首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The inner nuclear membrane (INM) contains specialized membrane proteins that selectively interact with nuclear components including the lamina, chromatin, and DNA. Alterations in the organization of and interactions with INM and lamina components are likely to play important roles in herpesvirus replication and, in particular, exit from the nucleus. Emerin, a member of the LEM domain class of INM proteins, binds a number of nuclear components including lamins, the DNA-bridging protein BAF, and F-actin and is thought to be involved in maintaining nuclear integrity. Here we report that emerin is quantitatively modified during herpes simplex virus (HSV) infection. Modification begins early in infection, involves multiple steps, and is reversed by phosphatase treatment. Emerin phosphorylation during infection involves one or more cellular kinases but can also be influenced by the US3 viral kinase, a protein whose function is known to be involved in HSV nuclear egress. The results from biochemical extraction analyses and from immunofluorescence of the detergent-resistant population demonstrate that emerin association with the INM significantly reduced during infection. We propose that the induction of emerin phosphorylation in infected cells may be involved in nuclear egress and uncoupling interactions with targets such as the lamina, chromatin, or cytoskeletal components.  相似文献   

3.
Caspases are key mediators of apoptosis. Using a novel expression cloning strategy we recently developed to identify cDNAs encoding caspase substrates, we isolated the intermediate filament protein vimentin as a caspase substrate. Vimentin is preferentially cleaved by multiple caspases at distinct sites in vitro, including Asp85 by caspases-3 and -7 and Asp259 by caspase-6, to yield multiple proteolytic fragments. Vimentin is rapidly proteolyzed by multiple caspases into similar sized fragments during apoptosis induced by many stimuli. Caspase cleavage of vimentin disrupts its cytoplasmic network of intermediate filaments and coincides temporally with nuclear fragmentation. Moreover, caspase proteolysis of vimentin at Asp85 generates a pro-apoptotic amino-terminal fragment whose ability to induce apoptosis is dependent on caspases. Taken together, our findings suggest that caspase proteolysis of vimentin promotes apoptosis by dismantling intermediate filaments and by amplifying the cell death signal via a pro-apoptotic cleavage product.  相似文献   

4.
The caspase family of cysteine proteases plays a conserved role in the coordinate demolition of cellular structures during programmed cell death from nematodes to man. Because cells undergoing programmed cell death in nematodes, flies, and mammals all share common features, this suggests that caspases target a common set of cellular structures in each of these organisms. However, although many substrates for mammalian caspases have been identified, few substrates for these proteases have been identified in invertebrates. To search for similarities between the repertoires of proteins targeted for proteolysis by caspases in flies and mammals, we have performed proteomics-based screens in Drosophila and human cell lines undergoing apoptosis. Here we show that several subunits of the proteasome undergo caspase-dependent proteolysis in both organisms and that this results in diminished activity of this multicatalytic protease complex. These data suggest that caspase-dependent proteolysis decreases protein turnover by the proteasome and that this is a conserved event in programmed cell death from Drosophila to mammals.  相似文献   

5.
6.
Emerin is the gene product of STA whose mutations cause Emery-Dreifuss muscular dystrophy. It is an inner nuclear membrane protein and phosphorylated in a cell cycle-dependent manner. However, the means of phosphorylation of emerin are poorly understood. We investigated the regulation mechanism for the binding of emerin to chromatin, focusing on its cell cycle-dependent phosphorylation in a Xenopus egg cell-free system. It was shown that emerin dissociates from chromatin depending on mitotic phosphorylation of the former, and this plays a critical role in the dissociation of emerin from barrier-to-autointegration factor (BAF). Then, we analyzed the mitotic phosphorylation sites of emerin. Emerin was strongly phosphorylated in an M-phase Xenopus egg cell-free system, and five phosphorylated sites, Ser49, Ser66, Thr67, Ser120, and Ser175, were identified on analysis of chymotryptic and tryptic emerin peptides using a phosphopeptide-concentrating system coupled with a Titansphere column, which specifically binds phosphopeptides, and tandem mass spectrometry sequencing. An in vitro binding assay involving an emerin S175A point mutant protein suggested that phosphorylation at Ser175 regulates the dissociation of emerin from BAF.  相似文献   

