首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基因组中胞嘧啶的甲基化修饰是重要的表观遗传标记,其动态变化参与了多种重要生物学过程。TET(ten-eleven translocation)家族蛋白质介导了5-甲基胞嘧啶(5-methylcytosine,5m C)的连续氧化,相继生成5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hm C)、5-醛基胞嘧啶(5-formylcytosine,5f C)和5-羧基胞嘧啶(5-carboxylcytosine,5ca C)三种产物。生化实验结果表明,虽然TET2可以连续催化5m C、5hm C和5f C的氧化,但其对不同底物的催化效率具有明显差异,针对5m C的催化效率最高,而针对5f C的最低。这一特性可能对维持基因组甲基化状态稳定具有重要意义。然而,生化与结构生物学实验均显示,TET2对不同底物结合与识别能力无明显差异。分子模拟与QM/MM计算结果表明,整个反应循环中的第三步(氢抽提)为限速步骤,且能垒趋势与实验观测反应效率一致,并预测氢抽提反应的能垒差异主要来源于不同底物在反应中间体时取向不同。进一步的同位素动力学效应实验确证了氢抽提步骤为整个反应的限速步骤,并且停留光谱实验证实,TET2对不同底物催化效率的差异来源于氢抽提步骤反应速率的不同。我们的研究首次阐明了TET2底物偏好性源于底物碱基5-位取代基自身的性质,并且证实5hm C修饰由于不易于被TET2继续氧化而可在基因组中保持稳定。这对深入理解基因组去甲基化修饰的分子机制及对TET2及其家族蛋白小分子调控剂的研发具有重要意义。  相似文献   

2.
DNA羟甲基化修饰主要是指5-甲基胞嘧啶(5-methylcytosine,5m C)在10-11易位(ten-eleven translocation,TET)蛋白家族的氧化作用下生成5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hm C)。5hm C不仅能在去甲基化过程中起重要作用,而且还参与了基因的表达调控。5hm C的含量有着高度的组织特异性,且目前在中枢神经系统中也发现了高水平的5hm C。与神经系统疾病相关的基因中存在明显的5hm C水平的改变,暗示着DNA羟甲基化修饰很可能在神经系统疾病的发生与发展过程中起了重要作用。  相似文献   

3.
5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hmC)作为表观遗传的新标志物,已引起人们的极大兴趣.5hmC由TET家族酶催化氧化5-甲基胞嘧啶(5-methylcytosine,5mC)产生,被称为高等生物基因组DNA的"第六碱基".5hmC不仅可以影响基因组结构及功能,还在早期胚胎发育中发挥重要的作用.本文综述了5hmC的代谢通路、生物学功能、在基因组的分布及分析方法的研究进展.  相似文献   

4.
DNA羟甲基化修饰是基因组表观遗传学的重要调控方式,指5-甲基胞嘧啶(5-m C)在TET蛋白家族的催化作用下氧化生成5-羟甲基胞嘧啶(5-hm C),完成DNA胞嘧啶的去甲基化过程。基因组甲基化异常导致了多种肿瘤的发生,羟甲基化修饰作为去甲基化的一种,同样与肿瘤发生密不可分。在消化系统肿瘤发生发展过程中存在5-hm C含量的变化,其原因可能与TET蛋白家族、IDH突变等密切相关,提示DNA羟甲基化修饰参与了消化系统肿瘤的发生发展过程。本文围绕DNA羟甲基化修饰与消化系统肿瘤之间的关系进行综述,旨在为消化系统肿瘤羟甲基化修饰研究提供新方向。  相似文献   

5.
DNA胞嘧啶(C)的甲基化(5m C)在植物发育过程中具有重要的调节作用,多种环境因子如逆境胁迫、植物内/外源性因子等均会触发DNA甲基化的变化。为探讨γ-氨基丁酸(GABA)对植物发育的可能调节机制,本研究以极性生长的烟草花粉管和拟南芥根为材料,分析5m C的含量及其对GABA信号的响应。结果表明,1.0 mmol/L GABA能显著促进烟草花粉管和拟南芥根的极性生长;同时,GABA处理使烟草花粉管和拟南芥根的基因组中5m C含量显著降低、5-羟基胞嘧啶(5hm C)含量显著增加。5hm C是5m C去甲基化途径中的一个重要中间产物,本研究证实了GABA可以作为一种重要的外源信号调节DNA甲基化的动态变化。  相似文献   

