首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cladistic approach to the phylogeny of the “Bryophytes”   总被引:1,自引:0,他引:1  
The importance of a cladistic approach in reconstructing the phylogeny of bryophytes is discussed and illustrated by an analysis of the major groups of bryophytes with respect to the tracheophytes and the green algae. The cladistic analysis, using 51 characters taken from the literature, gives the following tentative results: (1) the embryophytes as a whole are monophyletic; (2) the bryophytes (sensu lato) are paraphyletic; (3) the mosses share a more recent common ancestor with the tracheophytes than do the liverworts or hornworts; (4) the hornworts appear to share a more recent common ancestor with the moss-tracheophyte lineage than with the liverworts; however, the existence of several homoplasies makes this placement more problematical; (5) the origin of alternation of generations in the embryophytes, based on out-group comparison with their oogamous, haplontic, algal sister groups, was by progressive elaboration of the primitively epiphytic sporophyte generation; and (6) the presence of vascular tissue (xylem and phloem) can best be interpreted as a synapomorphy of the moss-tracheophyte clade, and tracheids (xylem with ornamented walls) as a synapomorphy of the tracheophytes; therefore, the prevailing designation of “vascular plants” for the tracheophytes alone is inaccurate.  相似文献   

2.

Background

Land plants (embryophytes) are monophyletic and encompass four major clades: liverworts, mosses, hornworts and polysporangiophytes. The liverworts are resolved as the earliest divergent lineage and the mosses as sister to a crown clade formed by the hornworts and polysporangiophytes (lycophytes, monilophytes and seed plants). Alternative topologies resolving the hornworts as sister to mosses plus polysporangiophytes are less well supported. Sporophyte development in liverworts depends only on embryonic formative cell divisions. A transient basal meristem contributes part of the sporophyte in mosses. The sporophyte body in hornworts and polysporangiophytes develops predominantly by post-embryonic meristematic activity.

Scope

This paper explores the origin of the sporophyte shoot in terms of changes in embryo organization. Pressure towards amplification of the sporangium-associated photosynthetic apparatus was a major driver of sporophyte evolution. Starting from a putative ancestral condition in which a transient basal meristem produced a sporangium-supporting seta, we postulate that in the hornwort–polysporangiophyte lineage the basal meristem acquired indeterminate meristematic activity and ectopically expressed the sporangium morphogenetic programme. The resulting sporophyte body plan remained substantially unaltered in hornworts, whereas in polysporangiophytes the persistent meristem shifted from a mid-embryo to a superficial position and was converted into an ancestral shoot apical meristem with the evolution of sequential vegetative and reproductive growth.

Conclusions

The sporophyte shoot is interpreted as a sterilized sporangial axis interpolated between the embryo and the fertile sporangium. With reference to the putatively ancestral condition found in mosses, the sporophyte body plans in hornworts and polysporangiophytes are viewed as the product of opposite heterochronic events, i.e. an anticipation and a delay, respectively, in the development of the sporangium. In either case the result was a pedomorphic sporophyte permanently retaining juvenile characters.  相似文献   

