首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak‐dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal‐root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root‐associated fungal community was dominated by root‐endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root‐associated fungal communities of oak‐dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities.  相似文献   

2.
Abies religiosa's forests are severely endangered as a result of climate change; to save this species and its biological interactions, population assisted migration is discussed in forest management, but not in the microbial ecology field. Our objectives were to analyze its mycorrhizal networks; and, with this data, to identify potential facilitator plants and it's most important mycorrhizal fungal links. This information could be used together in assisted migration programs to connect Abies religiosa saplings to their mycorrhizal network and improve their field establishment. We collected 47 rhizosphere samples from 19 plant species and sequenced their fungal ITS2 region by Illumina. In the whole fungal community, 464 species were mycorrhizal fungi with assigned guild (32%). In this subset, 85 fungi are arbuscular, 365 ectomycorrhizal and 14 from orchid-mycorriza. The Abies religiosa bipartite network is low nested and highly modular, and has a scale-free architecture. Besides Abies religiosa, the plants with the largest degree and the lowest average shortest path were Salix paradoxa, Muhlenbergia spp., and Baccharis conferta. The most important fungal nodes are species of Cortinarius, Genea, Rhodoscypha, Russula, and Tomentella. We suggest to evaluate the Abies' future establishment in the following scheme: in the first year reintroduce Muhlenbergia spp., and Baccharis conferta, in the second year Salix paradoxa, and in the third year–once the mycorrhizal network is reestablished– Abies religiosa' saplings in close proximity of these plants. This scheme is proposed using the data and network analyses of the present study.  相似文献   

3.
Mycorrhizal symbiosis often displays low specificity, except for mycoheterotrophic plants that obtain carbon from their mycorrhizal fungi and often have higher specificity to certain fungal taxa. Partially mycoheterotrophic (or mixotrophic, MX) plant species tend to have a larger diversity of fungal partners, e.g., in the genus Pyrola (Monotropoideae, Ericaceae). Preliminary evidence however showed that the Japanese Pyrola japonica has preference for russulacean fungi based on direct sequencing of the fungal internal transcribed spacer (ITS) region from a single site. The present study challenges this conclusion using (1) sampling of P. japonica in different Japanese regions and forest types and (2) fungal identification by ITS cloning. Plants were sampled from eight sites in three regions, in one of which the fungal community on tree ectomycorrhizal (ECM) tips surrounding P. japonica was also analyzed. In all, 1512 clone sequences were obtained successfully from 35 P. japonica plants and 137 sequences from ECM communities. These sequences were collectively divided into 74 molecular operational taxonomic units (MOTUs) (51 and 33 MOTUs, respectively). MOTUs from P. japonica involved 36 ECM taxa (96 % of all clones), and 17 of these were Russula spp. (76.2 % of all clones), which colonized 33 of the 35 sampled plants. The MOTU composition significantly differed between P. japonica and ECM tips, although shared species represented 26.3 % of the ECM tips community in abundance. This suggests that P. japonica has a preference for russulacean fungi.  相似文献   

4.
Pyrola rotundifolia (Ericaceae, Pyroleae tribe) is an understorey subshrub that was recently demonstrated to receive considerable amount of carbon from its fungal mycorrhizal associates. So far, little is known of the identity of these fungi and the mycorrhizal anatomy in the Pyroleae. Using 140 mycorrhizal root fragments collected from two Estonian boreal forests already studied in the context of mixotrophic Ericaceae in sequence analysis of the ribosomal DNA internal transcribed spacer region, we recovered 71 sequences that corresponded to 45 putative species in 19 fungal genera. The identified fungi were mainly ectomycorrhizal basidiomycetes, including Tomentella, Cortinarius, Russula, Hebeloma, as well as some ectomycorrhizal and/or endophytic ascomycetes. The P. rotundifolia fungal communities of the two forests did not differ significantly in terms of species richness, diversity and nutritional mode. The relatively high diversity retrieved suggests that P. rotundifolia does not have a strict preference for any fungal taxa. Anatomical analyses showed typical arbutoid mycorrhizae, with variable mantle structures, uniseriate Hartig nets and intracellular hyphal coils in the large epidermal cells. Whenever compared, fungal ultrastructure was congruent with the molecular identification. Similarly to other mixotrophic and autotrophic pyroloids in the same forests, P. rotundifolia shares its mycorrhizal fungal associates with surrounding trees that are likely a carbon source for pyroloids.  相似文献   