6.
张燕霞  高可润  禹顺英 《遗传》2012,34(5):509-518
CpG二核苷酸中胞嘧啶的甲基化形式5-甲基胞嘧啶(5-methylcytosine, 5mC)在哺乳动物中是一种常见的表观遗传修饰, 在基因表达调控、发育调节、基因组印迹等方面发挥重要作用。近3年来研究发现, 除了5mC外, 胞嘧啶碱基的另一种修饰-5-羟甲基胞嘧啶(5-hydroxymethylcytosine, 5hmC)在哺乳动物的多种组织中有着丰富的表达, 它可能与5mC有着不同的生物学功能。文章就近年来5hmC的研究进展进行了综述。  相似文献   

7.
Zhang YX  Gao KR  Yu SY 《遗传》2012,34(5):509-518
CpG二核苷酸中胞嘧啶的甲基化形式5-甲基胞嘧啶(5-methylcytosine,5mC)在哺乳动物中是一种常见的表观遗传修饰,在基因表达调控、发育调节、基因组印迹等方面发挥重要作用。近3年来研究发现,除了5mC外,胞嘧啶碱基的另一种修饰—5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hmC)在哺乳动物的多种组织中有着丰富的表达,它可能与5mC有着不同的生物学功能。文章就近年来5hmC的研究进展进行了综述。  相似文献   

8.
真核生物的DNA甲基转移酶与DNA甲基化   总被引:1,自引:0,他引:1  
真核生物的DNA甲基化就是在DNA的CpG二核苷酸胞嘧啶的第 5位碳原子上加上甲基 ,催化这一过程的是DNA甲基转移酶 (Dnmt)。DNA的甲基化修饰参与基因表达调控、胚胎发育、细胞分化、基因组印迹、X染色体灭活和细胞记忆等诸多重要生物学过程[1,2 ] 。在不同组织或同一类型细胞的不同发育阶段 ,基因组DNA上各CpG位点甲基化状态的差异即构成基因组的DNA甲基化谱。根据催化反应类型。可以将DNA甲基转移酶分为三类 :第一类将腺嘌呤转化成N6 甲基腺嘌呤 ;第二类将胞嘧啶转化成N4 甲基胞嘧啶 ;第三类将胞嘧啶转化成…  相似文献   

9.
DNA甲基化是生命体最主要的表观遗传修饰之一。哺乳动物DNA甲基化主要发生在胞嘧啶第五位碳原子上,称为5-甲基胞嘧啶(5-methylcytosine,5m C)。哺乳动物DNA甲基化由从头DNA甲基转移酶DNMT3A/3B在胚胎发育早期建立,甲基化模式的维持由DNA甲基转移酶DNMT1实现。TET家族蛋白氧化5-甲基胞嘧啶起始DNA的去甲基化过程。这些DNA甲基化修饰酶精确调节DNA甲基化的动态过程,在整个生命发育过程中发挥重要作用,其失调也与多种疾病发生密切相关。现结合国内外同行研究进展,介绍课题组近年来对DNA甲基化修饰酶的结构与功能研究。  相似文献   

10.
DNA的胞嘧啶(C)5-甲基化是一种重要的表观修饰,它参与基因调节、基因组印记、X-染色体失活、重复序列抑制和癌症发生等过程. 5-甲基胞嘧啶(5mC)可被TET (ten-eleven translocation)蛋白家族进一步转化为5-羟甲基胞嘧啶(5hmC),该过程是DNA去甲基化的1个必要阶段. 5hmC可在活性转录基因起始位点和Polycomb抑制基因启动子延伸区域富集.TET蛋白包括3个成员TET1、TET2和TET3,均属于α-酮戊二酸和Fe2+依赖的双加氧酶,其催化涉及氧化过程.小鼠Tet1在胚胎干细胞发育中拥有双重作用,即促进全能因子的转录,又参与发育调节因子的抑制.人TET蛋白的破坏与造血系统肿瘤相关,如在骨髓增生性疾病/肿瘤存在频繁的TET2基因突变.TET蛋白和5hmC的研究为DNA甲基化/去甲基化及其生物学功能提供了新的视点.  相似文献   