3.
4.
As the oldest extant lineages of land plants, bryophytes provide a living laboratory in which to evaluate morphological adaptations associated with early land existence. In this paper we examine reproductive and structural innovations in the gametophyte and sporophyte generations of hornworts, liverworts, mosses and basal pteridophytes. Reproductive features relating to spermatogenesis and the architecture of motile male gametes are overviewed and evaluated from an evolutionary perspective. Phylogenetic analyses of a data set derived from spermatogenesis and one derived from comprehensive morphogenetic data are compared with a molecular analysis of nuclear and mitochondrial small subunit rDNA sequences. Although relatively small because of a reliance on water for sexual reproduction, gametophytes of bryophytes are the most elaborate of those produced by any land plant. Phenotypic variability in gametophytic habit ranges from leafy to thalloid forms with the greatest diversity exhibited by hepatics. Appendages, including leaves, slime papillae and hairs, predominate in liverworts and mosses, while hornwort gametophytes are strictly thalloid with no organized external structures. Internalization of reproductive and vegetative structures within mucilage-filled spaces is an adaptive strategy exhibited by hornworts. The formative stages of gametangial development are similar in the three bryophyte groups, with the exception that in mosses apical growth is intercalated into early organogenesis, a feature echoed in moss sporophyte ontogeny. A monosporangiate, unbranched sporophyte typifies bryophytes, but developmental and structural innovations suggest the three bryophyte groups diverged prior to elaboration of this generation. Sporophyte morphogenesis in hornworts involves non-synchronized sporogenesis and the continued elongation of the single sporangium, features unique among archegoniates. In hepatics, elongation of the sporophyte seta and archegoniophore is rapid and requires instantaneous wall expandability and hydrostatic support. Unicellular, spiralled elaters and capsule dehiscence through the formation of four regular valves are autapomorphies of liverworts. Sporophytic sophistications in the moss clade include conducting tissue, stomata, an assimilative layer and an elaborate peristome for extended spore dispersal. Characters such as stomata and conducting cells that are shared among sporophvtes of mosses, hornworts and pteridophytes are interpreted as parallelisms and not homologies. Our phylogenetic analysis of three different data sets is the most comprehensive to date and points to a single phylogenetic solution for the evolution of basal embryophytes. Hornworts are supported as the earliest divergent embryophyte clade with a moss/liverwort clade sister to tracheophytes. Among pteridophytes, lycophytes are monophyletic and an assemblage containing ferns, Equisetum and psilophytes is sister to seed plants. Congruence between morphological and molecular hypotheses indicates that these data sets are tracking the same phylogenetic signal and reinforces our phylogenetic conclusions. It appears that total evidence approaches are valuable in resolving ancient radiations such as those characterizing the evolution of early embryophytes. More information on land plant phylogeny can be found at: http: //www.science.siu.edu/ landplants/index.html.  相似文献   

5.
Phylogenetic relationships among embryophytes (tracheophytes, mosses, liverworts, and hornworts) were examined using 21 newly generated mitochondrial small-subunit (19S) rDNA sequences. The "core" 19S rDNA contained more phylogenetically informative sites and lower homoplasy than either nuclear 18S or plastid 16S rDNA. Results of phylogenetic analyses using parsimony (MP) and likelihood (ML) were generally congruent. Using MP, two trees were obtained that resolved either liverworts or hornworts as the basal land plant clade. The optimal ML tree showed hornworts as basal. That topology was not statistically different from the two MP trees, thus both appear to be equally viable evolutionary hypotheses. High bootstrap support was obtained for the majority of higher level embryophyte clades named in a recent morphologically based classification, e.g., Tracheophyta, Euphyllophytina, Lycophytina, and Spermatophytata. Strong support was also obtained for the following monophyletic groups: hornworts, liverworts, mosses, lycopsids, leptosporangiate and eusporangiate ferns, gymnosperms and angiosperms. This molecular analysis supported a sister relationship between Equisetum and leptosporangiate ferns and a monophyletic gymnosperms sister to angiosperms. The topologies of deeper clades were affected by taxon inclusion (particularly hornworts) as demonstrated by jackknife analyses. This study represents the first use of mitochondrial 19S rDNA for phylogenetic purposes and it appears well-suited for examining intermediate to deep evolutionary relationships among embryophytes.  相似文献   

6.
Ribosomal RNA sequences and cladistic analysis were used to infer a phylogeny for eight bryophyte taxa. Portions of the cytoplasmic large (26S-like) and small (18S-like) subunit ribosomal RNA genes were sequenced for three marchantioid liverworts (Asterella, Conocephalum, and Riccia), three mosses (Atrichum, Fissidens, and Plagiomnium), and two hornworts (Phaeoceros and Notothylas). Cladistic analysis of these data suggests that the hornworts are the sister group to the mosses, the mosses and hornworts form a clade that is sister to the tracheophytes, and the liverworts form a clade sister to the other land plants. These results differ from previous cladistic analyses based on morphology, ultrastructure, and biochemistry, wherein the mosses alone are sister group to the tracheophytes. We conclude that cladistic analysis of molecular data can provide an independent data set for the study of bryophyte phylogeny, but the differences between the molecular and morphological results are a topic for further investigation.  相似文献   