5.
Mycorrhiza and root-associated fungi in Spitsbergen   总被引:2,自引:2,他引:0  
Summary Roots of 76 plant species collected in West Spitsbergen (Svalbard), in the middle-northern Arctic zone, were examined for mycorrhiza and root-associated fungi. Dryas octopetala, Pedicularis dasyantha and Salix polaris were ectomycorrhizal and Cassiope tetragona and Empetrum hermaphroditum ericoid mycorrhizal. Pedicularis dasyantha was only slightly infected. Structures resembling vesicular-arbuscular mycorrhizal (VAM) fungi were not found in the roots, and soil samples screened for VAM fungi contained only one spore. Root endophytic fungi commonly occurred in Spits-bergen, but only Olpidium brassicae, Pleospora herbarum, Papulaspora, Microdochium bolleyi and Rhizoctonia solani were identified with reasonable certainty. A sterile endophytic dark-septate fungus (DSF) was in 39.5% of the flowering-plant species examined, especially in the Brassicaceae, Caryophyllaceae, Saxifragaceae and Poaceae. DSF were categorized into four slightly overlapping groups. Sterile endophytic hyaline septate fungi were rare. In the literature it is suggested that at least some of the DSF species or the hyaline septate fungi are functionally mutualistic rather than saprophytic or pathogenic. The literature on ectomycorrhizal fungi and plants in Spitsbergen is reviewed, including about 50 species, mainly of the genera Cortinarius, Hebeloma, Inocybe, Laccaria, Lactarius and Russula. These are symbiotic with the above-mentioned ectomycorrhizal plants. Four further ectomycorrhizal plants (Betula nana, Salix spp.) are very rare in the area.  相似文献   

6.
Willows (Salix spp.) are mycorrhizal tree species sometimes cultivated as short rotation coppice (SRC) on arable sites for energy purposes; they are also among the earliest plants colonising primary successional sites in natural stands. The objective of this study was to analyse the degree of colonisation and diversity of ectomycorrhizal (EM) communities on willows grown as SRC in arable soils and their adjacent natural or naturalized stands. Arable sites usually lack ectomycorrhizal host plants before the establishment of SRC, and adjacent natural or naturalized willow stands were hypothesized to be a leading source of ectomycorrhizal inoculum for the SRC. Three test sites including SRC stands (Salix viminalis, Salix dasyclados, and Salix schwerinii) and adjacent natural or naturalized (Salix caprea, Salix fragilis, and Salix?×?mollissima) stands in central Sweden were investigated on EM colonisation and morphotypes, and the fungal partners of 36 of the total 49 EM fungi morphotypes were identified using molecular tools. The frequency of mycorrhizas in the natural/naturalized stands was higher (two sites) or lower (one site) than in the corresponding cultivated stands. Correspondence analysis revealed that some EM taxa (e.g. Agaricales) were mostly associated with cultivated willows, while others (e.g. Thelephorales) were mostly found in natural/naturalized stands. In conclusion, we found strong effects of sites and willow genotype on EM fungi formation, but poor correspondence between the EM fungi abundance and diversity in SRC and their adjacent natural/naturalized stands. The underlying mechanism might be selective promotion of some EM fungi species by more effective spore dispersal.  相似文献   

7.
Alkaline-saline soil is widespread in arid and semiarid regions of the world and causes severe environmental and agricultural problems. To advance our understanding of the adaptation of ectomycorrhizal fungi (EMF) to alkaline-saline soil, we investigated EMF communities on Mongolian willow (Salix linearistipularis) growing in alkaline-saline soil (up to pH 9.2) in northeastern China. In total, 75 root samples were collected from 25 willow individuals over 4.7 ha. To identify fungal species in ectomycorrhizal root tips, we used terminal restriction fragment length polymorphism and sequencing analyses of the internal transcribed spacer region of ribosomal DNA. We detected 11 EMF species, including species of Inocybe, Hebeloma, and Tomentella of the Basidiomycota and three Ascomycota species. The EMF richness of the study site was estimated to be 15–17 using major estimators. The most abundant species was Geopora sp. 1, while no Geopora-dominated EMF communities have been reported so far. Phylogenetic analysis showed that the phylogroup including Geopora sp. 1 has been found mostly in alkaline soil habitats, indicating its adaptation to high soil pH. Because EMF are indispensable for host plant growth, the EMF species detected in this study may be useful for restoration of alkaline-saline areas.  相似文献   

