首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arabidopsis seeds rapidly release hydrophilic polysaccharides from the seed coat on imbibition. These form a heavy mucilage layer around the seed that makes it sink in water. Fourteen natural Arabidopsis variants from central Asia and Scandinavia were identified with seeds that have modified mucilage release and float. Four of these have a novel mucilage phenotype with almost none of the released mucilage adhering to the seed and the absence of cellulose microfibrils. Mucilage release was modified in the variants by ten independent causal mutations in four different loci. Seven distinct mutations affected one locus, coding the MUM2 β-D-galactosidase, and represent a striking example of allelic heterogeneity. The modification of mucilage release has thus evolved a number of times independently in two restricted geographical zones. All the natural mutants identified still accumulated mucilage polysaccharides in seed coat epidermal cells. Using nuclear magnetic resonance (NMR) relaxometry their production and retention was shown to reduce water mobility into internal seed tissues during imbibition, which would help to maintain seed buoyancy. Surprisingly, despite released mucilage being an excellent hydrogel it did not increase the rate of water uptake by internal seed tissues and is more likely to play a role in retaining water around the seed.  相似文献   

2.
When Corticium rolfsii is grown under aerobic conditions in a medium containing one of several simple sugars or polysaccharides, it release α-L-arabinofuranosidase into the culture fluid. Araban and bran extract were found to be the most effective carbon sources in stimulating the production of the enzyme. Pectin and arabinose stimulated the production of the enzyme to a lesser degree, whereas xylose, glucose, galactose, and sucrose caused the formation of a relatively small amount of α-L-arabinofuranosidase. α-L-Arabinofuranosidase was demonstrated by its ability to hydrolyze phenyl-α-L-arabinofuranoside, araban, and arabinoxylan. The pH optimum of the enzyme was 2.5. At pH values of 2 to 9, the enzyme lost less than 15% of its activity during a 72-hr period at 2 C. At 70 C, its stability was greatest at pH values of 4 to 6.  相似文献   

3.
When Corticium rolfsii is grown under aerobic conditions in a medium containing one of several simple sugars or polysaccharides, it release α-L-arabinofuranosidase into the culture fluid. Araban and bran extract were found to be the most effective carbon sources in stimulating the production of the enzyme. Pectin and arabinose stimulated the production of the enzyme to a lesser degree, whereas xylose, glucose, galactose, and sucrose caused the formation of a relatively small amount of α-L-arabinofuranosidase. α-L-Arabinofuranosidase was demonstrated by its ability to hydrolyze phenyl-α-L-arabinofuranoside, araban, and arabinoxylan. The pH optimum of the enzyme was 2.5. At pH values of 2 to 9, the enzyme lost less than 15% of its activity during a 72-hr period at 2 C. At 70 C, its stability was greatest at pH values of 4 to 6.  相似文献   

4.

Background

The epidermal cells of the seed coat of certain species accumulate polysaccharides during seed development for cell wall reinforcement or release on imbibition to form mucilage. Seed-coat epidermal cells show natural variation in their structure and mucilage production, which could explain the diverse ecophysiological roles proposed for the latter. Arabidopsis mucilage mutants have proved to be an important tool for the identification of genes involved in the production of seed-coat polysaccharides.

Scope

This review documents genes that have been characterized as playing a role in the differentiation of the epidermal cells of the arabidopsis seed coat, the natural variability in polysaccharide features of these cells and the physiological roles attributed to seed mucilage.