7.
We investigate phylogenetic relationships among hornworts, liverworts and mosses, and their relationships to other green plant groups, by analysis of nucleotide variation in complete 18s rRNA gene sequences of three green algae, two hornworts, seven liverworts, nine mosses, and six tracheophytes. Parsimony and maximum-likelihood analyses yield a single optimal tree in which the hornworts are resolved as the basal group among land plants, and the liverworts and mosses are sister taxa that together form the sister clade to the tracheophytes. This phylogeny is internally robust as indicated by decay indices and by comparison (using both parsimony and likelihood criteria) to topologies representing five alternative hypotheses of bryophyte relationships. We discuss some possible reasons for differences between the phylogeny inferred from the rRNA data and those inferred from other character sets.  相似文献   

8.
The bryophytes comprise three phyla of embryophytes that are well established to occupy the first nodes among extant lineages in the land-plant tree of life. The three bryophyte groups (hornworts, liverworts, mosses) may not form a monophyletic clade, but they share life history features including dominant free-living gametophytes and matrotrophic monosporangiate sporophytes. Because of their unique vegetative and reproductive innovations and their critical position in embryophyte phylogeny, studies of bryophytes are crucial to understanding the evolution of land plant morphology and genomes. This review focuses on phylogenetic relationships within each of the three divisions of bryophytes and relates morphological diversity to new insights about those relationships. Most previous work has been on the mosses, but progress on understanding the phylogeny of hornworts and liverworts is advancing at a rapid pace. Multilocus multigenome studies have been successful at resolving deep relationships within the mosses and liverworts, whereas single-gene analyses have advanced understanding of hornwort evolution.  相似文献   

9.
The origin of land plants or embryophytes from the Charophyceae is generally accepted today by the botanists. In fact, numerous morphological, cytological, ultrastructural, biochemical and molecular characters are shared in these organisms. A fundamental problem is still constituted by the evolution of the sporophyte, i.e. the appearance of two different phase cycles (gametophyte/sporophyte alternance), although two theories ("antithetic" and "homologous") try to explain this evolutionary event.However, another phylogenetic dilemma is represented, in my opinion, either by the formation of bryophytes or by the transition from these first land plants to the pteridophytes, considering them at whole organism level.The bryophyte gametophyte is the most elaborate of the land plants. It presents several complex characters, principally the growth developmental form, the appearance of multicellular sex organs, antheridia and archegonia. Also the sporophyte shows a complicated structure that is not found in the other land plants or tracheophytes. The sporangium, in particular, exhibits some intricate morphological traits such as the peristome of true mosses for spore dispersion, the elaters of liverworts and the indeterminate growth in the hornworts.The pteridophytes are represented especially by their dominant sporophyte. This latter has the capacity to produce multiple sporangia and, in many cases, two kinds of spores which develop in male and female gametophyte (heterosporous pteridophytes). Another important characteristic of this sporophyte is its ability to become independent of the gametophyte. However, one of the most innovative character is the formation of true vascular elements (xylem and phloem).All these very large evolutionary jumps are discussed on the basis of the phyletic gradualistic neo-Darwinian theory and the punctuated equilibrium theory of Eldredge and Gould. In this context other genetic evolutionary mechanisms are also considered.Nevertheless, the origin of bryophytes and pteridophytes remain, at the moment, a mystery.  相似文献   

