首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrospray ionization mass spectrometry (ESI-MS) was used to measure the binding of Cu2+ ions to synthetic peptides corresponding to sections of the sequence of the mature prion protein (PrP). ESI-MS demonstrates that Cu2+ is unique among divalent metal ions in binding to PrP and defines the location of the major Cu2+ binding site as the octarepeat region in the N-terminal domain, containing multiple copies of the repeat ProHisGlyGlyGlyTrpGlyGln. The stoichiometries of the complexes measured directly by ESI-MS are pH dependent: a peptide containing four octarepeats chelates two Cu2+ ions at pH 6 but four at pH 7.4. At the higher pH, the binding of multiple Cu2+ ions occurs with a high degree of cooperativity for peptides C-terminally extended to incorporate a fifth histidine. Dissociation constants for each Cu2+ ion binding to the octarepeat peptides, reported here for the first time, are mostly in the low micromolar range; for the addition of the third and fourth Cu2+ ions to the extended peptides at pH 7.4, K(D)'s are <100 nM. N-terminal acetylation of the peptides caused some reduction in the stoichiometry of binding at both pH's. Cu2+ also binds to a peptide corresponding to the extreme N-terminus of PrP that precedes the octarepeats, arguing that this region of the sequence may also make a contribution to the Cu2+ complexation. Although the structure of the four-octarepeat peptide is not affected by pH changes in the absence of Cu2+, as judged by circular dichroism, Cu2+ binding induces a modest change at pH 6 and a major structural perturbation at pH 7.4. It is possible that PrP functions as a Cu2+ transporter by binding Cu2+ ions from the extracellular medium under physiologic conditions and then releasing some or all of this metal upon exposure to acidic pH in endosomes or secondary lysosomes.  相似文献   

2.
It has recently been shown that transition metal cations Zn2+ and Cu2+ bind to histidine residues of nerve growth factor (NGF) and other neurotrophins (a family of proteins important for neuronal survival) leading to their inactivation. Experimental data and theoretical considerations indicate that transition metal cations may destabilize the ionic form of histidine residues within proteins, thereby decreasing their pK(a) values. Because the release of transition metal cations and acidification of the local environment represent important events associated with brain injury, the ability of Zn2+ and Cu2+ to bind to neurotrophins in acidic conditions may alter neuronal death following stroke or as a result of traumatic injury. To test the hypothesis that metal ion binding to neurotrophins is influenced by pH, the effects of Zn2+ and Cu2+ on NGF conformation, receptor binding and NGF tyrosine kinase (trkA) receptor signal transduction were examined under conditions mimicking cerebral acidosis (pH range 5.5-7.4). The inhibitory effect of Zn2+ on biological activities of NGF is lost under acidic conditions. Conversely, the binding of Cu2+ to NGF is relatively independent of pH changes within the studied range. These data demonstrate that Cu2+ has greater binding affinity to NGF than Zn2+ at reduced pH, consistent with the higher affinity of Cu2+ for histidine residues. These findings suggest that cerebral acidosis associated with stroke or traumatic brain injury could neutralize the Zn2+-mediated inactivation of NGF, whereas corresponding pH changes would have little or no influence on the inhibitory effects of Cu2+. The importance of His84 of NGF for transition metal cation binding is demonstrated, confirming the involvement of this residue in metal ion coordination.  相似文献   

3.
The prion protein (PrP) is a Cu2+-binding cell-surface glycoprotein. Using various PrP fragments and spectroscopic techniques, we show that two Cu2+ ions bind to a region between residues 90 and 126. This region incorporates the neurotoxic portion of PrP, vital for prion propagation in transmissible spongiform encephalopathies. Pentapeptides PrP-(92-96) and PrP-(107-111) represent the minimum motif for Cu2+ binding to the PrP-(90-126) fragment. Consequently, we were surprised that the appearance of the visible CD spectra for two fragments of PrP, residues 90-126 and 91-115, are very different. We have shown that these differences do not arise from a change in the co-ordination geometry within the two fragments; rather, there is a change in the relative preference for the two binding sites centred at His111 and His96. These preferences are metal-, pH- and chain-length dependent. CD indicates that Cu2+ initially fills the site at His111 within the PrP-(90-126) fragment. The pH-dependence of the Cu2+ co-ordination is studied using EPR, visible CD and absorption spectroscopy. We present evidence that, at low pH (5.5) and sub-stoichiometric amounts of Cu2+, a multiple histidine complex forms, but, at neutral pH, Cu2+ binds to individual histidine residues. We have shown that changes in pH and levels of extracellular Cu2+ will affect the co-ordination mode, which has implications for the affinity, folding and redox properties of Cu-PrP.  相似文献   