8.
Climate warming is leading to shrub expansion in Arctic tundra. Shrubs form ectomycorrhizal (ECM) associations with soil fungi that are central to ecosystem carbon balance as determinants of plant community structure and as decomposers of soil organic matter. To assess potential climate change impacts on ECM communities, we analysed fungal internal transcribed spacer sequences from ECM root tips of the dominant tundra shrub Betula nana growing in treatments plots that had received long‐term warming by greenhouses and/or fertilization as part of the Arctic Long‐Term Ecological Research experiment at Toolik Lake Alaska, USA. We demonstrate opposing effects of long‐term warming and fertilization treatments on ECM fungal diversity; with warming increasing and fertilization reducing the diversity of ECM communities. We show that warming leads to a significant increase in high biomass fungi with proteolytic capacity, especially Cortinarius spp., and a reduction of fungi with high affinities for labile N, especially Russula spp. In contrast, fertilization treatments led to relatively small changes in the composition of the ECM community, but increased the abundance of saprotrophs. Our data suggest that warming profoundly alters nutrient cycling in tundra, and may facilitate the expansion of B. nana through the formation of mycorrhizal networks of larger size.  相似文献   

9.
Results of diversity and community ecology studies strongly depend on sampling depth. Completely surveyed communities follow log-normal distribution, whereas power law functions best describe incompletely censused communities. It is arguable whether the statistics behind those theories can be applied to voluminous next generation sequencing data in microbiology by treating individual DNA sequences as counts of molecular taxonomic units (MOTUs). This study addresses the suitability of species abundance models in three groups of plant-associated fungal communities - phyllosphere, ectomycorrhizal and arbuscular mycorrhizal fungi. We tested the impact of differential treatment of molecular singletons on observed and estimated species richness and species abundance distribution models. The arbuscular mycorrhizal community of 48 MOTUs was exhaustively sampled and followed log-normal distribution. The ectomycorrhizal (153 MOTUs) and phyllosphere (327 MOTUs) communities significantly differed from log-normal distribution. The fungal phyllosphere community in particular was clearly undersampled. This undersampling bias resulted in strong sensitivity to the exclusion of molecular singletons and other rare MOTUs that may represent technical artefacts. The analysis of abundant (core) and rare (satellite) MOTUs clearly identified two species abundance distributions in the phyllosphere data - a log-normal model for the core group and a log-series model for the satellite group. The prominent log-series distribution of satellite phyllosphere fungi highlighted the ecological significance of an infrequent fungal component in the phyllosphere community.  相似文献   

10.
Ectomycorrhizal symbiosis has evolved multiple times in plants and fungi, but the trophic status of certain fungal groups remains poorly understood due to their unculturability or ambiguous interpretation of biotrophic associations. Combining field observations, molecular identification of root tips, synthesis experiments and analysis of stable isotopes, we address the lifestyle of Tomentella crinalis and another species closely related to T. fibrosa that represents a sister group to the ectomycorrhizal genera Tomentella and Thelephora. Based on molecular analyses these two and other related species are moved to the genus Odontia. In Odontia species, ectomycorrhizal associations were not observed in nature or in various synthesis experiments. Although Odontia species normally fruit in old forests, Odontia ferruginea has also been identified from a deep belowground mine. Unlike saprotrophs, Odontia spp. and ectomycorrhizal fungi were not enriched in 13C compared with their woody fruiting substratum, suggesting that wood is not their major energy source. In contrast to ectomycorrhizal fungi, Odontia species and saprotrophs were not enriched in 15N relative to their substratum. Taken together, we suggest that Odontia spp. are non-mycorrhizal, but their nutrition differs from typical wood-rotting Basidiomycota.  相似文献   

11.
Inoculation with ectomycorrhizal fungi was explored as a means to improve productivity of experimental short-rotation plantations of the willowsSalix viminalis andSalix dasyclados for biomass production on surface-mined peatlands in northern Finland. Both willow species formed ectomycorrhizas withAmanita spp.,Cortinarius purpurascens, Entoloma nidorosum, otherEntoloma spp.,Hebeloma crustuliniforme, H. pusillum, Laccaria bicolor, andPaxillus involutus in greenhouse experiments.Field trials on a mined peatland site revealed (after one growing season) statistically significant growth stimulation after inoculation due to mycorrhiza formation in both willow species: plants inoculated withEntoloma were sometimes twice as large as control plants. However, such effects were observed only in plots receiving normal phosphate fertilization as opposed to low phosphate application, and were not consistent from season to season. With the inoculum of other species (Cortinarius, Hebeloma andPaxillus) some evidence of growth enhancement was found in the field, but these results were sometimes attributable to non-symbiotic effects of inoculation.  相似文献   

