首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tomosugi M  Ichihara K  Saito K 《Planta》2006,223(2):349-358
The major fatty acid component of castor (Ricinus communis L.) oil is ricinoleic acid (12-hydroxy-cis-9-octadecenoic acid), and unsaturated hydroxy acid accounts for >85% of the total fatty acids in triacylglycerol (TAG). TAG had a higher ricinoleate content at position 2 than at positions 1 and 3. Although lysophosphatidic acid (LPA) acyltransferase (EC 2.3.1.51), which catalyzes acylation of LPA at position 2, was expected to utilize ricinoleoyl-CoA preferentially over other fatty acyl-CoAs, no activity was found for ricinoleoyl-CoA in vitro at concentrations at which other unsaturated acyl-CoAs were incorporated rapidly. However, activity for ricinoleoyl-CoA appeared with addition of polyamines (putrescine, spermidine, and spermine), while polyamines decreased the rates of incorporation of other acyl-CoAs into position 2. The order of effect of polyamines on LPA acyltransferase activity was spermine > spermidine >> putrescine. At concentrations of spermine and spermidine of >0.1 mM, ricinoleoyl-CoA served as an effective substrate for LPA acyltransferase reaction. The concentrations of spermine and spermidine in the developing seeds were estimated at ∼0.09 and ∼0.63 mM, respectively. These stimulatory effects for incorporation of ricinoleate were specific to polyamines, but basic amino acids were ineffective as cations. In contrast, in microsomes from safflower seeds that do not contain ricinoleic acid, spermine and spermidine stimulated the LPA acyltransferase reaction for all acyl-CoAs tested, including ricinoleoyl-CoA. Although the fatty acid composition of TAG depends on both acyl-CoA composition in the cell and substrate specificity of acyltransferases, castor bean polyamines are crucial for incorporation of ricinoleate into position 2 of LPA. Polyamines are essential for synthesis of 2-ricinoleoyl phosphatidic acid in developing castor seeds.  相似文献   

3.
In crude extract of castor bean endosperm, isocitrate dehydrogenase (NADP+) (EC 1.1.1.42) was stable at 57°C at the beginning of seed germination as well as in maturing and dry seeds. The enzyme gradually became less thermostable as germination proceeded and became unstable after 4 days. Extract from 5-day-old endosperm reduced the thermostability of the thermostable enzyme. The destabilizing factor accumulated in the endosperm as germination progressed and was identified as ricinoleate. Ricinoleate destabilized the purified enzyme which was stabilized by isocitrate and Mg2+, but ricinoleate did not affect the activity of NADP+-isocitrate dehydrogenase itself. Stearate, oleate, palmitate and myristate were similar to ricinoleate in their effect on the thermostability of the enzyme. The thermolabile enzyme in the crude extract of 5-day-old endosperm was readily inactivated by trypsin and in low concentrations of buffer. The thermostable enzyme in the crude extract of 2-day-old endosperm was not affected by these treatments. The thermostable enzyme treated with ricinoleate showed the same instabilities as the thermolabile enzyme. The role of ricinoleate in ther germinating castor bean endosperm is discussed.  相似文献   

4.
5.

Background

The allergenicity of Ricinus communis L. (castor bean, Euphorbiaceae) is associated with components of its seeds and pollen. Castor bean allergy has been described not only in laboratory workers, but also in personnel working in oil processing mills, fertilizer retail, the upholstery industry and other industrial fields. In the present study, we describe the critical amino acids in the IgE-binding epitopes in Ric c 1 and Ric c 3, two major allergens of R. communis. In addition, we also investigate the cross-reactivity between castor bean and some air and food allergen extracts commonly used in allergy diagnosis.

Methodology/Principal Findings

The IgE reactivity of human sera from atopic patients was screened by immune-dot blot against castor bean allergens. Allergenic activity was evaluated in vitro using a rat mast cell activation assay and by ELISA. Cross-reactivity was observed between castor bean allergens and extracts from shrimp, fish, gluten, wheat, soybean, peanut, corn, house dust, tobacco and airborne fungal allergens. We observed that treatment of rat and human sera (from atopic patients) with glutamic acid reduced the IgE-epitope interaction.

Conclusions/Significance

The identification of glutamic acid residues with critical roles in IgE-binding to Ric c 3 and Ric c 1 support the potential use of free amino acids in allergy treatment.  相似文献   

6.