4.
A new metal ion chelator has been developed for use in the immobilised metal ion affinity chromatography (IMAC) of proteins. The aromatic tridentate ligand 2,6-diaminomethylpyridine (bisampyr), 1, was prepared as the dihydrochloride salt, via a two step synthesis from 2,6-pyridinedimethanol, 2, and immobilised onto Sepharose CL-4B through an epoxide coupling procedure. The resulting sorbent was chelated with Cu2+ ions to a density of 420 micromol Cu2+ ions per g gel and then characterised by frontal analysis using the protein, horse heart myoglobin (HMYO), at pH 7.0 and 9.0. From the resulting adsorption isotherms, the adsorption capacity, qm, for HMYO at pH 7.0 and pH 9.0 with the immobilised Cu2+-bisampyr Sepharose sorbent was found to be 1.27 micromol protein/g gel and 1.43 micromol protein/g gel, whilst the corresponding dissociation constants, K(D)s, were 18.0 x 10(-6) M and 16.0 x 10(-6) M respectively. The results confirm that the HMYO-Cu2+-bisampyr complex had similar stability at these pH values. This finding is in contrast with the situation observed with some other commonly used IMAC chelating ligates such as Cu2+-iminodiacetic acid (Cu2+-IDA) or Cu2+-nitrilotriacetic acid (Cu2+-NTA). Using human serum proteins, the interactive properties of the immobilised Cu2+-bisampyr Sepharose sorbent were further characterised at pH 5.0, 7.0 and 9.0 with specific reference to the binding behaviour of albumin, transferrin, and alpha2-macroglobulin.  相似文献   

5.
The study describes the sorption of Cr, Cu, Mn and Zn by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum and heavy metals. The concentrations studied were 50, 49, 60 and 70 (mg L(-1)) for Cr, Cu, Mn and Zn, respectively. The solution pH and ionic strength were very important factors in the metal biosorption performance and the biosorption capacity of P. aeruginosa AT18 for Cr3+,Cu2+, Mn2+ and Zn2+. In aqueous solution, the biosorption increased with increasing pH in the range 5.46-7.72. The results obtained in the experimental assays show that P. aeruginosa AT18 has the capacity for biosorption of the metallic ions Cr3+, Cu2+ and Zn2+ in solutions, although its capacity for the sorption of manganese is low (22.39 mg Mn2+/g of biomass) in comparison to the Cr3+, Cu2+ and Zn2+ ions, as shown by the individual analyses. However, 20% of the manganese was removed from an initial concentration of 49.0 mg L(-1), with a Qm value similar to that obtained in solutions containing mixtures of Cr3+, Cu2+, Mn2+and Zn2+. The chromium level sorbed by P. aeruginosa AT18 biomass was higher than that for Cu, Mn and Zn, with 100% removal in the pH range 7.00-7.72 and a Qm of 121.90-200.00 mg of Cr3+/g of biomass. The removal of Cr, Cu and Zn is also a result of precipitation processes.  相似文献   

6.
It has been shown previously that the unfolded N-terminal domain of the prion protein can bind up to six Cu2+ ions in vitro. This domain contains four tandem repeats of the octapeptide sequence PHGGGWGQ, which, alongside the two histidine residues at positions 96 and 111, contribute to its Cu2+ binding properties. At the maximum metal-ion occupancy each Cu2+ is co-ordinated by a single imidazole and deprotonated backbone amide groups. However two recent studies of peptides representing the octapeptide repeat region of the protein have shown, that at low Cu2+ availability, an alternative mode of co-ordination occurs where the metal ion is bound by multiple histidine imidazole groups. Both modes of binding are readily populated at pH 7.4, while mild acidification to pH 5.5 selects in favour of the low occupancy, multiple imidazole binding mode. We have used NMR to resolve how Cu2+ binds to the full-length prion protein under mildly acidic conditions where multiple histidine co-ordination is dominant. We show that at pH 5.5 the protein binds two Cu2+ ions, and that all six histidine residues of the unfolded N-terminal domain and the N-terminal amine act as ligands. These two sites are of sufficient affinity to be maintained in the presence of millimolar concentrations of competing exogenous histidine. A previously unknown interaction between the N-terminal domain and a site on the C-terminal domain becomes apparent when the protein is loaded with Cu2+. Furthermore, the data reveal that sub-stoichiometric quantities of Cu2+ will cause self-association of the prion protein in vitro, suggesting that Cu2+ may play a role in controlling oligomerization in vivo.  相似文献   

