首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
脆性X综合征(fragile X syndrome,FXS)是最常见的遗传性认知障碍疾病,也是一种与自闭症谱系障碍(autism spectrum disorder,ASD)相关的严重的基因疾病.它主要是由于脆性X智力低下基因1(fragile X mental retardation 1,FMR1)的异常扩增及其上游Cp G岛的异常甲基化,导致其编码的脆性X智力低下蛋白(fragile X mental retardation protein,FMRP)表达减少或缺失引起的.FMRP与miRNA(micro RNA)均具有翻译抑制活性,而且FMRP在生物化学和遗传学上均与miRNA调控通路有相互作用.此外,越来越多的研究发现miRNA调控通路在FXS的发病和治疗中发挥作用.因此,本文对miRNA的功能及其与脆性X蛋白家族成员间的相互作用进行阐述,为在miRNA水平了解FXS的发病机制奠定基础.  相似文献   

2.
脆性X综合征(fragile X syndrome, FXS)是最常见的遗传性智力障碍疾病,主要是由于X染色体上脆性X智力低下基因1(fragile X-mental retardation gene 1, FMR1)5’端非翻译区CGG三核苷酸的重复扩增及其相邻部位CpG岛的异常甲基化而导致其编码产物脆性X智力低下蛋白(fragile X mental retardation protein, FMRP)的缺失引起。目前,基因诊断已成为FXS诊断的金标准,但临床治疗仍缺乏特异性。本文首先介绍了FMRP的结构与功能,剖析了FXS的致病机制,然后阐述了FXS中与FMRP表达相关的信号转导途径,深入探讨并总结了靶向干预FXS中信号通路、基因编辑逆转FMR1沉默以及靶向降解FXS异常表达蛋白的治疗策略。  相似文献   

3.
脆性X综合征(FXS)由脆性X智力低下蛋白FMRP表达降低甚至完全缺失引起,是最常见的遗传性智力缺陷综合征和孤独症谱系障碍的单基因致病因素。FMRP不仅可与离子通道mRNA结合,如电压门控钾通道(Kv3.1和Kv4.2)等,还直接与多个离子通道作用,如钠激活钾通道(Slack)等。FMRP的缺失导致神经元离子通道表达异常和功能失调,在不同的脑区和不同的神经细胞类型中引起特定的离子稳态失衡、膜电位改变和兴奋性失常,导致神经环路过度兴奋。现就FMRP缺失对不同离子通道的异常调控及其研究进展进行综述。  相似文献   

4.
张俊  黄英 《生命的化学》2007,27(4):305-307
X脆性综合征(fragile X syndrome,FXS)是由X脆性智力低下1(FMR1)基因5'端非翻译区CGG重复序列的异常扩增,导致X脆性智力低下蛋白(FMRP)缺失引起的.非编码RNA是除编码蛋白质的mRNAs以外的其他所有RNA分子,已被发现在中枢神经系统中具有重要的作用,如微RNA与BC1/BC200 RNA参与了X脆性智力低下蛋白的翻译抑制.认识非编码RNA与X脆性综合征的关系不但能加深对X脆性综合征的分子机制的理解,而且有助于揭示学习与记忆的奥秘.  相似文献   

5.
脆性X综合征为最常见的遗传性智力低下性疾病之一,是由于FMR1基因异常导致其编码的脆性X智力低下蛋白减少或缺失所致.研究发现脆性X综合征尸解病人和FMR1基因敲除小鼠(KO鼠)神经元树突棘发育不成熟,模型小鼠海马区代谢性谷氨酸受体所触发的长时程抑制(LTD)延长,不成熟的树突棘导致突触功能障碍被认为是脑功能异常的基础.最近的研究表明,应用代谢性谷氨酸受体拮抗剂能改善由FMRP缺失所导致的突触和行为缺陷,表明mGluR功能过度激活可能参与了脆性X综合征的发病过程,但具体机制不明.FMRP是一种mRNA结合蛋白,可作为翻译抑制因子负性调节突触后膜mRNA的翻译和表达.因此推测FMRP缺乏和减少可能导致mGluR激发的mRNA翻译增多,参与神经系统发育的蛋白过度表达,而影响树突棘的发育,但具体机制仍不清楚.本文对mGluR和脆性X综合征的研究历史和最新进展进行了讨论.  相似文献   