11.
DNA羟甲基化是继DNA甲基化之后发现的又一重要的表观遗传修饰,在基因的表达调控、染色体重塑等方面有着重要功能。TET2(ten-eleven-translocation 2,TET2)基因作为调控DNA羟甲基化形成的TET家族蛋白的成员之一,能够催化5甲基胞嘧啶(5-methyl-cytosine,5m C)形成5羟甲基胞嘧啶(5-hydroxymethyl-cytosine,5hm C),在表观遗传学中具有重要的地位。近年来,在骨髓增生性肿瘤(myeloproliferative neoplasms,MPN)、系统性肥大细胞增生症(systemic mastocytosis,SM)、慢性骨髓单核细胞性白血病(chronic myelomonocytic leukemia,CMML)和骨髓增生异常综合征(myelodysplastic syndrome,MDS)等疾病中均发现了TET2的突变,并影响了5m C和5hm C含量的变化。对TET2突变的研究仍是一个很新颖的课题,TET2在不同疾病中突变的位置和类型以及对其功能的影响尚处于探索研究之中。本文对各类疾病中发现的TET2突变及其功能的影响进行了综述,深入阐述了TET2的突变对拓展DNA去甲基化和寻找疾病新靶标具有的潜在应用价值。  相似文献   

12.
为探讨γ-氨基丁酸(γ-aminobutyric acid,GABA)对DNA胞嘧啶(C)甲基化(5m C)可能的调节机制,该研究以拟南芥的根和愈伤组织为研究材料,分析了经γ-氨基丁酸处理后,5m C的含量及其对GABA信号的响应规律。结果表明,GABA处理显著降低了拟南芥根中DNA 5m C的含量,增加了5-羟甲基胞嘧啶(5hm C)含量;但GABA处理增加了根愈伤组织中5m C含量,降低了5m C的去甲基化过程。这一现象在愈伤组织来源的静止中心细胞(p WOX5-GFP特异性标记)及其周围的干细胞(surrounding stem cells)的继代培养的愈伤组织中得到了进一步验证。研究结果证实了外源性GABA信号触发的DNA甲基化的动态变化在拟南芥的根及其愈伤组织的生长中对GABA的响应具有不同的调节模式,这种模式可能与GABA对干细胞的分裂和干细胞命运的维持有关。  相似文献   

13.
在DNA分子中,除含有A,T,C,G几种碱基外,还普遍地发现有5-甲基胞嘧啶(5-mc):大约在35年前,首先从小牛胸腺DNA中发现有5-甲基胞嘧啶,随后发现这种微量的碱基广  相似文献   

14.
《生物磁学》2014,(18):I0002-I0003
中国科学院北京基因组研究所基因组学与信息重点实验室刘江课题组与美国芝加哥大学研究人员合作,在肾癌发病机制研究中取得新进展,揭示在低氧生理条件下,核蛋白SPOP的过表达和错误定位是引发肾癌的核心因素。相关论文近日在《癌细胞》杂志在线发表。  相似文献   

15.
DNA甲基化(5m C)状态与疾病的发生发展密切相关,异常甲基化状态是肿瘤的重要特征,包括基因组整体甲基化水平降低和Cp G岛局部甲基化程度的异常升高。近期研究还发现,DNA甲基化可以继续氧化为DNA羟甲基化(5hm C),而5hm C可能是一种新的表观修饰或者参与DNA去甲基化。随着DNA甲基化测序技术的发展,可以得到全基因组单碱基分辨率的5m C和5hm C图谱,深入研究5m C和5hm C的动态变化对发育和肿瘤的影响,并期望找到潜在应用于肿瘤诊断和治疗的表观标志物。该文主要总结了DNA甲基化/去甲基化及其在肿瘤发生发展过程中的动态变化、潜在的表观标志物以及检测和治疗研究进展。  相似文献   

