首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RANK and its ligand RANKL are key molecules in bone metabolism and are critically involved in pathologic bone disorders. Deregulation of the RANK/RANKL system is for example a main reason for the development of postmenopausal osteoporosis, which affects millions of women worldwide. Another essential function of RANK and RANKL is the development of a functional lactating mammary gland during pregnancy. Sex hormones, in particular progesterone, induce RANKL expression resulting in proliferation of mammary epithelial cells. Moreover, RANK and RANKL have been shown to regulate mammary epithelial stem cells. RANK and RANKL were also identified as critical mechanism in the development of hormone-induced breast cancer and metastatic spread to bone. In this review, we will focus on the various RANK/RANKL functions ranging from bone physiology, immune regulation, and initiation of breast cancer.  相似文献   

2.
The emergence of the molecular triad osteoprotegerin (OPG)/Receptor Activator of NF-kB (RANK)/RANK Ligand (RANKL) has helped elucidate a key signalling pathway between stromal cells and osteoclasts. The interaction between RANK and RANKL plays a critical role in promoting osteoclast differentiation and activation leading to bone resorption. OPG is a soluble decoy receptor for RANKL that blocks osteoclast formation by inhibiting RANKL binding to RANK. The OPG/RANK/RANKL system has been shown to be abnormally regulated in several malignant osteolytic pathologies such as multiple myeloma [MM, where enhanced RANKL expression (directly by tumour cells or indirectly by stromal bone cells or T-lymphocytes)] plays an important role in associated bone destruction. By contrast, production of its endogenous counteracting decoy receptor OPG is either inhibited or too low to compensate for the increase in RANKL production. Therefore, targeting the OPG/RANK/RANKL axis may offer a novel therapeutic approach to malignant osteolytic pathologies. In animal models, OPG or soluble RANK was shown both to control hypercalcaemia of malignancy and the establishment and progression of osteolytic metastases caused by various malignant tumours. To this day, only one phase I study has been performed using a recombinant OPG construct that suppressed bone resorption in patients with multiple myeloma or breast carcinoma with radiologically confirmed bone lesions. RANK-Fc also exhibits promising therapeutic effects, as revealed in animal models of prostate cancer and multiple myeloma. If the animal results translate to similar clinical benefits in humans, using RANK-Fc or OPG may yield novel and potent strategies for treating patients with established or imminent malignant bone diseases and where standard therapeutic regimens have failed.  相似文献   

3.
OPG/RANKL/RANK系统与骨破坏性疾病   总被引:15,自引:0,他引:15  
近年来发现的OPG/RANKL/RANK系统在破骨细胞生成中起着至关重要的作用,是骨骼生理研究领域的重大进展。成骨细胞、骨髓基质细胞、激活的T淋巴细胞表达RANKL,与破骨细胞前体细胞或成熟破骨细胞表面上的RANK结合后,促进破骨细胞的分化及骨吸收活性。成骨细胞及骨髓基质细胞分泌表达OPG可与RANKL竞争性结合,从而阻断RANKL与RANK之间的相互作用。体内多种激素或因子通过影响骨髓微环境内的OPG/RANKL比率来调节骨代谢。此外,乳腺上皮细胞表达有RANK,孕期在性激素的诱导下可表达RANKL,OPG/RANKL/RANK系统在孕期乳腺发育以及母体向胎儿的钙转运过程中发挥重要作用。阻断RANKL/RANK通路有望给骨质疏松、类风湿关节炎及癌症骨转移等骨破坏性疾病的治疗开辟新的途径。进一步研究应了解OPG/RANKL/RANK系统与其它信号传导途径的关系,重视骨骼、免疫及内分泌系统之间的相互作用。目前,开发与OPG功能相似或促进其表达的合成药物有可能成为具有良好经济效益和社会效益的产业。  相似文献   