6.
李恩惠  赵欣  张策  刘威 《遗传》2018,40(2):87-94
脆性X综合征(Fragile X syndrome)是一种最常见的遗传性智力低下疾病,并且伴有语言和行为障碍等。该疾病是由脆性X智力低下基因(Fragile X mental retardation 1, FMR1)突变而导致脆性X智力低下蛋白(Fragile X mental retardation protein, FMRP)表达异常造成的。近年来,研究发现FMRP参与非编码RNA通路,并发挥多种重要生物学功能,这对理解脆性X综合征发病机理具有重要的推动作用。首先发现FMRP与siRNA和miRNA通路中Dicer酶、Ago1和Ago2蛋白相互作用,参与神经活动及生殖干细胞命运决定等重要过程。随后又发现FMRP与piRNA通路中Aub、Ago1和Piwi蛋白相互作用,维持了染色体正常结构和基因组稳定性。最新研究结果发现FMRP与lncRNA相互作用,其功能和价值正引起关注。本文从FMRP与非编码RNA通路的关系展开,着重介绍了FMRP与piRNA之间的相互作用,以期为深入理解非编码RNA通路在脆性X综合征的发病过程中作用提供参考,同时期望与临床医学领域尽快形成交叉研究,早日促进理论成果转化为临床应用。  相似文献   

7.
结直肠癌(Colorectal cancer, CRC)是一种全球高发的恶性肿瘤,发病原因复杂且预后较差。近年来发现叉头框Q1(Forkhead box Q1,FOXQ1)基因作为一类核转录因子在结直肠癌中高表达,可控制下游基因转录活性。本实验拟探究CRC细胞中FOXQ1的转录调控功能并寻找其下游基因。方法:(1)构建低表达FOXQ1基因的稳定转染CRC细胞株;(2)应用RNA-seq检测FOXQ1敲低前后表达量显著差异的基因;(3)应用转座酶可接近性核染色质区域测序分析(Assay for Transposase-Accessible Chromatin using sequencing, ATAC-seq)检测FOXQ1敲低前后细胞染色质易接近性的变化;(4)进一步对FOXQ1敲低前后的RNA-seq和ATAC-seq数据进行一系列生物信息学分析,寻找CRC中FOXQ1转录调控的潜在下游基因。结果:应用RNA-seq筛选出了敲低FOXQ1后表达显著差异的基因EI24、TLR2、SMAD3,通过联合分析两细胞系的测序结果,发现FOXQ1基因敲低后,在DLD1和SW480两个细胞系中染色质易接近性均增强且表达量均上调的基因有61个,染色质易接近性均减弱且表达量均下调的基因有70个,且EI24、TLR2、SMAD3基因均位于重叠分析结果中,其中TLR2、SMAD3基因的染色质区域有明显变化,而EI24基因的染色质区域变化不明显。通过代谢通路分析找到了EI24、TLR2、SMAD3基因所富集的代谢通路。其中SMAD3、TLR2基因在炎症性肠病(Inflammatory bowel disease, IBD)通路中显著富集。EI24基因在p53信号通路(p53 signaling pathway)通路中显著富集。结论:基于染色质易接近性的变化和转录水平的研究发现:敲低FOXQ1基因对CRC细胞系中染色质的开放情况有较大的影响,且影响FOXQ1转录调控的下游基因的表达。找到了FOXQ1敲低后在SW480、DLD1中均发生变化的基因,为丰富FOXQ1转录因子的下游调控网络提供了研究基础。  相似文献   