16.
DNA甲基化是真核生物的重要表观遗传修饰,如胞嘧啶C~5位甲基化5-甲基胞嘧啶(5mC)和腺嘌呤N~6位甲基化6-甲基腺嘌呤(6mA)。DNA 5mC可经Tet双加氧酶催化氧化形成5-羟甲基胞嘧啶(5hmC)、5-醛甲基胞嘧啶(5fC)和5-羧基胞嘧啶(5caC)。这些氧化产物不仅是去甲基化过程的中间体,而且也可能存在各自特有的表观调控功能。其中,5hmC异常可能和癌症相关,有可能成为疾病诊断的生物标志物。发展可靠、高灵敏和抗干扰能力强的DNA甲基化和去甲基化检测技术和方法至关重要,有助于理解甲基化和去甲基化的分子机制以及提高肿瘤的诊断水平。现针对DNA甲基化和去甲基化检测技术进行简要介绍。  相似文献   

17.
TET(ten-eleven translocation)家族蛋白能够介导DNA的5-甲基胞嘧啶(5-methylcytosine,5m C)的氧化,产生5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hm C)。通过TET蛋白的催化,可以诱导特定靶基因的启动子区域Cp G岛的去甲基化,从而激活基因的转录。TET1蛋白是一个拥有2039个氨基酸的DNA去甲基化酶,通过预测,TET1拥有18个核定位信号(nuclear localization signals,NLSs),其中13个为单分型NLS,5个为双分型NLS。本文利用绿色荧光蛋白和各种突变体,首次确定了小鼠TET1蛋白的2个NLSs,分别存在于CXXC结构域和催化结构域,而且这2个NLSs对全长TET1的和定位都是必需的。我们的研究对深入理解TET1的蛋白结构与功能研究具有重要意义。  相似文献   

18.
TET(ten-eleven translocation)家族蛋白能够介导DNA的5-甲基胞嘧啶(5-methylcytosine,5m C)的氧化,产生5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hm C)。通过TET蛋白的催化,可以诱导特定靶基因的启动子区域Cp G岛的去甲基化,从而激活基因的转录。TET1蛋白是一个拥有2039个氨基酸的DNA去甲基化酶,通过预测,TET1拥有18个核定位信号(nuclear localization signals,NLSs),其中13个为单分型NLS,5个为双分型NLS。本文利用绿色荧光蛋白和各种突变体,首次确定了小鼠TET1蛋白的2个NLSs,分别存在于CXXC结构域和催化结构域,而且这2个NLSs对全长TET1的和定位都是必需的。我们的研究对深入理解TET1的蛋白结构与功能研究具有重要意义。  相似文献   

19.
TET(ten-eleven translocation)蛋白属于酮戊二酸和Fe2+依赖的双加氧酶,能够产生催化氧化作用。在TET蛋白家族的催化氧化作用下5-甲基胞嘧啶(5-methylcytosine,5mC)可转化为5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hmC),并可进一步转化为5-甲酰胞嘧啶(5-formylcytosine,5fC)和5-羧基胞嘧啶(5-carboxylcytosine,5caC)。TET蛋白在DNA胞嘧啶的去甲基化、胚胎发育和基因重新编码等过程都存在重要作用,其中TET蛋白参与DNA胞嘧啶的去甲基化过程的作用机制一直是研究热点,另外,有研究发现TET与肿瘤的发生也存在联系,可能成为新的肿瘤分子标志。  相似文献   

20.
为了探讨5-甲基胞嘧啶(5-methylcytosine,m5C)相关基因在三阴性乳腺癌(triple negative breast cancer,TNBC)患者治疗及预后中的潜在价值,构建了基于m5C相关基因的预后预测模型,用于评估TNBC患者的预后和生存状况。从基因表达总库(gene expression omnibus,GEO)数据库和癌症基因组图谱(the cancer genome atlas,TCGA)数据库中下载TNBC基因表达谱和相应的临床数据。通过Pearson分析确定了99个m5C相关基因,进一步采用单因素Cox分析鉴定出5个与预后有关的m5C相关基因(SLC6A14、BCL11A、UGT8、LMO4、PSAT1)并构建了风险评分(risk score)预测模型,根据风险评分中位值将患者划分为高风险组和低风险组。使用Kaplan-Meier(K-M)生存分析、受试者工作特征(receiver operating characteristic,ROC)曲线、多变量Cox回归分析、构建列线图和校准曲线评估了模型的预测效能。训练集和验证集的K-M生存曲线、受试者工作特征...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号