首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
E2F-1 is the major cellular target of pRB and is regulated by pRB during cell proliferation. Interaction between pRB and E2F-1 is dependent on the phosphorylation status of pRB. Despite the fact that E2F-1 and pRB have antagonistic activities when they are overexpressed, the role of the E2F-1-pRB interaction in cell growth largely remains unknown. Ideally, it would be better to study the properties of a pRB mutant that fails to bind to E2F, but retains all other activities. To date, no pRB mutation has been characterized in sufficient detail to show that it specifically eliminates E2F binding but leaves other interactions intact. An alternative approach to this issue is to ask whether mutations that change E2F proteins binding affinity to pRB are sufficient to change cell growth in aspect of cell cycle and tumor formation. Therefore, we used the E2F-1 mutants including E2F-1/S332-7A, E2F-1/S375A, E2F-1/S403A, E2F-1/Y411A and E2F-1/L132Q that have different binding affinities for pRB to better understand the roles of the E2F-1 phosphorylation and E2F-1-pRB interaction in the cell cycle, as well as in transformation and gene expression. Data presented in this study suggests that in vivo phosphorylation at amino acids 332-337, 375 and 403 is important for the E2F-1 and pRB interaction in vivo. However, although E2F-1 mutants 332-7, 375 and 403 showed similar binding affinity to pRB, they showed different characteristics in transformation efficiency, G0 accumulation, and target gene experiments.  相似文献   

5.
6.
Little is known about cell-cycle checkpoint activation by oxidative stress in mammalian cells. The effects of hyperoxia on cell-cycle progression were investigated in asynchronous human T47D-H3 cells, which contain mutated p53 and fail to arrest at G1/S in response to DNA damage. Hyperoxic exposure (95% O2, 40–64 h) induced an S-phase arrest associated with acute inhibition of Cdk2 activity and DNA synthesis. In contrast, exit from G2/M was not inhibited in these cells. After 40 h of hyperoxia, these effects were partially reversible during recovery under normoxic conditions. The inhibition of Cdk2 activity was not due to degradation of Cdk2, cyclin E or A, nor impairment of Cdk2 complex formation with cyclin A or E and p21Cip1. The loss of Cdk2 activity occurred in the absence of induction and recruitment of cdk inhibitor p21Cip1 or p27Kip1 in cyclin A/Cdk2 or cyclin E/Cdk2 complexes. In contrast, Cdk2 inhibition was associated with increased Cdk2-Tyr15 phosphorylation, increased E2F-1 recruitment, and decreased PCNA contents in Cdk2 complexes. The latter results indicate a p21Cip1/p27Kip1-independent mechanism of S-phase checkpoint activation in the hyperoxic T47D cell model investigated.  相似文献   

7.
8.
9.
In this study, we identified the most deleterious nsSNP in RB1 gene through structural and functional properties of its protein (pRB) and investigated its binding affinity with E2F-2. Out of 956 SNPs, we investigated 12 nsSNPs in coding region in which three of them (SNPids rs3092895, rs3092903 and rs3092905) are commonly found to be damaged by I-Mutant 2.0, SIFT and PolyPhen programs. With this effort, we modeled the mutant pRB proteins based on these deleterious nsSNPs. From a comparison of total energy, stabilizing residues and RMSD of these three mutant proteins with native pRB protein, we identified that the major mutation is from Glutamic acid to Glycine at the residue position of 746 of pRB. Further, we compared the binding efficiency of both native and mutant pRB (E746G) with E2F-2. We found that mutant pRB has less binding affinity with E2F-2 as compared to native type. This is due to sixteen hydrogen bonding and two salt bridges that exist between native type and E2F-2, whereas mutant type makes only thirteen hydrogen bonds and one salt bridge with E2F-2. Based on our investigation, we propose that the SNP with an id rs3092905 could be the most deleterious nsSNP in RB1 gene causing retinoblastoma.  相似文献   

