d) on DCs, an effect mediated by TGF-beta. Moreover, these NK cells significantly suppressed the allo-T cell stimulatory activity of DCs, an effect requiring cell-to-cell contact between NK cells and DCs and thought to involve CD25. Importantly, NK cells from leukemic PB inhibited generation of autotumor-specific CTL induced by DCs in primary MLR or by DC immunization. In conclusion, we identified circulating immature NK cells with immunosuppressive activities. These cells may be important for understanding the involvement of the host immune system during the development of leukemia.  相似文献   

15.
Spontaneous abortion is a frequent threat affecting 10%-25% of human pregnancies. Psychosocial stress has been suggested to be attributable for pregnancy losses by challenging the equilibrium of systems mandatory for pregnancy maintenance, including the nervous, endocrine, and immune system. Strong evidence indicates that stress-triggered abortion is mediated by adhesion molecules, i.e., intercellular adhesion molecule 1 (ICAM1) and leukocyte function associated molecule 1, now being referred to as integrin alpha L (ITGAL), which facilitate recruitment of inflammatory cells to the feto-maternal interface. The neurotrophin beta-nerve growth factor (NGFB), which has been shown to be upregulated in response to stress in multiple experimental settings including in the uterine lining (decidua) during pregnancy, increases ICAM1 expression on endothelial cells. Here, we investigated whether and how NGFB neutralization has a preventive effect on stress-triggered abortion in the murine CBA/J x DBA/2J model. We provide experimental evidence that stress exposure upregulates the frequency of abortion and the expression of uterine NGFB. Further, adhesion molecules ICAM1 and selectin platelet (SELP, formerly P-Selectin) and their ligands ITGAL and SELP ligand (SELPL, formerly P selectin glycoprotein ligand 1) respectively increase in murine deciduas in response to stress. Subsequently, decidual cytokines are biased toward a proinflammatory and abortogenic cytokine profile. Additionally, a decrease of pregnancy protective CD8alpha(+) decidual cells is present. Strikingly, all such uterine stress responses are abrogated by NGFB neutralization. Hence, NGFB acts as a proximal mediator in the hierarchical network of immune rejection by mediating an abortogenic environment comprised of classical signs of neurogenic inflammation.  相似文献   

16.
Both the production of cytokines and the distribution of immune cells within the uterus change during early pregnancy. Evidence obtained mainly from mice indicates that these changes are important for implantation and in preventing a maternal immune response to the conceptus. The ruminant embryo also produces interferon tau at this time, the signal for the maternal recognition of pregnancy. The relationship between these events in cows was studied using uteri from three groups of animals on day 16 after observed oestrus: (i) cyclic controls, (ii) pregnant and (iii) inseminated but with no embryo present. Embryo size and the antiviral activity in uterine flushings (indicative of the interferon tau concentration) were measured. Sections of intact uterus were frozen for the localization and quantitation of CD4(+) (T lymphocytes), CD14(+) (macrophages) and CD21(+) (B lymphocytes) uterine cells by immunohistochemistry. The expression of interleukin (IL)-1alpha, IL-2, IL-6 and IL-10 mRNAs in uterine extracts was measured by RT-PCR. Neither embryo size, interferon tau concentration nor pregnancy status influenced the distribution of CD4(+), CD14(+) or CD21(+) cells in the day 16 uterus. Endometrial IL-1alpha mRNA was detected in most cows across the groups, whereas IL-2 mRNA was only present in the non-pregnant uterus. IL-6 and IL-10 mRNAs were not detectable in any uteri. In conclusion, IL-2 mRNA expression is detectable in the non-pregnant but not the pregnant uterus on day 16 and interferon t is unlikely to play a role in the redistribution of immune cells in the uterus during early bovine pregnancy.  相似文献   

17.
Tolerance of the semiallogeneic fetus presents a significant challenge to the maternal immune system during human pregnancy. T cells with specificity for fetal epitopes have been detected in women with a history of previous pregnancy, but it has been thought that such fetal-specific cells were generally deleted during pregnancy as a mechanism to maintain maternal tolerance of the fetus. We used MHC-peptide dextramer multimers containing an immunodominant peptide derived from HY to identify fetal-specific T cells in women who were pregnant with a male fetus. Fetal-specific CD8(+) T lymphocytes were observed in half of all pregnancies and often became detectable from the first trimester. The fetal-specific immune response increased during pregnancy and persisted in the postnatal period. Fetal-specific cells demonstrated an effector memory phenotype and were broadly functional. They retained their ability to proliferate, secrete IFN-γ, and lyse target cells following recognition of naturally processed peptide on male cells. These data show that the development of a fetal-specific adaptive cellular immune response is a normal consequence of human pregnancy and that unlike reports from some murine models, fetal-specific T cells are not deleted during human pregnancy. This has broad implications for study of the natural physiology of pregnancy and for the understanding of pregnancy-related complications.  相似文献   

18.
NK cells play an important role in the innate immune response. We have isolated NK cells from human lymphoid tissues and found that these cells express the CD4 molecule on their surface at levels higher than those found on peripheral blood NK cells. To study the functional role of the CD4 molecule on NK cells, we developed an in vitro system by which we are able to obtain robust CD4 expression on NK cells derived from blood. CD4+ NK cells efficiently mediate NK cell cytotoxicity, and CD4 expression does not appear to alter lytic function. CD4+ NK cells are more likely to produce the cytokines gamma-IFN and TNF-alpha than are CD4- NK cells. Ligation of CD4 further increases the number of NK cells producing these cytokines. NK cells expressing CD4 are also capable of migrating toward the CD4-specific chemotactic factor IL-16, providing another function for the CD4 molecule on NK cells. Thus, the CD4 molecule is present and functional on NK cells and plays a role in innate immune responses as a chemotactic receptor and by increasing cytokine production, in addition to its well-described function on T cells as a coreceptor for Ag responsive cell activation.  相似文献   

19.
Innate defenses help to eliminate infection, but some of them also play a major role in shaping the magnitude and efficacy of the adaptive immune response. With regard to influencing subsequent adaptive immunity, NK cells aided by dendritic cells may be the most relevant components of the innate reaction to herpes simplex virus (HSV) infection. We confirm that mice lacking or depleted of NK cells are susceptible to HSV-induced lesions. The quantity and quality of CD8(+) cytotoxic T lymphocytes generated in the absence of NK cells were diminished, thereby contributing to susceptibility to HSV-induced encephalitis. We demonstrate a novel helper role for NK cells, in that NK cells compensate for the loss of CD4 helper T cells and NK cell supplementation enhances the function of wild type anti-HSV CD8 T cells. In addition, NK cells were able to partially rescue the dysfunctional CD8(+) T cells generated in the absence of CD4 T helper cells, thereby performing a novel rescue function. Hence, NK cells may well be exploited for enhancing and rescuing the T-cell response in situations where the CD4 helper response is affected.  相似文献   

20.
Tumor immunology fundamentals suggest immunological surveillance has the ability to recognize malignant cells and kill them before a tumor develops. However, cancer cells employ evasion mechanisms whereby the immune system may be actively suppressed or even tolerized to the tumor. Recently cancer stem cells were linked to tumor initiation and formation. However, no reports have addressed whether these cells participate in a tumor’s ability to evade immune surveillance. Recently the glycoprotein CD200, expressed within the innate immune system and other tissues and cells, was shown to be involved in tolerance. Here we describe CD200 co-expression with stem cell markers found on prostate, breast, brain, and colon cancers. This is the first report describing an immunomodulatory molecule on epithelial cancer stem cells. This important finding suggests a mechanism by which a tumor might evades immune system detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号