Conclusions

Seed-coat epidermal cells are an excellent model for the study of polysaccharide metabolism and properties. Intra- and interspecies natural variation in the differentiation of these epidermal cells is an under-exploited resource for such studies and promises to play an important part in improving our knowledge of polysaccharide production and ecophysiological function.  相似文献   

5.
Three wheat (Triticum aestivum L.) mutants that lacked dormancyat maturity were isolated from an ethylmethane sulphonate-treatedpopulation of a dormant red-grained line, Kitakei-1354 (Kitakei).The three mutants (EH47-1, EH47-2-5 and EH47-2-6) were selectedin segregating generations derived from one M2 plant. They differin morphological and physiological characteristics, showingthat these mutants contained several mutations besides non-dormancy.Despite these differences, embryos of all the mutants rapidlylost sensitivity to abscisic acid (ABA) during the later halfof seed maturation while Kitakei embryos maintained the sensitivityeven after maturity. These results suggest that embryo sensitivityto ABA plays a key role in seed dormancy. The profile of ABAcontent of EH47-1 embryos during seed development was similarto that of Kitakei, except for a significantly lower level at30 d after pollination (DAP). This reduced level of ABA at DAP30is discussed in relation to the development of seed dormancyand ABA sensitivity of the embryos. Segregation ratios for non-dormancyin progeny of EH47-1Kitakei crosses suggest that the non-dormancyof EH47-1 is a single dominant mutation. Key words: Abscisic acid, wheat, seed dormancy, inheritance, mutant  相似文献   

6.
Seed viability, dormancy and germination efficiency are very important aspects of the life cycle of plants and their potential to survive and spread in the environment. To characterize the genes controlling these processes, we have devised a technique for the selection of mutants impaired in seed germination. Selection for such a trait is complicated by physiological factors that interact with these processes and affect seed germination efficiency. The distinction between low seed germination potential due to physiological factors that interfere with seed maturation or germination and germination deficiency due to genetic factors was based on screening for tagged mutations.Arabidopsis thaliana T-DNA primary transformants obtained by an in planta transformation technique are all heterozygotes. We screened for lack of germination of 1/4 of the seeds in the progeny of independent transformants, and simultaneously for the abnormal segregation (2:1 instead of 3:1) of a kanamycin resistance marker carried by the T-DNA inserted into the genome of these primary transformants in the plants that germinate. This yielded several mutants affected in the germination processes. One of the mutants, designated ABC33, was further characterized. Once the viable embryos from non-germinating seeds were removed from their testa, they grew and displayed a dwarf phenotype which could be complemented by providing gibberellic acid. A genetic and molecular analysis, based on the characterization of the flanking genomic sequences of the T-DNA insert, showed that ABC33 is a new loss-of-function allele at theGA 1 locus.  相似文献   

7.
Somatic embryogenesis (SE) of Pinus strobus L. has been greatly improved over the last few years with respect to both the initiation frequencies from a number of seed families and production of mature somatic embryos that readily convert to plants. However, there are no data on biochemical characterization of somatic embryos in relation to zygotic embryos of eastern white pine and on the optimal duration of the maturation stage. It is believed that somatic embryos closely resembling zygotic embryos not only morphologically but biochemically would display more vigorous growth. Hence, in this study the accumulation pattern of the most abundant seed storage proteins in zygotic and somatic embryos were characterized by sodium dodecyl sulphate‐polyacrylamide gel electrophoresis (SDS‐PAGE) and identified by amino acid sequencing and tandem mass spectrometry (MS/MS). This showed that somatic embryos accumulated storage proteins in a similar manner to zygotic embryos and that the most abundant were the buffer‐insoluble 11S‐ globulins MW 59.6 kDa, which dissociated under reduced conditions to 38.2–40.0 and 22.5–23.5 kDa range polypeptides, and buffer‐soluble 7S vicilin‐like proteins MW 46.0–49.0 kDa, which did not separate under reduced conditions. Other relatively abundant soluble proteins were in the ranges of 25–27 and 27–29 kDa. The only group of proteins that showed different migration profiles in the presence of β‐mercaptoethanol (ME) were the low molecular mass proteins of 14.6–16.5 kDa. Somatic embryos that matured for 9 weeks on medium with 6% sucrose accumulated more storage proteins than those matured on medium with 3% sucrose and the extension of the maturation period to 12 weeks resulted in significant reduction of the storage proteins on both media. As expected, somatic embryos matured on medium with 6% sucrose had lower water potential (Ψ) than those from medium with 3% sucrose. Nonetheless, the somatic embryos matured under the best of tested conditions (6% sucrose for 9 weeks) had slightly higher water content; 1.35 ± 0.28 g H2O g?1 DM (mean ± sd ) than the mature non‐dried zygotic embryos; (1.16 ± 0.09 g H2O g?1 DM), and accumulated less storage proteins, whose amounts were either similar to (7S‐vicilins) or below (11S‐globulins) those found in the immature zygotic embryos collected 2 weeks prior to the usual cone collection. The implications of these results for further research and development of viable artificial seed is discussed.  相似文献   