10.
Background Molecular phylogeny has resolved the liverworts as the earliest-divergent clade of land plants and mosses as the sister group to hornworts plus tracheophytes, with alternative topologies resolving the hornworts as sister to mosses plus tracheophytes less well supported. The tracheophytes plus fossil plants putatively lacking lignified vascular tissue form the polysporangiophyte clade. Scope This paper reviews phylogenetic, developmental, anatomical, genetic and paleontological data with the aim of reconstructing the succession of events that shaped major land plant lineages. Conclusions Fundamental land plant characters primarily evolved in the bryophyte grade, and hence the key to a better understanding of the early evolution of land plants is in bryophytes. The last common ancestor of land plants was probably a leafless axial gametophyte bearing simple unisporangiate sporophytes. Water-conducting tissue, if present, was restricted to the gametophyte and presumably consisted of perforate cells similar to those in the early-divergent bryophytes Haplomitrium and Takakia. Stomata were a sporophyte innovation with the possible ancestral functions of producing a transpiration-driven flow of water and solutes from the parental gametophyte and facilitating spore separation before release. Stomata in mosses, hornworts and polysporangiophytes are viewed as homologous, and hence these three lineages are collectively referred to as the 'stomatophytes'. An indeterminate sporophyte body (the sporophyte shoot) developing from an apical meristem was the key innovation in polysporangiophytes. Poikilohydry is the ancestral condition in land plants; homoiohydry evolved in the sporophyte of polysporangiophytes. Fungal symbiotic associations ancestral to modern arbuscular mycorrhizas evolved in the gametophytic generation before the separation of major present-living lineages. Hydroids are imperforate water-conducting cells specific to advanced mosses. Xylem vascular cells in polysporangiophytes arose either from perforate cells or de novo. Food-conducting cells were a very early innovation in land plant evolution. The inferences presented here await testing by molecular genetics.  相似文献   

11.
The problem of relationships among the major basal living groups of land plants is long standing, yet the uncertainty as to the phylogenetic affinity of these lines persists in the literature. Molecular and modern cladistic studies of the phylogenetic relationships of the above groups resulted in a large number of conflicting topologies. However, with the exception of the cladistic analyses of spermatogenesis, suggesting monophyly of extant bryophytes, these studies agree the paraphyletic bryophyte grade is basal within the embryophyte tree. Here we would like to present analyses on the basis of the concatenated datasets of nucleotide and amino-acid sequences of 57 protein-coding genes common to 17 chloroplast genomes of land plants and a charophyte alga Chaetosphaeridium globosum. Character-wise, these are the largest datasets currently available to address the problem of basal relationships within embryophytes. Main lineages of bryophytes, i.e liverworts, hornworts and mosses are represented in our alignments with a single taxon, whereas 14 taxa represent the tracheophytes. With our data, phylogeny with liverwort basal appears to be and artifact related to high and unequal A+T contents among the sequences analysed. Reducing this compositional bias and applying methods developed to counter it, we recovered an alternative, strongly supported topology wherein both bryophytes and tracheophytes are monophyletic. Within bryophytes, hornworts are basal and liverworts are sister to mosses.  相似文献   

12.
Liverworts occupy a pivotal position in land plant (embryophyte) phylogeny as the presumed earliest-branching major clade, sister to all other land plants, including the mosses, hornworts, lycophytes, monilophytes and seed plants. Molecular support for this earliest dichotomy in land plant phylogeny comes from strikingly different occurrences of introns in mitochondrial genes distinguishing liverworts from all other embryophytes. Exceptionally, however, the nad5 gene--the mitochondrial locus hitherto used most widely to elucidate early land plant phylogeny--carries a group I type intron that is shared between liverworts and mosses. We here explored whether a group II intron, the other major type of organellar intron, would similarly be conserved in position across the entire diversity of extant liverworts and could be of use for phylogenetic analyses in this supposedly most ancient embryophyte clade. To this end, we investigated the nad4 gene as a candidate locus possibly featuring different introns in liverworts as opposed to the non-liverwort embryophyte (NLE) lineage. We indeed found group II intron nad4i548 universally conserved in a wide phylogenetic sampling of 55 liverwort taxa, confirming clade specificity and surprising evolutionary stability of plant mitochondrial introns. As expected, intron nad4i548g2 carries phylogenetic information in its variable sequences, which confirms and extends previous cladistic insights on liverwort evolution. We integrate the new nad4 data with those of the previously established mitochondrial nad5 and the chloroplast rbcL and rps4 genes and present a phylogeny based on the fused datasets. Notably, the phylogenetic analyses suggest a reconsideration of previous phylogenetic and taxonomic assignments for the genera Calycularia and Mylia and resolve a sister group relationship of Ptilidiales and Porellales.  相似文献   