12.
In natural forests, hundreds of fungal species colonize plant roots. The preference or specificity for partners in these symbiotic relationships is a key to understanding how the community structures of root‐associated fungi and their host plants influence each other. In an oak‐dominated forest in Japan, we investigated the root‐associated fungal community based on a pyrosequencing analysis of the roots of 33 plant species. Of the 387 fungal taxa observed, 153 (39.5%) were identified on at least two plant species. Although many mycorrhizal and root‐endophytic fungi are shared between the plant species, the five most common plant species in the community had specificity in their association with fungal taxa. Likewise, fungi displayed remarkable variation in their association specificity for plants even within the same phylogenetic or ecological groups. For example, some fungi in the ectomycorrhizal family Russulaceae were detected almost exclusively on specific oak (Quercus) species, whereas other Russulaceae fungi were found even on “non‐ectomycorrhizal” plants (e.g., Lyonia and Ilex). Putatively endophytic ascomycetes in the orders Helotiales and Chaetothyriales also displayed variation in their association specificity and many of them were shared among plant species as major symbionts. These results suggest that the entire structure of belowground plant–fungal associations is described neither by the random sharing of hosts/symbionts nor by complete compartmentalization by mycorrhizal type. Rather, the colonization of multiple types of mycorrhizal fungi on the same plant species and the prevalence of diverse root‐endophytic fungi may be important features of belowground linkage between plant and fungal communities.  相似文献   

13.
Tomentella is a genus of resupinate basidiomycetes usually fruiting on rotten wood. Ecological studies based on molecular methods have reported many Tomentella species as mycobionts of alpine ectomycorrhizal plants, thus highlighting their importance for plant establishment and development under extreme conditions. For the first time, we report fruiting of eight tomentelloid species in an alpine site, and describe Tomentella alpina as a new species. In the rDNA ITS phylogeny, Tomentella alpina forms a distinct clade in the T. stuposa complex, from which it can be clearly separated based on spore size and shape. Closely related taxa are briefly described, and synonymy of Tomentella fungicola with T. stuposa is rejected. Tomentella alpina was found to be one of the most important mycorrhizal partners of Kobresia myosuroides, Bistorta vivipara and Salix herbacea at this alpine site. The mutualistic association with plants is a very successful life strategy for Tomentella spp. growing in primary successional habitats, where the lack of organic matter is generally a growth-limiting factor.  相似文献   

14.
Colonization of Salix humboldtiana (Salicaceae) by ectomycorrhizae (ECM), arbuscular mycorrhizae (AM), and dark-septate endophytic (DSE) fungi was studied throughout autumn on two riparian populations in central Argentina. AM and DSE infection on roots ranged from 0% to 17% and from 2% to 20% respectively, whereas ECM colonization was higher, varying between 33% and 99% for both sites. Seven ECM morphotypes were found on S. humboldtiana roots. The nuclear rDNA internal transcriber spacer (ITS) region from the ectomycorrhizal root tips was amplified using ITS-1F and ITS-4 primers. Two of the seven ECM types were identified by searching GenBank blasts: one attributed to the genus Tomentella (Thelephoraceae) and the second most closely matched to Inocybe sp. (Cortinariaceae). The ECM colonization varied among sampling dates and sites, whereas AM and DSE colonization varied only among sampling dates. Diversity values for the ECM morphotype were not significantly different for autumn months or among the two sites. Positive correlations were found between Inocybe sp. and sites and between Inocybe sp., Tomentella sp., morphotypes III, IV, and VI, and sampling dates. This article provides the first documented evidence of co-occurrence of ECM, AM, and DSE in S. humboldtiana.  相似文献   

15.
The ecological significance of a range of ectomycorrhizal fungal species, associated with Salix repens , was investigated under controlled conditions. Different ectomycorrhizas increased plant benefits in various ways. Effects of 12 ectomycorrhizal fungi on short-term (12 weeks) and long-term (20 and 30 weeks) plant performance were compared. Different fungi increased plant benefits in different ways and none exerted the full range of mycorrhizal benefits. Two strategies of EcM fungi were recognized, root manipulation and root replacement. Species ( Hebeloma, Cortinarius spp.) with a root manipulation strategy strongly increased root length and had a more effective nitrogen economy than species with the root replacement strategy ( Laccaria , Paxillus spp.). As a consequence of these different strategies two parameters of nutrient acquisition, viz. nutrient inflow per unit root length (efficiency) and total shoot nutrient uptake (effectiveness) were not correlated. Differences in magnitude of mycorrhizal response were not related to the amount of root colonization. Only in the short term was plant nutrient content positively correlated with root length colonized. Over a whole growing season plant nutrient content could not be predicted from root length colonized. Effects of mycorrhizal fungi on root manipulation also occurred with aqueous extracts of the fungus and, hence, were partly independent of the formation of ectomycorrhizas.  相似文献   