7.
Copper is an essential trace element that may serve as a signaling molecule in the nervous system. Here we show that extracellular Cu2+ is a potent inhibitor of BK and Shaker K+ channels. At low micromolar concentrations, Cu2+ rapidly and reversibly reduces macrosocopic K+ conductance (G(K)) evoked from mSlo1 BK channels by membrane depolarization. GK is reduced in a dose-dependent manner with an IC50 and Hill coefficient of 2 microM and 1.0, respectively. Saturating 100 microM Cu2+ shifts the GK-V relation by +74 mV and reduces G(Kmax) by 27% without affecting single channel conductance. However, 100 microM Cu2+ fails to inhibit GK when applied during membrane depolarization, suggesting that Cu2+ interacts poorly with the activated channel. Of other transition metal ions tested, only Zn2+ and Cd2+ had significant effects at 100 microM with IC(50)s > 0.5 mM, suggesting the binding site is Cu2+ selective. Mutation of external Cys or His residues did not alter Cu2+ sensitivity. However, four putative Cu2+-coordinating residues were identified (D133, Q151, D153, and R207) in transmembrane segments S1, S2, and S4 of the mSlo1 voltage sensor, based on the ability of substitutions at these positions to alter Cu2+ and/or Cd2+ sensitivity. Consistent with the presence of acidic residues in the binding site, Cu2+ sensitivity was reduced at low extracellular pH. The three charged positions in S1, S2, and S4 are highly conserved among voltage-gated channels and could play a general role in metal sensitivity. We demonstrate that Shaker, like mSlo1, is much more sensitive to Cu2+ than Zn2+ and that sensitivity to these metals is altered by mutating the conserved positions in S1 or S4 or reducing pH. Our results suggest that the voltage sensor forms a state- and pH-dependent, metal-selective binding pocket that may be occupied by Cu2+ at physiologically relevant concentrations to inhibit activation of BK and other channels.  相似文献   

8.
Copper transport across pea thylakoid membranes   总被引:6,自引:0,他引:6       下载免费PDF全文
The initial rate of Cu2+ movement across the thylakoid membrane of pea (Pisum sativum) chloroplasts was directly measured by stopped-flow spectrofluorometry using membranes loaded with the Cu(2+)-sensitive fluorophore Phen Green SK. Cu2+ transport was rapid, reaching completion within 0.5 s. The initial rate of uptake was dependent upon Cu2+ concentration and saturated at about 0.6 microm total Cu2+. Cu2+ uptake was maximal at a thylakoid lumen pH of 7.0. Cu2+ transport was inhibited by Zn2+ but was largely unaffected by Mn2+ and Cu+. Zn2+ inhibited Cu2+ transport to a maximum of 60%, indicating that there may be more than one transporter for copper in pea thylakoid membranes.  相似文献   

9.
Interaction of alpha-lactalbumin with Cu2+   总被引:1,自引:0,他引:1  
It has been shown by intrinsic fluorescence spectroscopy that alpha-lactalbumin has several Cu2+ -binding sites per molecule. The Ca2+ -loaded protein binds two or more Cu2+ per molecule with an association constant of about 3 X 10(3) M-1. Apo-alpha-lactalbumin binds one Cu2+ per molecule with association constant 8 X 10(4) M-1 and from two to three Cu2+ with an association constant of about 4 X 10(3) M-1. The results obtained from spectrofluorometric pH titration of alpha-lactalbumin in the acidic pH region show the possible involvement of histidine residues in the coordination of Cu2+. The binding of Cu2+ to alpha-lactalbumin lowers significantly its thermostability and stability towards urea denaturation. The stability of Cu2+, Ca2+-alpha-lactalbumin against thermal and urea denaturation is similar to that of the apo protein. The thermal transition in Cu2+, Ca2+-alpha-lactalbumin occurs within the region of physiological temperatures which may suggest the existence of some thermal regulation of its functioning in vivo.  相似文献   