10.
11.
The phosphorylation status of the pRB family of growth suppressor proteins is regulated in a cell cycle entry-, progression-, and exit-dependent manner in normal cells. We have shown previously that p130, a member of this family, exhibits patterns of phosphorylated forms associated with various cell growth and differentiation stages. However, human 293 cells, which are transformed cells that express the adenoviral oncoproteins E1A and E1B, exhibit an abnormal pattern of p130 phosphorylated forms. Here we report that, unlike pRB, the phosphorylation status of both p130 and p107 is not modulated during the cell cycle in 293 cells as it is in other cells. Conditional overexpression of individual G(1)/S cyclins in 293 cells does not alter the phosphorylation status of p130, suggesting that the expression of E1A and/or E1B blocks hyperphosphorylation of p130. In agreement with these observations, transient cotransfection of vectors expressing E1A 12S, but not E1B, in combination with pocket proteins into U-2 OS cells blocks hyperphosphorylation of both p130 and p107. However, the phosphorylation status of pRB is not altered by cotransfection of E1A 12S vectors. Moreover, MC3T3-E1 preosteoblasts stably expressing E1A 12S also exhibit a block in hyperphosphorylation of endogenous p130 and p107. Direct binding of E1A to p130 and p107 is not required for the phosphorylation block since E1A 12S mutants defective in binding to the pRB family also block hyperphosphorylation of p130 and p107. Our data reported here identify a novel function of E1A, which affects p130 and p107 but does not affect pRB. Since E1A does not bind the hyperphosphorylated forms of p130, this function of E1A might prevent the existence of "free" hyperphosphorylated p130, which could act as a CDK inhibitor.  相似文献   

12.
13.
14.
15.
16.
17.
18.
There are several lines of evidence that the modification of proteins by cytosolic- and nuclear-specific O-linked N-acetylglucosamine (O-GlcNAc) glycosylation is closely related to neuropathologies, particularly Alzheimer’s disease. Several neuronal proteins have been identified as being modified with O-GlcNAc; these proteins could form part of the inclusion bodies found, for example, in the most frequently observed neurologic disorder (i.e., Alzheimer’s disease; Tau protein and β-amyloid peptide are the well known aggregated proteins). O-GlcNAc proteins are also implicated in synaptosomal transport (e.g., synapsins and clathrin-assembly proteins). Inclusion bodies are partly characterized by a deficiency in the ubiquitin–proteasome system, avoiding the degradation of aggregated proteins. From this perspective, it appears interesting that substrate proteins could be protected against proteasomal degradation by being covalently modified with single N-acetylglucosamine on serine or threonine, and that the proteasome itself is modified and regulated by O-GlcNAc (in this case the turnover of neuronal proteins correlates with extracellular glucose). Interestingly, glucose uptake and metabolism are impaired in neuronal disorders, and this phenomenon is linked to increased phosphorylation. In view of the existence of the dynamic interplay between O-GlcNAc and phosphorylation, it is tempting to draw a parallel between the use of glucose, O-GlcNAc glycosylation and phosphorylation. Lastly, the two enzymes responsible for O-GlcNAc dynamism (i.e., O-GlcNAc transferase and glucosaminidase) are both enriched in the brain and genes that encode the two enzymes are located in two regions that are found to be frequently mutated in neurologic disorders. The data presented in this review strongly suggest that O-GlcNAc could play an active role in neurodegenerative diseases.  相似文献   

19.
20.
Neuronal synaptic functional deficits are linked to impaired learning and memory in Alzheimer’s disease (AD). We recently demonstrated that O-GlcNAc, a novel cytosolic and nuclear carbohydrate post-translational modification, is enriched at neuronal synapses and positively regulates synaptic plasticity linked to learning and memory in mice. Reduced levels of O-GlcNAc have been observed in AD, suggesting a possible link to deficits in synaptic plasticity. Using lectin enrichment and mass spectrometry, we mapped several human cortical synaptic O-GlcNAc modification sites. Overlap in patterns of O-GlcNAcation between mouse and human appears to be high, as previously mapped mouse synaptic O-GlcNAc sites in Bassoon, Piccolo, and tubulin polymerization promoting protein p25 were identified in human. Novel O-GlcNAc modification sites were identified on Mek2 and RPN13/ADRM1. Mek2 is a signaling component of the Erk 1/2 pathway involved in synaptic plasticity. RPN13 is a component of the proteasomal degradation pathway. The potential interplay of phosphorylation with mapped O-GlcNAc sites, and possible implication of those sites in synaptic plasticity in normal versus AD states is discussed. iTRAQ is a powerful differential isotopic quantitative approach in proteomics. Pulsed Q dissociation (PQD) is a recently introduced fragmentation strategy that enables detection of low mass iTRAQ reporter ions in ion trap mass spectrometry. We optimized LTQ ion trap settings for PQD-based iTRAQ quantitation and demonstrated its utility in O-GlcNAc site mapping. Using iTRAQ, abnormal synaptic expression levels of several proteins previously implicated in AD pathology were observed in addition to novel changes in synaptic specific protein expression including Synapsin II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号