8.
脆性X综合征(FXS)是一种遗传性智力低下疾病,其发病率仅次于21三体综合征.脆性X智力低下蛋白(FMRP)是FXS的关键性致病因子,该蛋白由脆性X智力低下基因1(FMR1)编码所得.FMR1在神经肌肉和睾丸组织中广泛表达.脆性X相关蛋白1(FXR1P)则是由FMR1的同源基因脆性X相关基因1(FXR1)编码所得,并且与蛋白质和RNAs之间存在着相互作用.许多疾病都涉及到FXR1表达的改变.为了了解FXR1P与CMAS(胞嘧啶单核苷酸-N-乙酰神经氨酸合成酶)相互作用所产生的的生物学效应,我们构建了FXR1的过表达载体,并观察其在PC12细胞(大鼠鼠肾上腺嗜铬细胞瘤细胞)和VSMC(血管平滑肌细胞)中的表达以及继而对于细胞形态和CMAS活性相关的许多细胞指标的效应.我们证实,FXR1基因的过表达可以提高PC12细胞中CMAS的活性,并对于该类细胞的生长提供一定程度的保护作用.PC12细胞是一种较为常见的用于研究神经系统疾病的细胞系.结论:我们推测FXR1P是一个组织特异调节因子,可以改变PC12细胞而非VSMC细胞中神经节苷酯(GM1)的浓度.  相似文献   

9.
10.
α-氨-3-羟基-5-甲基-4-异恶唑丙酸受体(α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors,AMPA receptors)介导中枢神经系统(CNS)绝大多数快兴奋性突触传递,在学习、记忆和认知等方面具有重要功能. 突触AMPA受体的数量、分布和亚基组成是调节突触传递强度的一个主要机制,与AMPA受体转运密切相关. 最新研究显示,异常的AMPA受体转运与阿尔茨海默病(Alzheimer’s disease,AD)、脆性X综合征(fragile X syndrome, FXS)等神经疾病有关. 本文主要针对AMPA受体转运及其调控的分子机制做一综述,以期为AD、FXS等神经疾病提供新的治疗靶点和途径.  相似文献   

11.
在中枢神经系统的发育过程中,内在的基因和外在的环境因素相互作用以确保神经元发育的各个阶段(如神经细胞的增殖、分化、迁移,轴突延伸,树突成长,功能性突触的形成等)有序进行。这一过程需要众多的基因表达调控机制对不同基因的表达水平进行精确的时空调节。这些调控机制包括了序列特异性DNA结合蛋白(转录因子等)、组蛋白修饰、DNA甲基化、以及微小RNA(mi RNA)等。它们形成了一个调控网络,在神经发育的不同阶段以及不同的环境刺激因素的情况下,从染色质的结构、基因的转录和蛋白质的翻译等不同层次上实现基因表达的精确调控。神经元发育过程中基因表达失调与一些神经发育性疾病相关,例如自闭症谱系障碍,Rett综合征,脆性X综合征以及其他遗传性疾病。深入研究神经元发育过程中基因表达调控机制可望能够给这些神经发育性疾病的诊断和治疗提供新的思路。  相似文献   

12.
基因转录表达是一个复杂、精确并具有时空特异性的过程.目前对转录组的研究主要集中在蛋白编码基因上.近几年,一个新的转录组研究工具—大规模并行c DNA测序技术(RNA-seq)为更深入地研究转录组带来了希望.利用RNA-seq数据,鉴定出大量的非编码RNA,特别是lincRNA,并且发现这些非编码RNA是多个生物学过程中重要的调控因子.利用深度测序获得的15个小鼠组织RNA-seq数据探索非编码RNA在小鼠不同组织中的多样性和动态变化.依据自定的标准,在这15个组织中共鉴定出16249个非编码基因(对应21569个非编码RNA).研究这些非编码RNA的多种特征,可以发现与蛋白编码基因相比,非编码RNA通常比较短,外显子个数少,表达量低,组织特异性强.而且,这些非编码RNA有明显的转录起始和转录延伸信号(H3K4me3,H3K27me3,H3K36me3修饰,RNAPⅡ结合位点以及CAGE)的富集.基因集富集分析结果表明,lincRNA与多个生物学过程相关,如免疫反应、肌肉发育和有性生殖等.本研究提供了更加全面的对小鼠非编码RNA的注释信息,为小鼠非编码RNA的功能和进化研究奠定了基础.  相似文献   