4.
Certain autoimmune diseases result in abnormal bone homeostasis, but association of immunodeficiency with bone is poorly understood. Osteoclasts, which derive from bone marrow cells, are under the control of the immune system. Differentiation of osteoclasts is mainly regulated by signaling pathways activated by RANK and immune receptors linked to ITAM-harboring adaptors. However, it is unclear how the two signals merge to cooperate in osteoclast differentiation. Here we report that mice lacking the tyrosine kinases Btk and Tec show severe osteopetrosis caused by a defect in bone resorption. RANK and ITAM signaling results in formation of a Btk(Tec)/BLNK(SLP-76)-containing complex and PLCgamma-mediated activation of an essential calcium signal. Furthermore, Tec kinase inhibition reduces osteoclastic bone resorption in models of osteoporosis and inflammation-induced bone destruction. Thus, this study reveals the importance of the osteoclastogenic signaling complex composed of tyrosine kinases, which may provide the molecular basis for a new therapeutic strategy.  相似文献   

5.
Functions of RANKL/RANK/OPG in bone modeling and remodeling   总被引:1,自引:0,他引:1  
The discovery of the RANKL/RANK/OPG system in the mid 1990s for the regulation of bone resorption has led to major advances in our understanding of how bone modeling and remodeling are regulated. It had been known for many years before this discovery that osteoblastic stromal cells regulated osteoclast formation, but it had not been anticipated that they would do this through expression of members of the TNF superfamily: receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG), or that these cytokines and signaling through receptor activator of NF-κB (RANK) would have extensive functions beyond regulation of bone remodeling. RANKL/RANK signaling regulates osteoclast formation, activation and survival in normal bone modeling and remodeling and in a variety of pathologic conditions characterized by increased bone turnover. OPG protects bone from excessive resorption by binding to RANKL and preventing it from binding to RANK. Thus, the relative concentration of RANKL and OPG in bone is a major determinant of bone mass and strength. Here, we review our current understanding of the role of the RANKL/RANK/OPG system in bone modeling and remodeling.  相似文献   

6.
The discovery of the receptor activator of nuclear factor-kappaB ligand (RANKL)/RANK/osteoprotegerin (OPG) system and its role in the regulation of bone resorption exemplifies how both serendipity and a logic-based approach can identify factors that regulate cell function. Before this discovery in the mid to late 1990s, it had long been recognized that osteoclast formation was regulated by factors expressed by osteoblast/stromal cells, but it had not been anticipated that members of the tumor necrosis factor superfamily of ligands and receptors would be involved or that the factors involved would have extensive functions beyond bone remodeling. RANKL/RANK signaling regulates the formation of multinucleated osteoclasts from their precursors as well as their activation and survival in normal bone remodeling and in a variety of pathologic conditions. OPG protects the skeleton from excessive bone resorption by binding to RANKL and preventing it from binding to its receptor, RANK. Thus, RANKL/OPG ratio is an important determinant of bone mass and skeletal integrity. Genetic studies in mice indicate that RANKL/RANK signaling is also required for lymph node formation and mammary gland lactational hyperplasia, and that OPG also protects arteries from medial calcification. Thus, these tumor necrosis factor superfamily members have important functions outside bone. Although our understanding of the mechanisms whereby they regulate osteoclast formation has advanced rapidly during the past 10 years, many questions remain about their roles in health and disease. Here we review our current understanding of the role of the RANKL/RANK/OPG system in bone and other tissues.  相似文献   