Background  

Phosphoenolpyruvate carboxylase (PEPC) is a critical enzyme catalyzing the β-carboxylation of phosphoenolpyruvate (PEP) to oxaloacetate, a tricarboxylic acid (TCA) cycle intermediate. PEPC typically exists as a Class-1 PEPC homotetramer composed of plant-type PEPC (PTPC) polypeptides, and two of the subunits were reported to be monoubiquitinated in germinating castor oil seeds. By the large-scale purification of ubiquitin (Ub)-related proteins from lily anther, two types of PEPCs, bacterial-type PEPC (BTPC) and plant-type PEPC (PTPC), were identified in our study as candidate Ub-related proteins. Until now, there has been no information about the properties of the PEPCs expressed in male reproductive tissues of higher plants.  相似文献   

7.
Abstract

Preliminary observations on the enzymatic degradation of RNA in castor bean seeds. — Cocucci, Maggio, Monroy and Marrè have shown the decrease of RNA content during ripening in castor bean seeds, and its increase during germination. Furthermore, these Authors have demonstrated that in the dry ripe seeds the ribosomes are undetectable, and that they increase rapidly during germination. Two peaks of ribosomes are easily detected upon ultracentrifugal analysis in germinating seeds (Cocucci and Sturani). These observations were the basis for our investigations of the enzymes of RNA metabolism in castor bean seeds. This paper deals with our preliminary observations on RNA degrading enzymes in these tissues. We have been able to measure RNase activity, phosphodiesterase, 3′-,5′- and 2′-nucleotidases in castor bean seeds at different stages of development. RNase activity (measured in crude extracts) changes little during the ripening process, its rate corresponding to 40–50 μMoles of nucleotides liberated from RNA per hour and per gram of fresh weight. In the dry seeds, RNase activity is 30–40 μMoles of nucleotides/h.g.f.w., and it increases to about 60–70 μMoles/h/g.f.w. after 72 hours of germination.

Phosphodiesterase activity is about 4–5 μMoles/h.g.f.w.

The following rates have been found in seeds almost completely ripe seeds for 3′-, 5′- and 2′-nucleotidase activities, respectively 45–50 μMoles/h.g.f.w.; 6–7 μMoles/h.g.f.w.; 8 μMoles/h.g.f.w.; ATP-ase activity was of about 80–100 μMoles of phosphate liberated /h.g.f.w. - The high activity of 3′-nucleotidase, of the same order of that of RNase, suggests that these two enzymes are responsible for degradation of RNA to nucleosides and inorganic phosphate. Further investigations are being carried on to define the biochemical properties of castor bean RN-ase.  相似文献   

8.
Neurospora crassa is a potential expression system for evaluating fatty-acid-modifying genes from plants producing uncommon fatty acids. One such gene encodes the hydroxylase that converts oleate to ricinoleate, a fatty acid with important industrial uses. To develop this expression system, it is critical to evaluate the metabolism and physiological effects of the expected novel fatty acid(s). We therefore examined effects of ricinoleate on lipid biosynthesis and growth of N. crassa. Ricinoleate inhibited growth and reduced levels of phospholipids and of 2-hydroxy fatty acids in glycolipids, but led to increased lipid accumulation on a mass basis. To evaluate incorporation and metabolism of ricinoleate, we followed the fate of 14 M–3 mM [1-14C]ricinoleate. The fate of the [14C]ricinoleate was concentration-dependent. At higher concentrations, ricinoleate was principally incorporated into triacylglycerols. At lower concentrations, ricinoleate was principally metabolized to other compounds. Thus, N. crassa transformants expressing the hydroxylase gene can be detected if the level of hydroxylase expression allows both growth and ricinoleate accumulation.  相似文献   

9.
Ricin is a toxic protein present in castor bean seeds (Ricinus communis). A toxic residue named castor bean waste is generated during biodiesel production process, such as that developed by PETROBRAS (the national petroleum company of Brazil). Solid-state fermentation (SSF) was used to detoxify castor bean waste through the Penicillium simplicissimum growth. After 24 h of fungal growth, the ricin was no longer identified by Sephadex G-50 gel chromatography. In order to verify the biological activity of ricin after several treatment stages, an in vitro assay using Vero cell line was carried out. Through this methodology, it was verified that after 24 and 48 h of treatment, the cell culture showed slightly growth inhibition. The waste was completely detoxified only after 72 h of fungal growth. This fact shows that an in vitro assay is important to verify the real efficiency of detoxification. Moreover, a relationship between the fungal protease production and the waste detoxification was observed.  相似文献   

10.

Main conclusion

Co-expression of a lesquerella fatty acid elongase and the castor fatty acid hydroxylase in camelina results in higher hydroxy fatty acid containing seeds with normal oil content and viability. Producing hydroxy fatty acids (HFA) in oilseed crops has been a long-standing goal to replace castor oil as a renewable source for numerous industrial applications. A fatty acid hydroxylase, RcFAH, from Ricinus communis, was introduced into Camelina sativa, but yielded only 15 % of HFA in its seed oil, much lower than the 90 % found in castor bean. Furthermore, the transgenic seeds contained decreased oil content and the germination ability was severely affected. Interestingly, HFA accumulation was significantly increased in camelina seed when co-expressing RcFAH with a fatty acid condensing enzyme, LfKCS3, from Physaria fendleri, a native HFA accumulator relative to camelina. The oil content and seed germination of the transgenic seeds also appeared normal compared to non-transgenics. LfKCS3 has been previously characterized to specifically elongate the hydroxylated ricinoleic acid to lesquerolic acid, the 20-carbon HFA found in lesquerella oil. The elongation reaction may facilitate the HFA flux from phosphatidylcholine (PC), the site of HFA formation, into the acyl-CoA pool for more efficient utilization in triacylglycerol (TAG) biosynthesis. This was demonstrated by increased HFA accumulation in TAG concurrent with reduced HFA content in PC during camelina seed development, and increased C20-HFA in HFA-TAG molecules. These effects of LfKCS3 thus may effectively relieve the bottleneck for HFA utilization in TAG biosynthesis and the feedback inhibition to fatty acid synthesis, result in higher HFA accumulation and restore oil content and seed viability.  相似文献   