8.
Seed viability, dormancy and germination efficiency are very important aspects of the life cycle of plants and their potential to survive and spread in the environment. To characterize the genes controlling these processes, we have devised a technique for the selection of mutants impaired in seed germination. Selection for such a trait is complicated by physiological factors that interact with these processes and affect seed germination efficiency. The distinction between low seed germination potential due to physiological factors that interfere with seed maturation or germination and germination deficiency due to genetic factors was based on screening for tagged mutations.Arabidopsis thaliana T-DNA primary transformants obtained by an in planta transformation technique are all heterozygotes. We screened for lack of germination of 1/4 of the seeds in the progeny of independent transformants, and simultaneously for the abnormal segregation (2:1 instead of 3:1) of a kanamycin resistance marker carried by the T-DNA inserted into the genome of these primary transformants in the plants that germinate. This yielded several mutants affected in the germination processes. One of the mutants, designated ABC33, was further characterized. Once the viable embryos from non-germinating seeds were removed from their testa, they grew and displayed a dwarf phenotype which could be complemented by providing gibberellic acid. A genetic and molecular analysis, based on the characterization of the flanking genomic sequences of the T-DNA insert, showed that ABC33 is a new loss-of-function allele at theGA 1 locus.  相似文献   

9.
Two xyloglucan fractions have been isolated from the cotyledons of resting white-mustard seeds, the first by extraction with hot EDTA, and the second by subsequent extraction with alkali or lithium thiocyanate. Although both appear to have the ;amyloid' type of structure in which chains of (1-->4)-linked beta-d-glucopyranose residues carry d-xylose-rich side chains through position 6, these side chains are rather different in structure in the two polysaccharide fractions, and the second or ;insoluble' xyloglucan has fewer of them. The side chains in both polysaccharides are also different from those in other seed amyloids, especially in having xylose linked through positions 3 and 4 (instead of through position 2 as usual) and in containing fucose residues. Both polysaccharides show the characteristic blue ;amyloid' colour with iodine in the presence of sodium sulphate, and it is suggested that this arises by the interaction of iodine molecules and possibly iodide ions within the interstices between aggregated xyloglucan chains. ;Soluble' xyloglucan is metabolized during germination and is presumed to have a reserve function. ;Insoluble' xyloglucan is metabolized less completely over the period studied but its lack of turnover during cell-wall differentiation indicates that it also is a reserve. These and other beta-(1-->4)-linked reserve polysaccharides of seeds might also have a structural function which is of particular value for the survival of the dormant seed.  相似文献   

10.
Male rats with thoracic duct cannulae were intubated with mustard-seed oil or the corresponding fatty acid methyl esters and the lymph was collected over 0-24 h. The chylomicron and very low density lipoprotein fractions were obtained by conventional ultracentrifugation. The triacylglycerols and glycerophospholipids were isolated and the positional distribution and molecular association of fatty acids were determined by stereospecific and chromatographic methods. The oleic, linoleic, and linolenic acids were recovered in the lymph in the proportion in which they occurred in the fat fed, while eicosenoic, erucic, and lignoceric acids were rejected to about the same extent by the two pathways of intestinal triacylglycerol biosynthesis. It is shown that the lymph triacylglycerols arising via the monoacylglycerol or the phosphatidic acid pathway possess structures that are closely similar to each other and to that of the original mustard-seed oil. It is proposed that this is a result of comparable fatty acid and positional specificity of the acyltransferases associated with the acylglycerol synthesis in the animal and plant tissues and the wide range of fatty acid chain lengths in the mustard-seed oil.  相似文献   