7.
Osteoprotegerin and inflammation   总被引:7,自引:0,他引:7  
RANK, RANKL, and OPG have well established regulatory effects on bone metabolism. RANK is expressed at very high levels on osteoclastic precursors and on mature osteoclasts, and is required for differentiation and activation of the osteoclast. The ligand, RANKL binds to its receptor RANK to induce bone resorption. RANKL is a transmembrane protein expressed in various cells type and particularly on osteoblast and activated T cells. RANKL can be cleaved and the soluble form is active. Osteoprotegerin decoy receptor (OPG), a member of the TNF receptor family expressed by osteoblasts, strongly inhibits bone resorption by binding with high affinity to its ligand RANKL, thereby preventing RANKL from engaging its receptor RANK. This system is regulated by the calciotropic hormones. Conversely, the effects of RANKL, RANK, and OPG on inflammatory processes, most notably on the bone resorption associated with inflammation, remain to be defined. The RANK system seems to play a major role in modulating the immune system. Activated T cells express RANKL messenger RNA, and knock-out mice for RANKL acquire severe immunological abnormalities and osteopetrosis. RANKL secretion by activated T cells can induce osteoclastogenesis. These mechanisms are enhanced by cytokines such as TNF-alpha, IL-1, and IL-17, which promote both inflammation and bone resorption. Conversely, this system is blocked by OPG, IL-4, and IL-10, which inhibit both inflammation and osteoclastogenesis. These data may explain part of the abnormal phenomena in diseases such as rheumatoid arthritis characterized by both inflammation and destruction. Activated T cells within the rheumatoid synovium express RANKL. Synovial cells are capable of differentiating to osteoclast-like cells under some conditions, including culturing with M-CSF and RANKL. This suggests that the bone erosion seen in rheumatoid arthritis may result from RANKL/RANK system activation by activated T cells. This opens up the possibility that OPG may have therapeutic effects mediated by blockade of the RANKL/RANK system.  相似文献   

8.
Osteoclasts, the multinucleated giant cells that resorb bone, develop from monocyte-macrophage lineage cells. Osteoblasts or bone marrow stromal cells have been suggested to be involved in osteoclastic bone resorption. The recent discovery of new members of the tumor necrosis factor (TNF) receptor-ligand family has elucidated the precise mechanism by which osteoblasts/stromal cells regulate osteoclast differentiation and function. Osteoblasts/stromal cells express a new member of the TNF-ligand family "osteoclast differentiation factor(ODF)/osteoprotegerin ligand (OPGL)/TNF-related activation-induced cytokine (TRANCE)/receptor activator of NF-kB ligand (RANKL)" as a membrane associated factor. Osteoclast precursors which possess RANK, a TNF receptor family member, recognize ODF/OPGL/TRANCE/RANKL through cell-to-cell interaction with osteoblasts/stromal cells, and differentiate into osteoclasts in the presence of macrophage colony-stimulating factor. Mature osteoclasts also express RANK, and their bone-resorbingactivity is also induced by ODF/OPGL/TRANCE/RANKL which osteoblasts/stromal cells possess. Osteoprotegerin (OPG)/osteoclastogenesis inhibitory factor (OCIF)/TNF receptor-like molecule 1 (TR1) is a soluble decoy receptor for ODF/OPGL/TRANCE/RANKL. Activation of NF-kB and c-Jun N-terminal kinase through the RANK-mediated signaling system appears to be involved in differentiation and activation of osteoclasts.  相似文献   

9.
Wang BL  Liang H  Zheng F  Li XX  Liu YB  Dai CL 《生理学报》2007,59(2):169-174
新近发现的核因子κB受体活化因子配基(receptor activator of nuclear factor-κB ligand,RANKL),核因子κB受体活化因子(receptor activator ofnuclear factor-κB,RANK)/护骨素(osteoprotegerin,OPG)细胞因子系统提高了对破骨细胞生物学和骨稳态分子水平的认识。RANKL与RANK之间的相互作用决定了破骨细胞的分化。本研究通过体外实验评价可溶性RANK (soluble RANK,sRANK)是否可作为RANKL的拈抗剂下调破骨细胞生成和骨吸收陷窝的形成。构建sRANK的原核表达载体,转化入大肠杆菌表达菌株Origami B(DE3),成功表达了重组蛋白,亲和层析进行纯化。重组sRANK以剂量依赖方式抑制由甲状旁腺激素(parathyroid hormone,PTH)诱导的破骨细胞生成和骨吸收陷窝形成。RT-PCR实验证实,sRANK可显著抑制PTH刺激的小鼠骨髓细胞碳酸苷酶Ⅱ和抗酒石酸酸性磷酸酶mRNA的表达。结果表明,sRANK具有抗骨吸收功能,可能成为一种治疗以骨吸收加强为特征的骨疾病的新方法。  相似文献   

