首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Branched cable voltage recording and voltage clamp analytical solutions derived in two previous papers are used to explore practical issues concerning voltage clamp. Single exponentials can be fitted reasonably well to the decay phase of clamped synaptic currents, although they contain many underlying components. The effective time constant depends on the fit interval. The smoothing effects on synaptic clamp currents of dendritic cables and series resistance are explored with a single cylinder + soma model, for inputs with different time courses. "Soma" and "cable" charging currents cannot be separated easily when the soma is much smaller than the dendrites. Subtractive soma capacitance compensation and series resistance compensation are discussed. In a hippocampal CA1 pyramidal neurone model, voltage control at most dendritic sites is extremely poor. Parameter dependencies are illustrated. The effects of series resistance compound those of dendritic cables and depend on the "effective capacitance" of the cell. Plausible combinations of parameters can cause order-of-magnitude distortions to clamp current waveform measures of simulated Schaeffer collateral inputs. These voltage clamp problems are unlikely to be solved by the use of switch clamp methods.  相似文献   

2.
A model is presented for the subthreshold polarization of a neuron by an applied electric field. It gives insight into how morphological features of a neuron affect its polarizability. The neuronal model consists of one or more extensively branched dendritic trees, a lumped somatic impedance, and a myelinated axon with nodes of Ranvier. The dendritic trees branch according to the 3/2-power rule of Rall, so that each tree has an equivalent cylinder representation. Equations for the membrane potential at the soma and at the nodes of Ranvier, given an arbitrary specified external potential, are derived. The solutions determine the contributions made by the dendritic tree and the axon to the net polarization at the soma. In the case of a spatially constant electric field, both the magnitude and sign of the polarization depend on simple combinations of parameters describing the neuron. One important combination is given by the ratio of internal resistances for longitudinal current spread along the dendritic tree trunk and along the axon. A second is given by the ratio between the DC space constant for the dendritic tree trunk and the distance between nodes of Ranvier in the axon. A third is given by the product of the electric field and the space constant for the trunk of the dendritic tree. When a neuron with a straight axon is subjected to a constant field, the membrane potential decays exponentially with distance from the soma. Thus, the soma seems to be a likely site for action potential initiation when the field is strong enough to elicit suprathreshold polarization. In a simple example, the way in which orientation of the various parts of the neuron affects its polarization is examined. When an axon with a bend is subjected to a spatially constant field, polarization is focused at the bend, and this is another likely site for action potential initiation.  相似文献   

3.
The somatic shunt cable model for neurons.   总被引:5,自引:4,他引:1       下载免费PDF全文
The derivation of the equations for an electrical model of nerve cells is presented. The model consists of an equivalent cylinder, a lumped somatic impedance, and a variable shunt at the soma. This shunt was introduced to take into account the fast voltage decays observed following the injections of current pulses in some motoneurons and hippocampal granule cells that could not be explained by existing models. The shunt can be interpreted either by penetration damage with the electrode or by a lower membrane specific resistance at the soma than in the dendrites. A solution of the model equations is presented that allows the estimation of the electrotonic length L, the membrane time constant tau m, the dendritic dominance ratio rho, and the shunt parameter epsilon, based only on the measurement of the first two coefficients and time constants in the multiexponential voltage response to injected current pulses.  相似文献   

4.
Small volumes of N-Methyl-D-Aspartate (NMDA) and non-NMDA excitatory amino acid receptor agonists were applied to localized regions of the dendritic trees of lamprey spinal neurons along their medial-lateral axis to obtain a spatial map of glutamate receptor distribution. Voltage clamp and frequency domain methods were used to obtain quantitative kinetic data of the voltage dependent ionic channels located both on the soma and on highly branched dendritic membranes. Pressure pulses of NMDA applied to the most peripheral regions of the dendritic tree elicited large somatic impedance increases, indicating that the most peripheral dendrites are well supplied with NMDA receptors. Experiments done with kainate did not elicit somatic responses to agonist applications on peripheral dendrites. The data obtained are consistent with the hypothesis that the activation of NMDA receptors by exogenous glutamate is significantly modified by the simultaneous activation of non-NMDA receptors, which shunts the NMDA response. The non-NMDA shunting hypothesis was tested by a combined application of kainate and NMDA to mimic the action of glutamate showing that the shunting effect of non-NMDA receptor activation virtually abolished the marked voltage dependency typical of NMDA receptor activation. These data were interpreted with a compartmental neuronal model having both NMDA and non-NMDA receptors.  相似文献   