7.
Emerin expression at the early stages of myogenic differentiation   总被引:3,自引:0,他引:3  
Emerin is an ubiquitous protein localized at the nuclear membrane of most cell types including muscle cells. The protein is absent in most patients affected by the X-linked form of Emery-Dreifuss muscular dystrophy, a disease characterized by slowly progressive muscle wasting and weakness, early contractures of the elbows, Achilles tendons, and post-cervical muscles, and cardiomyopathy. Besides the nuclear localization, emerin cytoplasmic distribution has been suggested in several cell types. We studied the expression and the subcellular distribution of emerin in mouse cultured C2C12 myoblasts and in primary cultures of human myoblasts induced to differentiate or spontaneously differentiating in the culture medium. In differentiating myoblasts transiently transfected with a cDNA encoding the complete emerin sequence, the protein localized at the nuclear rim of all transfected cells and also in the cytoplasm of some myoblasts and myotubes. Cytoplasmic emerin was also observed in detergent-treated myotubes, as determined by electron microscopy observation. Both immunofluorescence and biochemical analysis showed, that upon differentiation of C2C12 cells, emerin expression was decreased in the resting myoblasts but the protein was highly represented in the developing myotubes at the early stage of cell fusion. Labeling with specific markers of myogenesis such as troponin-T and myogenin permitted the correlation of increased emerin expression with the onset of muscle differentiation. These data suggest a role for emerin during proliferation of activated satellite cells and at the early stages of differentiation.  相似文献   

8.
9.
Cells infected with wild-type herpes simplex virus type 1 (HSV-1) show disruption of the organization of the nuclear lamina that underlies the nuclear envelope. This disruption is reflected in changes in the localization and phosphorylation of lamin proteins. Here, we show that HSV-1 infection causes relocalization of the LEM domain protein emerin. In cells infected with wild-type virus, emerin becomes more mobile in the nuclear membrane, and in cells infected with viruses that fail to express UL34 protein (pUL34) and US3 protein (pUS3), emerin no longer colocalizes with lamins, suggesting that infection causes a loss of connection between emerin and the lamina. Infection causes hyperphosphorylation of emerin in a manner dependent upon both pUL34 and pUS3. Some emerin hyperphosphorylation can be inhibited by the protein kinase Cdelta (PKCdelta) inhibitor rottlerin. Emerin and pUL34 interact physically, as shown by pull-down and coimmunoprecipitation assays. Emerin expression is not, however, necessary for infection, since virus growth is not impaired in cells derived from emerin-null transgenic mice. The results suggest a model in which pUS3 and PKCdelta that has been recruited by pUL34 hyperphosphorylate emerin, leading to disruption of its connections with lamin proteins and contributing to the disruption of the nuclear lamina. Changes in emerin localization, nuclear shape, and lamin organization characteristic of cells infected with wild-type HSV-1 also occur in cells infected with recombinant virus that does not make viral capsids, suggesting that these changes occur independently of capsid envelopment.  相似文献   

10.
Caspase 8 inhibits programmed necrosis by processing CYLD   总被引:3,自引:0,他引:3  
Caspase 8 initiates apoptosis downstream of TNF death receptors by undergoing autocleavage and processing the executioner caspase 3 (ref. 1). However, the dominant function of caspase 8 is to transmit a pro-survival signal that suppresses programmed necrosis (or necroptosis) mediated by RIPK1 and RIPK3 (refs 2-6) during embryogenesis and haematopoiesis(7-9). Suppression of necrotic cell death by caspase 8 requires its catalytic activity but not the autocleavage essential for apoptosis(10); however, the key substrate processed by caspase 8 to block necrosis has been elusive. A key substrate must meet three criteria: it must be essential for programmed necrosis; it must be cleaved by caspase 8 in situations where caspase 8 is blocking necrosis; and mutation of the caspase 8 processing site on the substrate should convert a pro-survival response to necrotic death without the need for caspase 8 inhibition. We now identify CYLD as a substrate for caspase 8 that satisfies these criteria. Following TNF stimulation, caspase 8 cleaves CYLD to generate a survival signal. In contrast, loss of caspase 8 prevented CYLD degradation, resulting in necrotic death. A CYLD substitution mutation at Asp 215 that cannot be cleaved by caspase 8 switches cell survival to necrotic cell death in response to TNF.  相似文献   