11.
Effect of fucoidans from the Far Eastern brown algae Laminaria japonica, L. cichoroides, and Fucus evanescens on developing embryos of the sea urchin Strongylocentrotus intermedius was studied. Fucoidans from these algae were shown to have different (immunostimulating, inhibitory) effects on the developing embryos. All studied fucoidan fractions added at the zygote stage had a stimulatory effect (acceleration of developmental stages and an increase of life spans) on the developing embryos, with differences by their effective concentrations. Many fucoidans added at the late blastula stage did not produce the stimulatory effect. The lowest number of immunostimulators (only a half of the tested substances) were present among fucoidans from L. japonica cichoriodes. The best immunostimulators that increased 2–3 times the life span of the embryos were heteropolysaccharides containing mannose or xylose apart from L-fucose. Some fucoidans at high concentrations produced an inhibitory effect; they were mainly composed of L-fucose or their monosaccharide composition included, apart from fucose, a significant amount of galactose, but no mannose. The method that we used turned out to be sensitive to structural peculiarities of charged polysaccharides, so it most likely can be applied for evaluation of their immunostimulating properties. From two variants of the experiment the most sensitive was the second one, in which polysaccharides were added at the late blastula stage.Translated from Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, Vol. 41, No. 1, 2005, pp. 51–58.Original Russian Text Copyright © 2005 by Kiseleva, Shevchenko, Krupnova, Zvyagintseva.  相似文献   

12.
Changes in the neutral sugar compositions of cell walls werestudied during regeneration of shoots and roots from culturedcarrot cells and during maturation of soybean seeds. There weremore arabinan and arabinose-rich acidic polysaccharides thangalactose-rich polysaccharides in the pectic fractions of thecell walls from cultured carrot cells and more galactan, arabinogalactanor both than the arabinose-rich polysaccharides in the samefractions from their mother tissue, i.e. root phloem tissue. The arabinose content of the cell walls decreased and the galactosecontent increased during root and shoot formation until galactoseexceeded arabinose in the cell walls of fully developed shootsand roots from cultured cells. The cell wall arabinose contentalso was higher than that of galactose in cotyledons and embryonicaxes of immature soybean seeds, and change in the neutral sugarcomposition of the cell wall during seed maturation was similarto that during the redifTerentiation of cultured carrot cells.During the very late stage of maturation, galactose in the cellwalls exceeded the content of arabinose. Results suggest that the redifferentiation of roots and shootsfrom cultured cells goes through a process of cell wall formationsimilar to that of embryogenesis or seed development in themother plants. Results also indicate that the predominant arabinanand arabinose-rich acidic polysaccharides have important functionsin cell walls during embryogenesis and in the eraly stages ofseed maturation and that galactan, arabinogalactan, or bothreplace these arabinose-rich polysaccharides after seed maturation. 2Present address: Department of Botany, the University of BritishColumbia, # 3529-6270 University Blvd.,Vancouver, B.C. V6T 2B1Canada (Received October 28, 1982; Accepted April 8, 1983)  相似文献   

13.
Developing seeds of alfalfa (Medicago sativa L.) acquire the ability to germinate during the latter stages of development, the maturation drying phase. Isolated embryos placed on Murashige and Skoog medium germinate well during early and late development, but poorly during mid-development; however, when placed on water they germinate well only during the latter stage of development. Germination of isolated embryos is very slow and poor when they are incubated in the presence of surrounding seed structures (the endosperm or seed coat) taken from the mid-development stages. This inhibitory effect is also achieved by incubating embryos in 10?5 M abscisic acid (ABA). Endogenous ABA attains a high level during mid-development, especially in the endosperm. Seeds developing in pods treated with fluridone (1-methyl-3-phenyl-5[3-(trifluoromethyl)-phenyl]-4(1H)-pyridinone) contain low levels of ABA during mid-development, and the endosperm and seed coat only weakly inhibit the germination of isolated embryos. However, intact seeds from fluridone-treated pods do not germinate viviparously, which is indicative that ABA alone is not responsible for maintaining seeds in a developing state. Application of osmoticum (e.g. 0.35 M sucrose) to isolated developing embryos prevents their germination. Also, in the developing seed in situ the osmotic potential is high. Thus internal levels of osmoticum may play a role in preventing germination of the embryo and maintaining development. Abscisic acid and osmoticum impart distinctly different metabolic responses on developing embryos, as demonstrated by their protein-synthetic capacity. Only in the presence of osmoticum do embryos synthesize proteins which are distinctly recognizable as those synthesized by developing embryos in situ, i.e. when inside the pod. Abscisic acid induces the synthesis of a few unique proteins, but these arise even in mature embryos treated with ABA. Thus while both osmoticum and ABA prevent precocious germination, their effects on the synthetic capacity of the developing embryo are quite distinct. Since seeds with low endogenous ABA do not germinate, osmotic regulation may be the more important of these two factors in controlling seed development.  相似文献   