5.
G Major  J D Evans    J J Jack 《Biophysical journal》1993,65(1):423-449
An analytical solution is derived for voltage transients in an arbitrarily branching passive cable neurone model with a soma and somatic shunt. The response to injected currents can be represented as an infinite series of exponentially decaying components with different time constants and amplitudes. The time constants of a given model, obtained from the roots of a recursive transcendental equation, are independent of the stimulating and recording positions. Each amplitude is the product of three factors dependent on the corresponding root: one constant over the cell, one varying with the input site, and one with the recording site. The amplitudes are not altered by interchanging these sites. The solution reveals explicitly some of the parameter dependencies of the responses. An efficient recursive root-finding algorithm is described. Certain regular geometries lead to "lost" roots; difficulties associated with these can be avoided by making small changes to the lengths of affected segments. Complicated cells, such as a CA1 pyramid, produce many closely spaced time constants in the range of interest. Models with large somatic shunts and dendrites of unequal electrotonic lengths can produce large amplitude waveform components with surprisingly slow time constants. This analytic solution should complement existing passive neurone modeling techniques.  相似文献   

6.
Mathematical solutions and numerical illustrations are presented for the steady-state distribution of membrane potential in an extensively branched neuron model, when steady electric current is injected into only one dendritic branch. Explicit expressions are obtained for input resistance at the branch input site and for voltage attenuation from the input site to the soma; expressions for AC steady-state input impedance and attenuation are also presented. The theoretical model assumes passive membrane properties and the equivalent cylinder constraint on branch diameters. Numerical examples illustrate how branch input resistance and steady attenuation depend upon the following: the number of dendritic trees, the orders of dendritic branching, the electrotonic length of the dendritic trees, the location of the dendritic input site, and the input resistance at the soma. The application to cat spinal motoneurons, and to other neuron types, is discussed. The effect of a large dendritic input resistance upon the amount of local membrane depolarization at the synaptic site, and upon the amount of depolarization reaching the soma, is illustrated and discussed; simple proportionality with input resistance does not hold, in general. Also, branch input resistance is shown to exceed the input resistance at the soma by an amount that is always less than the sum of core resistances along the path from the input site to the soma.  相似文献   

7.
Axon voltage-clamp simulations. A multicellular preparation.   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

8.
9.
The somatic shunt cable model for neurones is extended to the case in which several equivalent cylinders, not necessarily of the same electrotonic length, emanate from the cell soma. The cable equation is assumed to hold in each cylinder and is solved with sealed end conditions and a lumped soma boundary condition at a common origin. A Green's function (G) is defined, corresponding to the voltage response to an instantaneous current pulse at an arbitrary point along one of the cylinders. An eigenfunction expansion for G is obtained where the coefficients are determined using the calculus of residues and compared with an alternative method of derivation using a modified orthogonality condition. This expansion converges quickly for large time, but, for small time, a more convenient alternative expansion is obtained by Laplace transforms. The voltage response to arbitrary currents injected at arbitrary sites in the dendritic tree (including the soma) may then be expressed as a convolution integral involving G. Illustrative examples are presented for a point charge input.  相似文献   

10.
A theoretical basis is provided for the estimation of the electrotonic length of a membrane cylinder, or the effective electrotonic length of a whole neuron, from electrophysiological experiments. It depends upon the several time constants present in passive decay of membrane potential from an initially nonuniform distribution over the length. In addition to the well known passive membrane time constant, τm = RmCm, observed in the decay of a uniform membrane potential, there exist many smaller time constants that govern rapid equalization of membrane potential over the length. These time constants are present also in the transient response to a current step applied across the membrane at one location, such as the neuron soma. Similar time constants are derived when a lumped soma is coupled to one or more cylinders representing one or more dendritic trees. Different time constants are derived when a voltage clamp is applied at one location; the effects of both leaky and short-circuited termination are also derived. All of these time constants are demonstrated as consequences of mathematical boundary value problems. These results not only provide a basis for estimating electrotonic length, L = [unk]/λ, but also provide a new basis for estimating the steady-state ratio, ρ, of cylinder input conductance to soma membrane conductance.  相似文献   