11.
MM Dix  GM Simon  C Wang  E Okerberg  MP Patricelli  BF Cravatt 《Cell》2012,150(2):426-440
Caspase proteases are principal mediators of apoptosis, where they cleave hundreds of proteins. Phosphorylation also plays an important role in apoptosis, although the extent to which proteolytic and phosphorylation pathways crosstalk during programmed cell death remains poorly understood. Using a quantitative proteomic platform that integrates phosphorylation sites into the topographical maps of proteins, we identify a cohort of over 500 apoptosis-specific phosphorylation events and show that they are enriched on cleaved proteins and clustered around sites of caspase proteolysis. We find that caspase cleavage can expose new sites for phosphorylation, and, conversely, that phosphorylation at the +3 position of cleavage sites can directly promote substrate proteolysis by caspase-8. This study provides a global portrait of the apoptotic phosphoproteome, revealing heretofore unrecognized forms of functional crosstalk between phosphorylation and caspase proteolytic pathways that lead to enhanced rates of protein cleavage and the unveiling of new sites for phosphorylation.  相似文献   

12.
The caspase family of cysteine proteases is essential for implementation of physiological cell death. Since a wide variety of cellular proteins is cleaved by caspases during apoptosis, it has been predicted that digestion of proteins crucial to maintaining the life of a cell is central to apoptosis. To assess the role of the proteolytic destruction during apoptosis, we introduced the non-specific protease proteinase K into intact cells. This introduction led to extensive digestion of cellular proteins, including physiological caspase-substrates. Caspase-3-like activity was induced rapidly, followed by morphological signs of apoptosis such as membrane blebbing and nuclear condensation. The caspase inhibitor Z-VAD-fmk inhibited the appearance of these morphological changes without reducing the extent of intracellular proteolysis by proteinase K. Loss of integrity of the cell membrane, however, was not blocked by Z-VAD-fmk. This system thus generated conditions of extensive destruction of caspase substrates by proteinase K in the absence of apoptotic morphology. Taken together, these experiments suggest that caspases implement cell death not by protein destruction but by proteolytic activation of specific downstream effector molecules.  相似文献   

13.
Genetic studies have established that the cysteine protease CED-3 plays a central role in coordinating programmed cell death in Caenorhabditis elegans. However, it remains unclear how CED-3 activation results in cell death because few substrates for this protease have been described. We have used a global proteomics approach to seek substrates for CED-3 and have identified 22 worm proteins that undergo CED-3-dependent proteolysis. Proteins that were found to be substrates for CED-3 included the cytoskeleton proteins actin, myosin light chain, and tubulin, as well as proteins involved in ATP synthesis, cellular metabolism, and chaperone function. We estimate that approximately 3% of the C. elegans proteome is susceptible to CED-3-dependent proteolysis. Notably, the endoplasmic reticulum chaperone calreticulin, which has been implicated in the recognition of apoptotic cells by phagocytes, was cleaved by CED-3 and was also cleaved by human caspases during apoptosis. Inhibitors of caspase activity blocked the appearance of calreticulin on the surface of apoptotic cells, suggesting a mechanism for the surface display of calreticulin during apoptosis. Further analysis of these substrates is likely to yield important insights into the mechanism of killing by CED-3 and its human caspase counterparts.  相似文献   

14.
Programmed cell death is an important process during development that serves to remove superfluous cells and tissues, such as larval organs during metamorphosis, supernumerary cells during nervous system development, muscle patterning and cardiac morphogenesis. Different kinds of cell death have been observed and were originally classified based on distinct morphological features: (1) type I programmed cell death (PCD) or apoptosis is recognized by cell rounding, DNA fragmentation, externalization of phosphatidyl serine, caspase activation and the absence of inflammatory reaction, (2) type II PCD or autophagy is characterized by the presence of large vacuoles and the fact that cells can recover until very late in the process and (3) necrosis is associated with an uncontrolled release of the intracellular content after cell swelling and rupture of the membrane, which commonly induces an inflammatory response. In this review, we will focus exclusively on developmental cell death by apoptosis and its role in tissue remodeling.  相似文献   

15.
Death-associated protein kinase (DAPk) and DAPk-related protein kinase (DRP)-1 proteins are Ca+2/calmodulin-regulated Ser/Thr death kinases whose precise roles in programmed cell death are still mostly unknown. In this study, we dissected the subcellular events in which these kinases are involved during cell death. Expression of each of these DAPk subfamily members in their activated forms triggered two major cytoplasmic events: membrane blebbing, characteristic of several types of cell death, and extensive autophagy, which is typical of autophagic (type II) programmed cell death. These two different cellular outcomes were totally independent of caspase activity. It was also found that dominant negative mutants of DAPk or DRP-1 reduced membrane blebbing during the p55/tumor necrosis factor receptor 1-induced type I apoptosis but did not prevent nuclear fragmentation. In addition, expression of the dominant negative mutant of DRP-1 or of DAPk antisense mRNA reduced autophagy induced by antiestrogens, amino acid starvation, or administration of interferon-gamma. Thus, both endogenous DAPk and DRP-1 possess rate-limiting functions in these two distinct cytoplasmic events. Finally, immunogold staining showed that DRP-1 is localized inside the autophagic vesicles, suggesting a direct involvement of this kinase in the process of autophagy.  相似文献   