14.
The embryo of Arabidopsis seeds is symplasmically isolated from the surrounding seed coat and endosperm, and uptake of nutrients from the seed apoplast is required for embryo growth and storage reserve accumulation. With the aim of understanding the importance of nitrogen (N) uptake into developing embryos, we analysed two mutants of AAP1 (At1g58360), an amino acid transporter that was localized to Arabidopsis embryos. In mature and desiccated aap1 seeds the total N and carbon content was reduced while the total free amino acid levels were strongly increased. Separately analysed embryos and seed coats/endosperm of mature seeds showed that the elevated amounts in amino acids were caused by an accumulation in the seed coat/endosperm, demonstrating that a decrease in uptake of amino acids by the aap1 embryo affects the N pool in the seed coat/endosperm. Also, the number of protein bodies was increased in the aap1 endosperm, suggesting that the accumulation of free amino acids triggered protein synthesis. Analysis of seed storage compounds revealed that the total fatty acid content was unchanged in aap1 seeds, but storage protein levels were decreased. Expression analysis of genes of seed N transport, metabolism and storage was in agreement with the biochemical data. In addition, seed weight, as well as total silique and seed number, was reduced in the mutants. Together, these results demonstrate that seed protein synthesis and seed weight is dependent on N availability and that AAP1-mediated uptake of amino acids by the embryo is important for storage protein synthesis and seed yield.  相似文献   

15.
M. A. Webb  H. J. Arnott 《Protoplasma》1981,108(1-2):191-195
Summary Electron microscopic observations of three oilseeds, zucchini, yucca, and okra, have revealed a substance occurring in the intercellular spaces in the embryos of these seeds. Extraction methods and histochemical tests for light microscopy have characterized the material as lipid. Disappearance of the intercellular lipid during seed germination suggests that it may be utilized by the germinating seed.  相似文献   

16.
Isoflavonoid biosynthesis and accumulation in developing soybean seeds   总被引:6,自引:0,他引:6  
Isoflavonoids are biologically active natural products that accumulate in soybean seeds during development. The amount of isoflavonoids present in soybean seed is variable, depending on genetic and environmental factors that are not fully understood. Experiments were conducted to determine whether isoflavonoids are synthesized within seed tissues during development, or made in other plant organs and transported to the seeds where they accumulate. An analysis of isoflavonoids by HPLC detected the compounds in all organs of soybean plant, but the amount of isoflavonoids present varied depending on the tissue and developmental stage. The greatest concentrations were found in mature seeds and leaves. The 2-hydroxyisoflavanone synthase genes IFS1 and IFS2 were studied to determine their pattern of expression in different tissues and developmental stages. The highest level of expression of IFS1 was observed in the root and seed coat, while IFS2 was most highly expressed in embryos and pods, and in elicitor-treated or pathogen-challenged tissues. Incorporation of radiolabel into isoflavonoids was observed when developing embryos and other plant organs were fed with [(14)C]phenylalanine. Embryos excised from developing soybean seeds also accumulated isoflavonoids from a synthetic medium. A maternal effect on seed isoflavonoid content was noted in reciprocal crosses between soybean cultivars that differ in seed isoflavonoids. From these results, we propose that developing soybean embryos have an ability to synthesize isoflavonoids de novo, but that transport from maternal tissues may in part contribute to the accumulation of these natural products in the seed.  相似文献   