11.
We investigated the spread of membrane voltage changes from the soma into the dendrites of cerebellar Purkinje cells by using voltage-imaging techniques in combination with intracellular recordings and by performing computer simulations using a detailed compartmental model of a cerebellar Purkinje cell. Fluorescence signals from single Purkinje cells in cerebellar cultures stained with the styryl dye di-4-ANEPPS were detected with a 10 × 10 photodiode array and a charge coupled device (CCD). Fluorescence intensity decreased and increased with membrane depolarization and hyperpolarization, respectively. The relation between fractional fluorescence change (F/F) and membrane potential could be described by a linear function with a slope of up to – 3%/100 mV. Hyperpolarizing and depolarizing voltage jumps applied to Purkinje cells voltage-clamped with an intrasomatic recording electrode induced dendritic dye signals, demonstrating that these voltage transients invaded the dendrites. Dye signals induced by depolarizing somatic voltage jumps were weaker in the dendrites, when compared with those induced by hyperpolarizing voltage jumps. Dendritic responses to hyperpolarizing voltage steps applied at the soma were attenuated when membrane conductance was increased by muscimol, an agonist for GABAAreceptors.Corresponding experimental protocols were applied to a previously developed detailed compartmental model of a Purkinje cell. In the model, as in the electrophysiological recordings, voltage attenuation from soma to dendrites increased under conditions where membrane conductance is increased by depolarization or by activation of GABAA receptors, respectively.We discuss how these results affect voltage clamp studies of synaptic currents and synaptic integration in Purkinje cells.  相似文献   

12.
13.
The efficacy of excitation induced by iontophoretic application of excitatory amino acids to the soma or different parts of the dendritic tree has been compared in experiments performed on parietal cortex slices. Spike activity was recorded extracellularly from single nerve cells of layer V. In total, the responses of 125 neurons were analyzed. Upon application of glutamate and aspartate to the neuronal soma and the majority of dendrites, latencies of excitatory responses did not exceed 500 msec. In 18% of cases, neuronal responses to transmitter application to basal and apical dendrites had longer (2–3 sec) latencies. The maximum intensity of responses was observed when excitatory amino acids had been applied to the soma or proximal parts of dendrites. If applied at a distance of over 100 µm to basal and 300 µm to apical dendrites, glutamate and aspartate elicited cellular responses whose intensity was 2–3 times lower than that of the responses induced by application to the soma. The maximum distances at which somatic spike responses could be recorded were 350 µm and 800 µm for basal and apical dendrites, respectively. Different latencies of the responses to somatic and dendritic applications of excitatory amino acids in some neurons, as well as high efficacy of responses to stimulation of remote parts of dendritic tree, may indicate nonidentity of electrical properties of dendritic and somatic membranes.Neirofiziologiya/Neurophysiology, Vol. 25, No. 6, pp. 437–446, November–December, 1993.  相似文献   

14.
The membrane properties of isolated neurons from Helix aspersa were examined by using a new suction pipette method. The method combines internal perfusion with voltage clamp of nerve cell bodies separated from their axons. Pretreatment with enzymes such as trypsin that alter membrane function is not required. A platinized platinum wire which ruptures the soma membrane allows low resistance access directly to the cell's interior improving the time resolution under voltage clamp by two orders of magnitude. The shunt resistance of the suction pipette was 10-50 times the neuronal membrane resistance, and the series resistance of the system, which was largely due to the tip diameter, was about 10(5) omega. However, the peak clamp currents were only about 20 nA for a 60-mV voltage step so that measurements of membrane voltage were accurate to within at least 3%. Spatial control of voltage was achieved only after somal separation, and nerve cell bodies isolated in this way do not generate all-or-none action potentials. Measurements of membrane potential, membrane resistance, and membrane time constant are equivalent to those obtained using intracellular micropipettes, the customary method. With the axon attached, comparable all-or-none action potentials were also measured by either method. Complete exchange of Cs+ for K+ was accomplished by internal perfusion and allowed K+ currents to be blocked. Na+ currents could then be blocked by TTX or suppressed by Tris-substituted snail Ringer solution. Ca2+ currents could be blocked using Ni2+ and other divalent cations as well as organic Ca2+ blockers. The most favorable intracellular anion was aspartate-, and the sequence of favorability was inverted from that found in squid axon.  相似文献   

15.
Mathematical expressions are obtained for the response function corresponding to an instantaneous pulse of current injected to a single dendritic branch in a branched dendritic neuron model. The theoretical model assumes passive membrane properties and the equivalent cylinder constraint on branch diameters. The response function when used in a convolution formula enables one to compute the voltage transient at any specified point in the dendritic tree for an arbitrary current injection at a given input location. A particular numerical example, for a brief current injection at a branch terminal, illustrates the attenuation and delay characteristics of the depolarization peak as it spreads throughout the neuron model. In contrast to the severe attenuation of voltage transients from branch input sites to the soma, the fraction of total input charge actually delivered to the soma and other trees is calculated to be about one-half. This fraction is independent of the input time course. Other numerical examples, which compare a branch terminal input site with a soma input site, demonstrate that, for a given transient current injection, the peak depolarization is not proportional to the input resistance at the injection site and, for a given synaptic conductance transient, the effective synaptic driving potential can be significantly reduced, resulting in less synaptic current flow and charge, for a branch input site. Also, for the synaptic case, the two inputs are compared on the basis of the excitatory post-synaptic potential (EPSP) seen at the soma and the total charge delivered to the soma.  相似文献   