16.
Emerin.   总被引:1,自引:0,他引:1  
Emerin encoded by the STA gene is the first nuclear protein linked with a muscular dystrophy. Emerin is a 34 kDa, predominantly hydrophilic protein with a single hydrophobic region supposed to serve as a transmembrane domain. It was classified as a type II integral membrane protein localized at the inner nuclear membrane/nuclear lamina with an ubiquitous tissue distribution. It is speculated that emerin is required for the stability and normal function of rigorously moving nuclei in skeletal muscle and heart. During mitosis, emerin is cell-cycle-dependent phosphorylated and shows stage-dependent changes in distribution and localization suggesting that it plays a role in re-assembly of nuclear membranes. Mutations of the emerin gene have been associated with X-linked Emery-Dreifuss muscular dystrophy clinically defined by early joint contractures, progressive muscle weakness, and cardiomyopathy. Hopefully, identification of the protein defect may promote new therapeutic strategies concerning muscle fiber development and stability.  相似文献   

17.
18.
The serine/threonine kinase Mst1, a mammalian homolog of the budding yeast Ste20 kinase, is cleaved by caspase-mediated proteolysis in response to apoptotic stimuli such as ligation of CD95/Fas or treatment with staurosporine. Furthermore, overexpression of Mst1 induces morphological changes characteristic of apoptosis in human B lymphoma cells. Mst1 may therefore represent an important target for caspases during cell death which serves to amplify the apoptotic response. Here we report that Mst1 has two caspase cleavage sites, and we present evidence indicating that cleavage may occur in an ordered fashion and be mediated by distinct caspases. We also show that caspase-mediated cleavage alone is insufficient to activate Mst1, suggesting that full activation of Mst1 during apoptosis requires both phosphorylation and proteolysis. Another role of phosphorylation may be to influence the susceptibility of Mst1 to proteolysis. Autophosphorylation of Mst1 on a serine residue close to one of the caspase sites inhibited caspase-mediated cleavage in vitro. Finally, Mst1 appears to function upstream of the protein kinase MEKK1 in the SAPK pathway. In conclusion, Mst1 activity is regulated by both phosphorylation and proteolysis, suggesting that protein kinase and caspase pathways work in concert to regulate cell death.  相似文献   

19.
20.
Caspases are cysteine proteases that can drive apoptosis in metazoans and have critical functions in the elimination of cells during development, the maintenance of tissue homeostasis, and responses to cellular damage. Although a growing body of research suggests that programmed cell death can occur in the absence of caspases, mammalian studies of caspase-independent apoptosis are confounded by the existence of at least seven caspase homologs that can function redundantly to promote cell death. Caspase-independent programmed cell death is also thought to occur in the invertebrate nematode Caenorhabditis elegans. The C. elegans genome contains four caspase genes (ced-3, csp-1, csp-2, and csp-3), of which only ced-3 has been demonstrated to promote apoptosis. Here, we show that CSP-1 is a pro-apoptotic caspase that promotes programmed cell death in a subset of cells fated to die during C. elegans embryogenesis. csp-1 is expressed robustly in late pachytene nuclei of the germline and is required maternally for its role in embryonic programmed cell deaths. Unlike CED-3, CSP-1 is not regulated by the APAF-1 homolog CED-4 or the BCL-2 homolog CED-9, revealing that csp-1 functions independently of the canonical genetic pathway for apoptosis. Previously we demonstrated that embryos lacking all four caspases can eliminate cells through an extrusion mechanism and that these cells are apoptotic. Extruded cells differ from cells that normally undergo programmed cell death not only by being extruded but also by not being engulfed by neighboring cells. In this study, we identify in csp-3; csp-1; csp-2 ced-3 quadruple mutants apoptotic cell corpses that fully resemble wild-type cell corpses: these caspase-deficient cell corpses are morphologically apoptotic, are not extruded, and are internalized by engulfing cells. We conclude that both caspase-dependent and caspase-independent pathways promote apoptotic programmed cell death and the phagocytosis of cell corpses in parallel to the canonical apoptosis pathway involving CED-3 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号