13.
A life history involving alternation of two developmentally associated, multicellular generations (sporophyte and gametophyte) is an autapomorphy of embryophytes (bryophytesphytes + vascular plants). Microfossil data indicate that Mid Late Ordovician land plants possessed such a life cycle, and that the origin of alternation of generations preceded this date. Molecular phylogenetic data unambiguously relate charophycean green algae to the ancestry of monophyletic embryophytes, and identify bryophytes as early-divergent land plants. Comparison of reproduction in charophyceans and bryophytes suggests that the following stages occurred during evolutionary origin of embryophytic alternation of generations: (i) origin of oogamy; (ii) retention of eggs and zygotes on the parental thallus; (iii) origin of matrotrophy (regulated transfer of nutritional and morphogenetic solutes from parental cells to the next generation); (iv) origin of a multicellular sporophyte generation; and (v) origin of non-flagellate, walled spores. Oogamy, egg/zygote retention and matrotrophy characterize at least some modern charophvceans, and are postulated to represent pre-adaptative features inherited by embryophytes from ancestral charophyceans. Matrotrophy is hypothesized to have preceded origin of the multicellular sporophytes of' plants, and to represent a critical innovation. Molecular approaches to the study of the origins of matrotrophy include assessment of hexose transporter genes and protein family members and their expression patterns. The occurrence in modern charophyceans and bryophytes of chemically resistant tissues that exhibit distinctive morphology correlated with matrotrophy suggests that Early-Mid Ordovician or older microfossils relevant to the origin of land plant alternation of generations may be found.  相似文献   

14.
Ultrastructure, biochemistry and 5S rRNA sequences link tracheophytes, bryophytes and charalean green algae, but the precise interrelationships between these groups remain unclear. Further major clarification now awaits primary sequence data. These are also needed to determine directionality in possible evolutionary trends within the bryophytes, but are unlikely to overturn current schemes of classification or phylogeny. Comparative ultrastructural studies of spermatogenesis, sporogenesis, the cytoskeleton and plastids reinforce biochemical and morphogenetic evidence for the wide phyletic discontinuities between mosses, hepatics and hornworts, and also rule out direct lines of descent between them. Direct ancestral lineages from charalean algae to bryophytes and to tracheophytes are also unlikely. EM studies of gametophyte/sporophyte junctions, plus immunological investigations of bryophyte cytoskeletons, are likely to accentuate the differences between mosses, hepatirs and hornworts. Other priorities for systematics include elucidation of oil body ultrastructure, analysis of the changes in nuclear proteins during spermatogenesis and a detailed comparison of bryophyte and charalean plastids. The combined evidence from ultrastrueture, biochemistry, morphology and morphogenesis warrants general acceptance of the polyphyletic origin of the bryophytes. Ultrastructural attributes should be more widely used in bryophyte systematics.  相似文献   

15.
Current ideas on the evolution of alternation of generations in land plants are reviewed in the context of important recent advances in plant systematics and the discovery of remarkable new palaeobotanical evidence on early embryophyte life cycles. An overview of relationships in major groups of green plants is presented together with a brief review of the early fossil record as a prelude to discussing hypotheses of life cycle evolution. Recent discoveries of life cycles in the early fossil record are described and assessed. The newly discovered gametophyte and sporophyte associations are based on exceptionally well-preserved material from the Rhynie Chert, Scotland (Middle Devonian: 380–408 Myr) and compression fossils from other Devonian localities. These data document diplobiontic life cycles in plants at the ‘protracheophyte’ and early tracheophyte level of organization. Furthermore, the early fossils have a more or less isomorphic alternation of generations, a striking departure from life cycles in extant embryophytes. This unexpected similarity between gametophyte and sporophyte calls for a cautious approach in identifying ploidy level in early groups. Viewed in a systematic context, the neontological and palaeontological data contribute towards the formulation of a coherent hypothesis of life cycle evolution in major, early embryophyte groups. Evidence from extant groups strongly supports a single direct origin of the diplobiontic life cycles of land plants from haploid, haplobiontic life cycles in ancestral ‘charophycean algae’. The interest of the new palaeobotanical data lies in its relevance to life cycle evolution at the restricted level of vascular plants rather than at the more general level of embryophytes (vascular plants plus ‘bryophytes’). The occurrence of morphologically complex, axial gametophytes in early vascular plants is consistent with the moss sister-group proposed in some cladistic analyses. Similarities of moss gametophytes to fossils in the vascular plant stem-group are discussed, and it is argued that the late appearance of mosses in the macrofossil record may be due to the problem of recognizing stem-group taxa. The new palaeobotanical evidence conflicts with previous hypotheses based on extant groups that interpret morphological simplicity as the plesiomorphic condition in the gametophytes of vascular plants. These new data indicate that a significant elaboration of both gametophyte and sporophyte occurred early in the tracheophyte lineage, and that the gametophytes of extant ‘pteridophytes’ are highly reduced compared to those of some of the earliest ‘protracheophytes’. Vestiges of this early morphological complexity may remain in the gametophytes of some extant groups such as Lycopodiaceae.  相似文献   