10.
We have developed a new technique to solubilize apolipoprotein B (ApoB) in aqueous solutions. The procedure involves stirring ApoB in 6 M guanidine/20 mM NH4Cl/NH4OH in the presence of cupric ammonia complexes at pH 9.7 for 20 h in N2, and then removing these reagents by a series of dialysis in N2. The resulting Cu(NH3)4(2)+-treated (Cu2+-treated) ApoB is soluble in aqueous buffers of pH above 8.3 or below 3. Parallel experiments carried out on control proteins, human albumin, alpha-lactalbumin, and insulin, indicated no change in molecular weight and no creation of a new NH2-terminal amino acid after Cu2+-treatment. By Edman degradation, the Cu2+-treated ApoB showed no detectable NH2-terminal amino acid. These results showed that the mechanism of Cu2+-solubilization of ApoB was not due to the cleavage of peptide bonds. Electrophoresis on urea-polyacrylamide gel, Cu2+-treated ApoB showed the same number of bands as the non-treated ApoB in the separating gels (7%) near the cathode, suggesting the heterogeneity of ApoB. In SDS-polyacrylamide gel (10%), the reduced and Cu2+-treated ApoB migrated with the similar mobilities to the monomer or dimer of human albumin. Antibodies raised against Cu2+-treated ApoB gave at least two immunoprecipitin lines against the Cu2+-treated ApoB as well as the non-treated guanidine-HCl-soluble ApoB, suggesting the presence of non-identical subunits.  相似文献   

11.
Reconstitution of factor VIII from isolated heavy chain (HC) and light chain (LC) shows pH-dependence. In the presence of Ca2+, up to 80% of native factor VIII activity was recovered over a wide range of pH. In contrast, affinity of HC and LC was maximal at pH 6.5-6.75 (Kd approximately 4 nM), whereas a Kd approximately 20 nM was observed at physiological pH (7.25). The effect of Cu2+ (0.5 microM total Cu2+) on maximal activity regenerated was negligible at pH 6.25-8.0. However, this level of Cu2+ increased the inter-chain affinity by approximately 5-fold at pH 7.25. This effect resulted from an approximately 1.5-fold increased association rate constant (k(on)) and an approximately 3-fold reduced dissociation rate constant (k(off)). High affinity (Kd=5.3 fM) of the factor VIII heterodimer for Cu2+ was estimated by increases in cofactor activity. No significant increase in inter-chain affinity was observed when either isolated chain was reacted with Cu2+ followed by addition of the complementary chain. Together, these results suggest that the protonation state of specific residues modulates inter-chain affinity. Furthermore, copper ion contributes to the maintenance of the heterodimer at physiologic pH by a mechanism consistent with bridging the two chains.  相似文献   

12.
Oxidative deamination by hydrogen peroxide in the presence of metals   总被引:1,自引:0,他引:1  
Various amines, including lysine residue of bovine serum albumin, were oxidatively deaminated to form the corresponding aldehydes by a H 2 O 2 /Cu 2+ oxidation system at physiological pH and temperature. The resulting aldehydes were measured by high-performance liquid chromatography. We investigated the effects of metal ions, pH, inhibitors, and O 2 on the oxidative deamination of benzylamine by H 2 O 2 . The formation of benzaldehyde was the greatest with Cu 2+ , and catalysis occurred with Co 2+ , VO 2+ , and Fe 3+ . The reaction was greatly accelerated as the pH value rose and was markedly inhibited by EDTA and catalase. Dimethyl sulfoxide and thiourea, which are hydroxyl radical scavengers, were also effective in inhibiting the generation of benzaldehyde, indicating that the reaction is a hydroxyl radical-mediated reaction. Superoxide dismutase greatly stimulated the reaction, probably due to the formation of hydroxyl radicals. O 2 was not required in the oxidation, and instead slightly inhibited the reaction. We also examined several oxidation systems. Ascorbic acid/O 2 /Cu 2+ and hemoglobin/H 2 O 2 systems also converted benzylamine to benzaldehyde. The proposed mechanism of the oxidative deamination by H 2 O 2 /Cu 2+ system is discussed.  相似文献   

13.
Experiments are reported demonstrating that differential rates of inactivation of the histochemical staining for myofibrillar actomyosin ATPase in rat skeletal muscle fibers exist following inclusion of low concentrations of Cu2+ in the preincubation medium. This response of rat muscle occurs at near neutral (7.40), acid (4.60), and alkaline (10.30) pH. The response to Cu2+ appears to result from a binding of Cu2+ onto the myofibrillar complex, probably on myosin itself, as it can be reversed by soaking of the pretreated muscle sections in sodium cyanide or the Cu2+ chelator diethyldithiocarbamate. The pattern of modification of the staining pattern following pretreatment with Cu2+ is the mirror image of that produced by pretreatment with acid. The results demonstrate that the inclusion of Cu2+ in the preincubation media for the myofibrillar actomyosin ATPase can be a useful tool to differentiate fiber types. They also support the earlier conclusion that three distinct types of type II fibers can be identified in rat skeletal muscle based on the histochemical staining for myofibrillar actomyosin ATPase.  相似文献   