10.
IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology   总被引:15,自引:0,他引:15  
All osteogenic cells (osteoclasts, osteoblasts) contribute individually to bone remodeling. Their cellular interactions control their cellular activities and the bone remodeling intensity. These interactions can be established either through a cell-cell contact, involving molecules of the integrin family, or by the release of many polypeptidic factors and/or their soluble receptor chains. These factors can act directly on osteogenic cells and their precursors to control differentiation, formation and functions (matrix formation, mineralization, resorption...). Here, we present the involvement of three groups of cytokines which seem to be of particular importance in bone physiology: interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha) (TNF-alpha)/IL-1, and the more recently known triad osteoprotegerin (OPG)/receptor activator of NF-kappaB (RANK)/RANK ligand (RANKL). The interactions between these three groups are presented within the framework of bone resorption pathophysiology such as tumor associated osteolysis. The central role of the OPG/RANK/RANKL triad is pointed out.  相似文献   

11.
Membrane lipid rafts play a key role in immune cell activation by recruiting and excluding specific signaling components of immune cell surface receptors upon the receptor engagement. Despite this, the role of these microdomains in the regulation of osteoclasts as controlled by receptor activator of nuclear factor kappaB (RANK) has yet to be established. In this study, we demonstrate that the raft microdomain expression plays an essential role in osteoclast function and differentiation. Expression of raft component flotillin greatly increased during osteoclast differentiation, whereas engagement of RANK induced the translocation of tumor necrosis factor receptor-associated factor 6 to rafts where Src was constitutively resident. Disruption of rafts blocked TRAF6 translocation and Akt activation by RANK ligand in osteoclasts and further reduced the survival of osteoclasts. Actin ring formation and bone resorption by osteoclasts were also found to require the integrity of rafts. Our observations demonstrate for the first time that RANK-mediated signaling and osteoclast function are critically dependent on the expression and integrity of raft membrane microdomains.  相似文献   

12.
BackgroundTo this day, empirical data suggests that zinc has important roles in matrix synthesis, bone turnover, and mineralization and its beneficial effects on bone could be mediated through different mechanisms. The influence of zinc on bone turnover could be facilitated via regulating RANKL/RANK/OPG pathway in bone tissue. Therefore, the aim of the study was to conduct a review to investigate the possible effect of the zinc mediated bone remodeling via RANKL/RANK/OPG pathway.MethodsA comprehensive systematic search was performed in MEDLINE/PubMed, Cochrane Library, SCOPUS, and Google Scholar to explore the studies investigating the effect of zinc as a bone remodeling factor via RANKL/RANK/OPG pathway regulation. Subsequently, the details of the pathway and the impact of zinc supplements on RANKL/RANK/OPG pathway regulation were discussed.ResultsThe pathway could play an important role in bone remodeling and any imbalance between RANKL/RANK/OPG components could lead to extreme bone resorption. Although the outcomes of some studies are equivocal, it is evident that zinc possesses protective properties against bone loss by regulating the RANKL/RANK/OPG pathway. There are several experiments where zinc supplementation resulted in upregulation of OPG expression or decreases RANKL level. However, the results of some studies oppose this.ConclusionIt is likely that sufficient zinc intake will elicit positive effects on bone health by RANKL/RANK/OPG regulation. Although the outcomes of a few studies are equivocal, it seems that zinc can exert the protective properties against bone loss by suppressing osteoclastogenesis via downregulation of RANKL/RANK. Additionally, there are several experiments where zinc supplementation resulted in upregulation of OPG expression. However, the results of limited studies oppose this. Therefore, aside from the positive role zinc possesses in preserving bone mass, further effects of zinc in RANKL/RANK/OPG system requires further animal/human studies.  相似文献   

13.
The TNF family molecule RANKL and its receptor RANK are key regulators of bone remodeling, lymph node formation, and mammary gland development during pregnancy. RANKL and RANK are also expressed in the central nervous systems (CNS). However, the functional relevance of RANKL/RANK in the brain was entirely unknown. Recently, our group reported that the RANKL/RANK signaling pathway has an essential role in the central regulation of body temperature via the prostaglandin axis. This review discusses novel aspects of the RANKL/RANK system as key regulators of fever and female basal body temperature in the CNS.  相似文献   