11.
Biochemical aspects of castor oil biosynthesis   总被引:2,自引:0,他引:2  
Castor oil is 90% ricinoleate (12-hydroxy-oleate) and has numerous industrial uses. Components of castor bean (Ricinus communis L.) pose serious problems to processors. We are evaluating two complementary approaches to providing a safe source of castor oil.  相似文献   

12.

Background  

Soluble sugar levels must be closely regulated in germinating seeds to ensure an adequate supply of energy and building materials for the developing seedling. Studies on germinating cereal seeds indicate that production of sugars from starch is inhibited by increasing sugar levels. Although numerous studies have focused on the regulation of starch metabolism, very few studies have addressed the control of storage lipid metabolism by germinating oilseeds.  相似文献   

13.

Background  

Aquatic plants differ in their development from terrestrial plants in their morphology and physiology, but little is known about the molecular basis of the major phases of their life cycle. Interestingly, in place of seeds of terrestrial plants their dormant phase is represented by turions, which circumvents sexual reproduction. However, like seeds turions provide energy storage for starting the next growing season.  相似文献   

14.
15.
16.
Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade.  相似文献   

17.
The castor-bean endosperm-the best-studied material of reserve lipid hydrolysis in seed germination-was previously shown to have an acid lipase and an alkaline lipase having reciprocal patterns of development during germination. We studied oil seeds from 7 species, namely castor bean (Ricinus communis L.), peanut (Arachis hypogaea L.), sunflower (Helianthus annus L.), cucumber (Cucumis sativus L.), cotton (Gossypisum hirsutum L.), corn (Zea mays. L.) and tomato (Lycopersicon esculentum Mill.). The storage tissues of all these oil seeds except castor bean contained only alkaline lipase activity which increased drastically during germination. The pattern of acid and alkaline lipases in castor bean does not seem to be common in other oil seeds. The alkaline lipase of peanut cotyledons was chosen for further study. On sucrose gradient centrifugation of cotyledon homogenate from 3-d-old seedlings, about 60% of the activity of the enzyme was found to be associated with the glyoxysomes, 15% with the mitochondria, and 25% with a membrane fraction at a density of 1.12 g cm-3. The glyoxysomal lipase was associated with the organelle membrane, and hydrolyzed only monoglyceride whereas the mitochondrial and membrane-fraction enzymes degraded mono-, di- and triglycerides equally well. Thus, although the lipase in the glyoxysomes had the highest activity, it had to cooperate with lipases in other cellular compartments for the complete hydrolysis of reserve triglycerides.  相似文献   

18.

Background  

To meet the needs of gene annotation for newly sequenced organisms, optimized spaced seeds can be implemented into cross-species sequence alignment programs to accurately align gene sequences to the genome of a related species. So far, seed performance has been tested for comparisons between closely related species, such as human and mouse, or on simulated data. As the number and variety of genomes increases, it becomes desirable to identify a small set of universal seeds that perform optimally or near-optimally on a large range of comparisons.  相似文献   

19.
1-Ricinoleoyl-2-acyl-sn-glycero-3-phosphocholine was prepared by incorporating ricinoleic acid completely in the sn-1 position of egg and soya phosphatidylcholine (PC) using immobilized phospholipase A1 as the catalyst. The optimum reaction conditions for maximum incorporation of ricinoleic acid into PC through transesterification were 10% (w/w) immobilized enzyme (116 mg), a 1:5 mol ratio of PC (soya, 387 mg; egg, 384 mg) to methyl ricinoleate (780 mg) at 50 °C for 24 h in hexane.  相似文献   

20.
The castor bean (Ricinus communis) represents a potential candidate for biodiesel production. The Petrobras Research Center is developing a biodiesel production process from castor bean seeds, in which an unwanted byproduct named castor bean waste is produced. This extremely alkaline waste is toxic and allergenic and, as such, poses a significant environmental problem. Solid-state fermentation (SSF) of castor bean waste was carried out to achieve ricin detoxification, reduce allergenic potential and stimulate lipase production. The fungus, Penicillium simplicissimum, an excellent lipase producer, was able to grow and produce lipase enzyme. After an optimization process, the maximum lipase activity achieved was 44.8 U/g. Moreover, the fungus P. simplicissimum was able to reduce the ricin content to non-detectable levels in addition to diminishing castor bean waste allergenic potential by approximately 16%. In this way, SSF of castor bean waste by P. simplicissimum may increase the utility of the waste by promoting enzyme production and eliminating the principal toxic element, ricin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号