14.
Abstract

Ground-water samples were collected from an uncontaminated and a contaminated site. Copper complexation was characterized by ion- selective electrode (ISE), fluorescence quenching (FQ), and cathodic stripping voltammetric (CSV) titrations. All of the samples were titrated at their natural pH values and some of the samples were also titrated at other pH values. For a total Cu concentration of 10?6 M, the free Cu2+ concentrations in the samples from the uncontaminated site were all less than 10?7 M, while free Cu2+ in the samples from the contaminated site were all less than 10?8 M. For a particular sample and total Cu concentration, the free Cu2+ concentration decreased as the pH increased. Relative to ISE, FQ underestimated and CSV overestimated the degree of Cu2+ binding. The Cu2+ -complexing properties of the ground waters are similar to many published results for the same pH and for ligand concentrations normalized to T.O.C. Chemical equilibrium computations indicate that organic complexes would dominate Cu speciation in the uncontaminated ground waters for 10?7 to 10?5 M total Cu. In the contaminated ground waters, sulfide complexes would be the predominant Cu species for total Cu less than the total S(?11) concentration. Organic complexes would dominate Cu speciation for total Cu greater than total S(?11).  相似文献   

15.
The highly repeated Drosophila melanogaster AAGAGAG satellite sequence is present at each chromosome centromere of the fly. We demonstrate here how, under nearly physiological pH conditions, these sequences can form a pyrimidine triple helix containing T.A-T and CCu.G-C base triplets, stabilized by Cu2+ metal ions in amounts mirroring in vivo concentrations. Ultraviolet experiments were used to monitor the triple helix formation at pH 7.2 in presence of Cu2+ ions. Triplex melting is observed at 23 degrees C. Furthermore, a characteristic signature of triple helix formation was obtained by Fourier transform infrared spectroscopy. The stabilization of the C.G-C base triplets at pH 7.2 is shown to occur via interactions of Cu2+ ions on the third strand cytosine N3 atom and on the guanine N7 atom of the polypurine target strand forming CCu.G-C triplets. Under the same neutral pH conditions in absence of Cu2+ ions, the triple helix fails to form. Possible biological implications are discussed.  相似文献   

16.
The reactions of copper(II)-aliphatic polyamine complexes with cysteine, cysteine methyl ester, penicillamine, and glutathione have been investigated, with the goal of understanding the relationship between RS- -Cu(II) adduct structure and preferred redox decay pathway. Considerable mechanistic flexibility exists within this class of mercapto amino acid oxidations, as changes in the rate law could be induced by modest variations in reductant concentration (at fixed [Cu(II)]0), pH, and the structure of the redox partners. With excess cysteine present at 25 degrees C, pH 5.0, I = 0.2 M (NaOAc), decay of 1:1 cys-S- -Cu(II) transient adducts was found to be first order in both cys-SH and transient. Second-order rate constants characteristic of Cu(dien)2+(6.1 X 10(3) M-1 sec-1), Cu(Me5dien)2+ (2.7 X 10(3) M-1 sec-1), Cu(en)22+ (2.1 X 10(3) M-1 sec-1), and Cu(dien)22+ (4.7 X 10(3) M-1 sec-1) are remarkably similar, considering substantial differences in the composition and geometry of the oxidant first coordination sphere. A mechanism involving attack of cysteine on the coordinated sulfur atom of the transient, giving a disulfide anion radical intermediate, is proposed to account for these results. Moderate reactivity decreases in the cysteine-Cu(dien)2+, Cu(Me5dien)2+ reactions with increasing [H+] (pH 4-6) reflect partial protonation of the polyamine ligands. A very different rate law, second order in the RS- -Cu(II) transient and approximately zeroth order in mercaptan, applies in the pH 5.0 oxidations of cysteine methyl ester, penicillamine, and glutathione by Cu(dien)2+ and Cu(Me5dien)2+. This behavior suggests the intermediacy of di-mu-mercapto-bridged binuclear Cu(II) species, in which a concerted two-electron change yields the disulfide and Cu(I) products. Similar hydroxo-bridged intermediates are proposed to account for the transition from first- to second-order transient dependence in cysteine oxidations by Cu(dien)2+ and Cu(Me5dien)2+ as the pH is increased from 5 to 7. Yet another rate law, second order in transient and first order in cysteine, applies in the pH 5.0 oxidation of cysteine by Cu(Me6tren)2+ (k(25 degrees C) 7.5 X 10(7) M-2 sec-1, I = 0.2M). Steric rigidity of this trigonal bipyramidal oxidant evidently protects the coordinated sulfur atom from attack in a RSSR- -forming pathway. Formation of a coordinated disulfide in the rate-determining step is proposed, coupled with attack of a noncoordinated cysteine molecule on a vacated coordination position to stabilize the (Me6tren)Cu(I) product.  相似文献   