17.
Approximately 4000 mature seeds from 350 trees in nine populations (12–75 trees per population) of Siberian stone pine were investigated for multiple embryos (polyembryony). Haploid megagametophytes and embryos were genotyped for eight allozyme loci. Eight-yone seeds (2.11%) had more than 1 embryo. Of these, 71 seeds had 2 embryos (1.85%), 6 seeds had 3 embryos (0.16%), 3 seeds had 4 embryos (0.08%) and 1 seed had 6 embryos (0.026%). Allozyme comparison of megagametophytes and embryos could distinquish two types of polyembryony in 56 of the 81 seeds. In 28 seeds (50%) the polyembryony was polyzygotic (independent fertilizations of more than one egg cell in the ovule); 25 seeds (45%) had most likely monozygotic polyembryony (genetically identical embryos resulting from the cleavage of a single proembryo) and 3 seeds had both genetically different and genetically identical embryos. To the best of our knowledge, this is the first genetic evidence for the form of polyembryony in conifer seeds.  相似文献   

18.
The Arabidopsis thaliana accession Shahdara was identified as a rare naturally occurring mutant that does not liberate seed mucilage on imbibition. The defective locus was found to be allelic to the mum2-1 and mum2-2 mutants. Map-based cloning showed that MUCILAGE-MODIFIED2 (MUM2) encodes the putative beta-D-galactosidase BGAL6. Activity assays demonstrated that one of four major beta-D-galactosidase activities present in developing siliques is absent in mum2 mutants. No difference was observed in seed coat epidermal cell structure between wild-type and mutant seed; however, weakening of the outer tangential cell wall by chemical treatment resulted in the release of mucilage from mum2 seed coat epidermal cells, and the mum2 mucilage only increased slightly in volume, relative to the wild type. Consistent with the absence of beta-D-galactosidase activity in the mutant, the inner layer of mucilage contained more Gal. The allocation of polysaccharides between the inner and outer mucilage layers was also modified in mum2. Mass spectrometry showed that rhamnogalacturonan I in mutant mucilage had more branching between rhamnose and hexose residues relative to the wild type. We conclude that the MUM2/BGAL6 beta-D-galactosidase is required for maturation of rhamnogalacturonan I in seed mucilage by the removal of galactose/galactan branches, resulting in increased swelling and extrusion of the mucilage on seed hydration.  相似文献   

19.
20.
Large changes occur in the ascorbate system during the development of Vicia faba seed and these appear closely related to what are generally considered to be the three stages of embryogenesis. During the first stage, characterized by embryonic cells with high mitotic activity, the ascorbic acid/dehydroascorbic acid ratio is about 7, whereas in the following stage, characterized by rapid cell elongation (stage 2), it is lower than 1. The different ascorbic/dehydroascorbic ratio may be correlated with the level of ascorbate free radical reductase activity, which is high in stage 1 and lower in stage 2. Ascorbate peroxidase activity is high and remains constant throughout stages 1 and 2, but it decreases when the water content of the seed begins to decline (stage 3). In the dry seed, the enzyme disappears together with ascorbic acid. Ascorbate peroxidase activity is observed to be 10 times higher than that of catalase, suggesting that ascorbate peroxidase, rather than catalase, is utilized in scavenging the H2O2 produced in the cell metabolism. There is no ascorbate oxidase in the seed of V. faba. V. faba seeds acquire the capability to synthesize ascorbic acid only after 30 days from anthesis, i.e. shortly before the onset of seed desiccation. This suggests that (a) the young seed is furnished with ascorbic acid by the parent plant throughout the period of intense growth, and (b) it is necessary for the seed to be endowed with the ascorbic acid biosynthetic system before entering the resting state so that the seed can promptly synthesize the ascorbic acid needed to reestablish metabolic activity when germination starts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号