16.
17.
Xylans are known to be major cellulose-linking polysaccharides in secondary cell walls in higher plants. We used two monoclonal antibodies (LM10 and LM11) for a comparative immunocytochemical analysis of tissue and cell distribution of xylans in a number of taxa representative of all major tracheophyte and bryophyte lineages. The results show that xylans containing the epitopes recognized by LM10 and LM11 are ubiquitous components of secondary cell walls in vascular and mechanical tissues in all present-living tracheophytes. In contrast, among the three bryophyte lineages, LM11 binding was detected in specific cell-wall layers in pseudoelaters and spores in the sporophyte of hornworts, while no binding was observed with either antibody in the gametophyte or sporophyte of liverworts and mosses. The ubiquitous occurrence of xylans containing LM10 and LM11 epitopes in tracheophytes suggests that the appearance of these polysaccharides has been a pivotal event for the evolution of highly efficient vascular and mechanical tissues. LM11 binding in the sporophyte of hornworts, indicating the presence of relatively highly substituted xylans (possibly arabinoxylans), separates these from the other bryophytes and is consistent with recent molecular data indicating a sister relationship of the hornworts with tracheophytes.  相似文献   

18.
The evolutionary potential of bryophytes (mosses, liverworts and hornworts) has been debated for decades. Fossil record and biogeographical distribution patterns suggest very slow morphological evolution and the retainment of several ancient traits since the split with vascular plants some 450 million years ago. Many have argued that bryophytes may evolve as rapidly as higher plants on the molecular level, but this hypothesis has not been tested so far. Here, it is shown that mosses have experienced significantly lower rates of molecular evolution than higher plants within 18S rDNA (nuclear), rbcL (chloroplast) and nad5 (mitochondrial) genes. Mosses are on an average evolving 2-3 times slower than ferns, gymnosperms and angiosperms; and also green algae seem to be evolving faster than nonvascular plants. These results support the observation of a general correlation between morphological and molecular evolutionary rates in plants and also show that mosses are 'evolutionary sphinxes' regarding both morphological and molecular evolutionary potential.  相似文献   

19.
20.
Extant bryophytes are regarded as the closest living relatives of the first land plants, but relationships among the bryophyte classes (mosses, liverworts and hornworts) and between them and other embryophytes have remained unclear. We have recently found that plant mitochondrial genes with positionally stable introns are well suited for addressing questions of plant phylogeny at a deep level. To explore further data sets we have chosen to investigate the mitochondrial genes nad4 and nad7, which are particularly rich in intron sequences. Surprisingly, we find that in these genes mosses share three group II introns with flowering plants, but none with the liverwort Marchantia polymorpha or other liverworts investigated here. In mitochondria of Marchantia, nad7 is a pseudogene containing stop codons, but nad7 appears as a functional mitochondrial gene in mosses, including the isolated genus Takakia. We observe the necessity for strikingly frequent C-to-U RNA editing to reconstitute conserved codons in Takakia when compared to other mosses. The findings underline the great evolutionary distances among the bryophytes as the presumptive oldest division of land plants. A scenario involving differential intron gains from fungal sources in what are perhaps the two earliest diverging land plant lineages, liverworts and other embryophytes, is discussed. With their positionally stable introns, nad4 and nad7 represent novel marker genes that may permit a detailed phylogenetic resolution of early clades of land plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号