13.
microRNAs(miRNAs)是一类在转录后水平调控基因表达的不编码蛋白质的小RNA(长度20-24个碱基).其中,miR-124a是一个在哺乳动物中枢神经系统高度表达的miRNA,在神经前体细胞向神经元分化的过程中起着举足轻重的作用.由于miRNAs特异性地识别靶基因的3'端调控区(3'UTR)的靶序列,因此,在人类起源过程中基因3'UTR的单核苷酸序列变异有可能导致miRNA调控的改变.通过靶基因预测和3'UTR区在哺乳动物代表物种间的同源序列比较,我们发现miR-124a的靶基冈中有一个基因(PLOD3)3UTR的靶位点中存在人类特异突变位点.利用体外报告基因系统,发现PLOD3基因3'UTR靶位点中所含的一个人类特异的突变导致miR-124a对PLOD3的调控效率降低.研究表明,miRNAs靶基因3'UTR的序列变异具有功能效应,它有可能足人类中枢神经系统在起源和演化中发挥关键作用的重要遗传机制之一.  相似文献   

14.
在真核细胞中,组蛋白的乙酰化状态对于基因转录的正常进行具有重要的调控作用。组蛋白的乙酰化修饰由组蛋白乙酰转移酶(histone acetyltransferases,HATs)执行,这种修饰是动态的、可逆的,负责去乙酰化修饰的酶是组蛋白去乙酰化酶(histone deacetylases,HDACs),推测HDACs可能通过影响组蛋白的乙酰化状态在基因的转录过程中发挥调控作用。该文以组蛋白去乙酰化酶HDAC1和HDAC3为对象,研究了它们在果蝇翅膀发育过程中对Wg(Wingless)、Hh(Hedgehog)以及Dpp(Decapentaplegic)信号通路下游靶基因转录的调控作用。结果发现,HDAC1功能缺失可导致Dpp下游靶基因Omb(optomotor-blind)和Hh下游靶基因Ptc(patched)的表达上调。Real-time quantitative PCR(RT-q PCR)结果显示,在HDAC1基因敲除的果蝇中,Ptc、Ci(cubitus interruptus)以及Omb的转录水平增加。HDAC3缺失导致Sal(spalt)的表达上调。RT-q PCR结果证实了HDAC3基因敲除果蝇的Sal转录增加,同时发现Vg(vestigial)的转录下降。而过表达HDAC1或HDAC3对下游靶基因的表达则没有影响。综上所述,该研究表明,HDAC1和HDAC3可以选择性地调控形态发生素下游靶基因的转录。  相似文献   

15.
精原干细胞(spermatogonial stem cells,SSCs)是雄性哺乳动物体内能进行自我更新并通过精子发生将亲代遗传信息传递给子代的一类细胞。多项研究表明,维甲酸(retinoic acid,RA)可诱导SSCs分化,启动减数分裂。目前,关于维甲酸诱导SSCs体外分化的分子机制已取得一定进展,但此过程的DNA甲基化调控机制尚未探索。DNA甲基转移酶(DNA methyltransferases,Dnmts)催化DNA甲基化,研究SSCs分化前后Dnmts的表达变化将有助于本研究从表观遗传层面理解维甲酸诱导的SSCs分化过程。因此,在本研究中,首先通过两步酶消化法和免疫磁珠法从小鼠睾丸组织中分离纯化SSCs并建立细胞系。该细胞系在体外传代超过60代,并且表达Oct4、Plzf、Etv5、Dazl和Mvh等标志物。然后,本研究通过探索维甲酸诱导条件,建立了SSCs的体外分化体系。经维甲酸处理后,对SSCs自我更新起决定作用的转录因子Plzf及其共表达基因Oct4的表达下降,而分化相关基因(Stra8,c-Kit)表达上调。最后,本研究对SSCs分化前后Dnmts表达进行检测。检测显示与正常组SSCs比较,维甲酸处理组SSCs中Dnmt1、Dnmt3a表达下调。该发现初步表明Dnmt1、Dnmt3a在维甲酸诱导SSCs体外分化过程中起调控作用,为阐述维甲酸如何诱导SSCs分化的分子机制提供了新的证据。  相似文献   

16.
为研究TGF β1 SMAD3信号对小鼠软骨细胞增殖和分化的影响 ,分离了野生型与Smad3基因剔除 (Smad3ex8 ex8)突变纯合子小鼠肋骨软骨细胞并进行了体外培养 .通过3 H TdR参入实验检测了体外培养软骨细胞的增殖能力 .TGF β1可以刺激野生型软骨细胞的增殖 ,Smad3基因缺失导致小鼠软骨细胞丧失对TGF β1刺激生长作用的应答 .Northern杂交显示 ,TGF β1促进野生型小鼠软骨细胞表达Ⅱ型胶原 ,而Smad3基因缺失突变纯合子软骨细胞大量表达肥大性软骨细胞的分子标记物X型胶原 .结果表明 ,SMAD3介导转化生长因子TGF β1刺激软骨细胞增殖并抑制软骨细胞的肥大性分化  相似文献   