16.
Serpentine soils, rich in iron, magnesium, and heavy metals, select for unique plant communities and for endemic species. Because mycorrhizal fungi mediate the interaction between plants and soil, we hypothesized that distinct ectomycorrhizal fungi would colonize Quercus garryana roots on serpentine and nonserpentine soils. We sampled roots of Q. garryana on serpentine soils at two locations in the Klamath-Siskiyou Mountains of southwestern Oregon and identified ectomycorrhizas by morphological and molecular methods. The same six most abundant and most frequent mycorrhizal species, Cenococcum geophilum, Tuber candidum, Genea harknessii, Tomentella sp., Sebacina sp., and Inocybe sp., were found on serpentine and nonserpentine soils. Based on similarities calculated using the Sørensen index in Non-metric Multidimensional Scaling, mycorrhizal communities on serpentine and nonserpentine soils were not significantly different. This study showed that ectomycorrhizal species associated with Q. garryana exhibit edaphic tolerance and were neither reduced nor excluded by serpentinite or peridotite parent materials.  相似文献   

17.
Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root‐associated, respond to warming. Here, we investigate how long‐term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long‐term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU‐rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium‐distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium‐distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage.  相似文献   

18.
Plant–mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant–fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant–fungal symbiosis in subtropical forests is complex in that it includes “non-typical” plant–fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in that associations with multiple functional (or phylogenetic) groups of fungi are ubiquitous among plants. Moreover, ectomycorrhizal fungal symbionts of fagaceous plants may “invade” the roots of neighboring non-fagaceous plants, potentially influencing the interactions between non-fagaceous plants and their arbuscular-mycorrhizal fungal symbionts at a fine spatial scale.  相似文献   

19.
Qian Gao  Zhu L. Yang 《Mycorrhiza》2010,20(4):281-287
The diversity of ectomycorrhizal fungi (EMF) on Kobresia filicina and Kobresia capillifolia in an alpine meadow in China’s southwestern mountains, one of the word’s hotspots of biodiversity, was estimated based on internal transcribed spacer rDNA sequence analysis of root tips. Seventy EMF operational taxonomical units (OTUs) were found in the two plant species. Dauciform roots with EMF were detected in species of Kobresia for the first time. OTU richness of EMF was high in Tomentella/Thelophora and Inocybe, followed by Cortinarius, Sebacina, the Cenococcum geophilum complex, and Russula. Tomentella/Thelophora and Inocybe were general and dominant mycobiont genera of the two sedges. Besides the C. geophilum complex, the ascomycete components Hymenoscyphus and Lachnum were also detected on the two plants. Alpine plants in different geographical regions share similar main genera and/or families of EMF while harboring predominantly different mycobiont species; most of the members detected by us have not been found elsewhere. Significant differences in the profile of EMF occurrences were not found between the two plant species and among the three sampling seasons in our sample size.  相似文献   

20.
The main objectives of this study were (1) to describe the diversity of mycorrhizal fungal communities associated with Uapaca bojeri, an endemic Euphorbiaceae of Madagascar, and (2) to determine the potential benefits of inoculation with mycorrhizal fungi [ectomycorrhizal and/or arbuscular mycorrhizal (AM) fungi] on the growth of this tree species and on the functional diversity of soil microflora. Ninety-four sporophores were collected from three survey sites. They were identified as belonging to the ectomycorrhizal genera Afroboletus, Amanita, Boletus, Cantharellus, Lactarius, Leccinum, Rubinoboletus, Scleroderma, Tricholoma, and Xerocomus. Russula was the most frequent ectomycorrhizal genus recorded under U. bojeri. AM structures (vesicles and hyphae) were detected from the roots in all surveyed sites. In addition, this study showed that this tree species is highly dependent on both types of mycorrhiza, and controlled ectomycorrhization of this Uapaca species strongly influences soil microbial catabolic diversity. These results showed that the complex symbiotic status of U. bojeri could be managed to optimize its development in degraded areas. The use of selected mycorrhizal fungi such the Scleroderma Sc1 isolate in nursery conditions could be of great interest as (1) this fungal strain is very competitive against native symbiotic microflora, and (2) the fungal inoculation improves the catabolic potentialities of the soil microflora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号