14.
Osteoporosis, or bone loss, is a progressive, systemic skeletal disease that affects millions of people worldwide. Osteoporosis is generally age related, and it is underdiagnosed because it remains asymptomatic for several years until the development of fractures that confine daily life activities, particularly in elderly people. Most patients with osteoporotic fractures become bedridden and are in a life-threatening state. The consequences of fracture can be devastating, leading to substantial morbidity and mortality of the patients. The normal physiologic process of bone remodeling involves a balance between bone resorption and bone formation during early adulthood. In osteoporosis, this process becomes imbalanced, resulting in gradual losses of bone mass and density due to enhanced bone resorption and/or inadequate bone formation. Several growth factors underlying age-related osteoporosis and their signaling pathways have been identified, such as osteoprotegerin (OPG)/receptor activator of nuclear factor B (RANK)/RANK ligand (RANKL), bone morphogenetic protein (BMP), wingless-type MMTV integration site family (Wnt) proteins and signaling through parathyroid hormone receptors. In addition, the pathogenesis of osteoporosis has been connected to genetics. The current treatment of osteoporosis predominantly consists of antiresorptive and anabolic agents; however, the serious adverse effects of using these drugs are of concern. Cell-based replacement therapy via the use of mesenchymal stem cells (MSCs) may become one of the strategies for osteoporosis treatment in the future.  相似文献   

15.
Tumor development in bone is often associated with fractures, bone loss and bone pain, and improvement is still needed in therapeutic approaches. Bone tumors are related to the existence of a vicious cycle between bone resorption and tumor proliferation in which the molecular triad osteoprotegerin (OPG)/receptor activator of NF-kappaB (RANK)/RANK ligand (RANKL) plays a pivotal role. RANKL, a member of the TNF superfamily, is one of the main inducers of bone resorption. Its soluble receptor OPG represents a promising therapeutic candidate as it prevents bone lesions and inhibits associated tumor growth. However, its therapeutic use in bone tumors remains controversial due to its ability to bind and inhibit another member of the TNF superfamily, TNF related apoptosis inducing ligand (TRAIL), which is a potent inducer of tumor cell apoptosis. Through its heparin binding domain, OPG is also able to bind proteoglycans present in the bone matrix. This paper is an overview of the involvement of the micro-environment, as represented by the balance of RANKL/TRAIL and the presence of proteoglycans in the regulation of OPG biological activity in bone tumors.  相似文献   

16.
HMGB1 expression and release by bone cells   总被引:5,自引:0,他引:5  
Immune and bone cells are functionally coupled by pro-inflammatory cytokine intercellular signaling networks common to both tissues and their crosstalk may contribute to the etiologies of some immune-associated bone pathologies. For example, the receptor activator of NF-kappaB ligand (RANKL)/osteoprotegerin (OPG)/receptor activator of NF-kappaB (RANK) signaling axis plays a critical role in dendritic cell (DC) function as well as bone remodeling. The expression of RANKL by immune cells may contribute to bone loss in periodontitis, arthritis, and multiple myeloma. A recent discovery reveals that DCs release the chromatin protein high mobility group box 1 (HMGB1) as a potent immunomodulatory cytokine mediating the interaction between DCs and T-cells, via HMGB1 binding to the membrane receptor for advanced glycation end products (RAGE). To determine whether osteoblasts or osteoclasts express and/or release HMGB1 into the bone microenvironment, we analyzed tissue, cells, and culture media for the presence of this molecule. Our immunohistochemical and immunocytochemical analyses demonstrate HMGB1 expression in primary osteoblasts and osteoclasts and that both cells express RAGE. HMGB1 is recoverable in the media of primary osteoblast cultures and cultures of isolated osteoclast precursors and osteoclasts. Parathyroid hormone (PTH), a regulator of bone remodeling, attenuates HMGB1 release in cultures of primary osteoblasts and MC3T3-E1 osteoblast-like cells but augments this release in the rat osteosarcoma cell line UMR 106-01, both responses primarily via activation of adenylyl cyclase. PTH-induced HMGB1 discharge by UMR cells exhibits similar release kinetics as reported for activated macrophages. These data confirm the presence of the HMGB1/RAGE signaling axis in bone.  相似文献   