17.
Interaction of Cu2+ ion with milk xanthine oxidase   总被引:1,自引:0,他引:1  
The interaction of Cu2+ ion with milk xanthine oxidase (XO) has been studied by optical spectroscopy, circular dichroism, ESR and transient kinetic techniques. It is observed that XO forms optically observable complexes with Cu2+ ion. The pH dependence studies of the formation of Cu2+-XO complex by optical spectroscopy and circular dichroism show that at least one ionizable group may be responsible for the formation of the complex. The EPR studies show that Cu2+ ion binds to XO with sulfur and nitrogenous ligands. The transient kinetic study of the interaction of Cu2+ with XO shows the existence of two Cu2+ bound XO complexes formed at two different time scales of the interaction, one at < or =5 ms and the other one at around 20 s. The complex formed at longer time scale may be responsible for the inhibition of the enzyme activity.  相似文献   

18.
还原六价铬细菌及其还原酶的研究   总被引:1,自引:0,他引:1  
从活性污泥中筛选出的C-2苏云金芽孢杆菌,能耐受250mg/L的六价铬,并具有较好的还原能力。研究表明木糖、果糖、玉米饼粉、苹果酸、琥珀酸、柠檬酸及Cu2+、Fe2+、Ca2+离子对C-2菌的还原有积极作用,菌体的接种量影响还原的速率。C-2菌还原的最适温度为37℃,最适pH为9.0;六价铬还原酶的最适pH为7.0、温度为37℃,Co2+、Cu2+、Fe2+、DTT、NADH对酶的还原有积极影响。  相似文献   

19.
Amyloid protein (Abeta1-40) aggregation and conformation was examined using native and sodium dodecyl sulfate/polyacrylamide gel electrophoresis, and the results compared with those obtained by atomic force microscopy, and with Congo red binding, sedimentation and turbidity assays. The amount of Abeta aggregation measured was different, depending upon the method used. Incubation for 15 min at pH 5.0 or in the presence of Fe2+, Cu2+ or Zn2+ did not alter the level of Abeta oligomers observed on SDS and native gels. However, the slow aggregation of Abeta to form high molecular mass species over 5 days was inhibited. In contrast, when Abeta aggregation was monitored using a Congo red binding assay or sedimentation assay, a rapid increase in Abeta aggregation was observed after incubation for 15 min at pH 5.0, or in the presence of Fe2+, Cu2+ or Zn2+. The low pH-, Zn2+- or Cu2+-induced Abeta aggregation measured in a turbidity assay was reversible. In contrast, a considerable proportion of the Abeta aggregation measured by native and SDS/PAGE was stable. Atomic force microscopy studies showed that Abeta aged at pH 5.0 or in the presence of Zn2+ produced larger looser rod-shaped aggregates than at pH 7.4. Abeta that had been aged at pH 7.4 was more cytotoxic than Abeta aged at pH 5.0. Taken together, the results suggest that Abeta oligomerizes via two mutually exclusive mechanisms to form two different types of aggregates, which differ in their cytotoxic properties.  相似文献   

20.
Carbon-13 nuclear magnetic resonance spectroscopy has been used to identify sites in bacitracin which bind Cu2+ and Mn2+. Results are presented which implicate the free carboxyl groups of the aspartic and glutamic acid residues and the imidazole ring of the histidine residue as metal complexation sites between pH 6 and 8. Evidence is presented which also indicates that the thiazoline ring of bacitracin binds Mn2+. Bacitracin does not bind Cu2+ or Mn2+ at pH values of 2.5 or less.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号