17.
花瓣大小是影响金花茶(Camellia nitidissima)观赏价值的主要因素之一,但金花茶花瓣发育形成机制尚不清楚。将金花茶花瓣发育过程划分为幼蕾期(S1)、初蕾期(S2)、显色期(S3)、半开期(S4)、盛开期(S5)五个阶段,利用RNA-seq技术分析花发育过程中转录组的动态变化,以期对金花茶花瓣发育形成的转录机理进行初步探究。通过对金花茶花瓣发育过程中的差异表达基因进行富集分析和趋势分析,发现生长素转导途径所含差异表达基因数量最多,部分AUX1/LAX共转运体、AUX/IAA基因、SAUR等生长素应答基因在开花过程中明显上调,表明生长素是调控花瓣生长重要的调控因子。MYB、bHLH、锌指蛋白等转录因子、木葡聚糖内糖基转移酶/水解酶(XTH)、果胶酯酶(PE)、果胶裂解酶(PL)等部分下游功能基因,其中XTH显著富集于GO分类中的水解酶活性,表明它们可能对金花茶花瓣的生长起重要调控作用。此外,对FT、SOC1、AP3、PI、SEP3等开花调控关键基因在金花茶花瓣发育过程中的表达情况进行了分析,结果表明这些基因主要以中低表达为主。高表达基因进行KEGG富集分析结果表明,次生代谢物质合成伴随着金花茶花瓣的整个发育过程。这些结果为进一步揭示金花茶花瓣发育的转录调控机制奠定了理论基础。  相似文献   

18.
Nodal信号在脊椎动物胚胎发育的中内胚层诱导、左右不对称性的建立、神经外胚层沿前后轴线的分化等方面起着重要的作用.为鉴定受Nodal信号调控的基因,特别是那些转录因子基因,通过将来自squint过量表达、缺失Nodal信号的MZoep突变体或野生型30%外包期胚胎的RNA与Affymetrix斑马鱼寡核苷酸芯片杂交.发现与野生型样本相比,在squint过量表达的样本中,265个转录本的表达显著增强(log2ratio>1),111个转录本的表达显著减弱(log2ratio<-1);在MZoep样本中,表达显著增强的(log2ratio>1)转录本有1495个,表达显著减弱(log2ratio<-1)的有550个.squint过量表达使26个转录因子基因的表达增强,11个转录因子基因的表达减弱;另一方面,MZoep突变体中表达增强的转录因子基因为69个,表达减弱的转录因子基因为30个.这些结果为进一步研究Nodal信号的转导机理和生物学功能提供了有益的数据.  相似文献   

19.
20.
目的:研究正常核型和异常核型人胚胎干细胞(hESC)基因的表达异同.方法:实时荧光相对定量PCR检测两株正常核型(46,XX)及一株平衡易位13三体核型和一株三倍体核型hESC在体外自体分化不同时期X连锁基因PGK1、抑癌基因RBBP7及癌症基因GPC4的表达情况,并比较分化后不同时期、不同核型对父系印迹基因H19、IGF2R,母系印迹基因SNRPN及多能性调控基因OCT4、NANOG的影响.结果:随着分化时间的增加:①正常和异常核型hESC的PGK1均上调表达;②异常核型hESC抑癌基因RBBP7及癌症基因GPC4相对正常核型hESC呈现明显上调表达;③正常和异常核型hESC中印迹基因表达基本一致:H19、IGF2R上调而SNRPN表达变化不明显或下调;④多能性调控基因OCT4、NANOG在正常核型hESC中较在异常核型hESC中表达明显下降.结论:X连锁基因PGK1、印迹基因在hESC的发育过程中能维持正常调节而不受核型的影响.异常核型hESC抑癌基因、癌症基因在发育过程中的表达上调表明此种细胞具有更危险的发育前景,同时多能性基因在分化后仍能检出表明此种细胞分化能力较正常细胞弱.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号