17.
18.
RANK and its ligand RANKL play important roles in the development and regulation of the immune system. We show that mice transgenic for Rank in hair follicles display massive postnatal growth of skin-draining lymph nodes. The proportions of hematopoietic and nonhematopoietic stromal cells and their organization are maintained, with the exception of an increase in B cell follicles. The hematopoietic cells are not activated and respond to immunization by foreign Ag and adjuvant. We demonstrate that soluble RANKL is overproduced from the transgenic hair follicles and that its neutralization normalizes lymph node size, inclusive area, and numbers of B cell follicles. Reticular fibroblastic and vascular stromal cells, important for secondary lymphoid organ formation and organization, express RANK and undergo hyperproliferation, which is abrogated by RANKL neutralization. In addition, they express higher levels of CXCL13 and CCL19 chemokines, as well as MAdCAM-1 and VCAM-1 cell-adhesion molecules. These findings highlight the importance of tissue-derived cues for secondary lymphoid organ homeostasis and identify RANKL as a key molecule for controlling the plasticity of the immune system.  相似文献   

19.
The OPG/RANKL/RANK cytokine system is essential for osteoclast biology. Various studies suggest that human metabolic bone diseases are related to alterations of this system. Here we summarize OPG/RANKL/RANK abnormalities in different forms of osteoporoses and hyperparathyroidism. Skeletal estrogen agonists (including 17beta-estradiol, raloxifene, and genistein) induce osteoblastic OPG production through estrogen receptor-alpha activation in vitro, while immune cells appear to over-express RANKL in estrogen deficiency in vivo. Of note, OPG administration can prevent bone loss associated with estrogen deficiency as observed in both animal models and a small clinical study. Glucocorticoids and immunosuppressants concurrently up-regulate RANKL and suppress OPG in osteoblastic cells in vitro, and glucocorticoids are among the most powerful drugs to suppress OPG serum levels in vivo. As for mechanisms of immobilization-induced bone loss, it appears that mechanical strain inhibits RANKL production through the ERK 1/2 MAP kinase pathway and up-regulates OPG production in vitro. Hence, lack of mechanical strainduring immobilization may favor an enhanced RANKL-to-OPG ratio leading to increased bone loss. As for hyperparathyroidism, chronic PTH exposure concurrently enhances RANKL production and suppresses OPG secretion through activation of osteoblastic protein kinase A in vitro which would favour increased osteoclastic activity. In sum, the capacity for OPG to antagonize the increases in bone loss seen in many rodent models of metabolic bone disease implicates RANKL/OPG imbalances as the likely etiology and supports the potential role for a RANKL antagonist as a therapeutic intervention in these settings.  相似文献   

20.
The past decade has seen an explosion in the field of bone biology. The area of bone biology over this period of time has been marked by a number of key discoveries that have opened up entirely new areas for investigation. The recent identification of the receptor activator of nuclear factor κB ligand (RANKL), its cognate receptor RANK, and its decoy receptor osteoprotegerin (OPG) has led to a new molecular perspective on osteoclast biology and bone homeostasis. Specifically, the interaction between RANKL and RANK has been shown to be required for osteoclast differentiation. The third protagonist, OPG, acts as a soluble receptor antagonist for RANKL that prevents it from binding to and activating RANK. Any dysregulation of their respective expression leads to pathological conditions such as bone tumor-associated osteolysis, immune disease, or cardiovascular pathology. In this context, the OPG/RANK/RANKL triad opens novel therapeutic areas in diseases characterized by excessive bone resorption. The present article is an update and extension of an earlier review published by Kwan Tat et al. [Kwan Tat S, Padrines M, Théoleyre S, Heymann D, Fortun Y. IL-6, RANKL, TNF-/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev 2004;15:49–60].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号