16.
Action potentials of neurons of the turtle general cortex and the pattern of their generation were studied by an intracellular recording method. Besides the complete action potential, the cells also generate partial spikes of varied amplitude which compose the complete action potential. The threshold of generation and the discrete amplitude of each partial spike are not strictly constant but they fluctuate gradually and spontaneously within certain limits without any change in membrane potential of the cell. Somatic and dendritic spikes are distinguished. The trigger zones of the latter are located at various distances from the soma. During orthodromic activation of cortical neurons dendritic spikes are generated consecutively and spread to the some electrotonically with a decrement. They are the immediate cause of generation of the somatic spike.M. V. Lomonovsov Moscow State University. Translated from Neirofiziologiya, Vol. 8, No. 3, pp. 237–242, May–June, 1976.  相似文献   

17.
The voltage clamp technique is frequently used to examine the strength and composition of synaptic input to neurons. Even accounting for imperfect voltage control of the entire cell membrane ("space clamp"), it is often assumed that currents measured at the soma are a proportional indicator of the postsynaptic conductance. Here, using NEURON simulation software to model somatic recordings from morphologically realistic neurons, we show that excitatory conductances recorded in voltage clamp mode are distorted significantly by neighboring inhibitory conductances, even when the postsynaptic membrane potential starts at the reversal potential of the inhibitory conductance. Analogous effects are observed when inhibitory postsynaptic currents are recorded at the reversal potential of the excitatory conductance. Escape potentials in poorly clamped dendrites reduce the amplitude of excitatory or inhibitory postsynaptic currents recorded at the reversal potential of the other conductance. In addition, unclamped postsynaptic inhibitory conductances linearize the recorded current-voltage relationship of excitatory inputs comprising AMPAR and NMDAR-mediated components, leading to significant underestimation of the relative contribution by NMDARs, which are particularly sensitive to small perturbations in membrane potential. Voltage clamp accuracy varies substantially between neurons and dendritic arbors of different morphology; as expected, more reliable recordings are obtained from dendrites near the soma, but up to 80% of the synaptic signal on thin, distant dendrites may be lost when postsynaptic interactions are present. These limitations of the voltage clamp technique may explain how postsynaptic effects on synaptic transmission could, in some cases, be attributed incorrectly to presynaptic mechanisms.  相似文献   

18.
Whole-cell patch recording is an essential tool for quantitatively establishing the biophysics of brain function, particularly in vivo. This method is of particular interest for studying the functional roles of cortical glial cells in the intact brain, which cannot be assessed with extracellular recordings. Nevertheless, a reasonable success rate remains a challenge because of stability, recording duration and electrical quality constraints, particularly for voltage clamp, dynamic clamp or conductance measurements. To address this, we describe “Touch and Zap”, an alternative method for whole-cell patch clamp recordings, with the goal of being simpler, quicker and more gentle to brain tissue than previous approaches. Under current clamp mode with a continuous train of hyperpolarizing current pulses, seal formation is initiated immediately upon cell contact, thus the “Touch”. By maintaining the current injection, whole-cell access is spontaneously achieved within seconds from the cell-attached configuration by a self-limited membrane electroporation, or “Zap”, as seal resistance increases. We present examples of intrinsic and visual responses of neurons and putative glial cells obtained with the revised method from cat and rat cortices in vivo. Recording parameters and biophysical properties obtained with the Touch and Zap method compare favourably with those obtained with the traditional blind patch approach, demonstrating that the revised approach does not compromise the recorded cell. We find that the method is particularly well-suited for whole-cell patch recordings of cortical glial cells in vivo, targeting a wider population of this cell type than the standard method, with better access resistance. Overall, the gentler Touch and Zap method is promising for studying quantitative functional properties in the intact brain with minimal perturbation of the cell''s intrinsic properties and local network. Because the Touch and Zap method is performed semi-automatically, this approach is more reproducible and less dependent on experimenter technique.  相似文献   

19.
Transient Potentials in Dendritic Systems of Arbitrary Geometry   总被引:4,自引:2,他引:2       下载免费PDF全文
A simple graphical calculus is developed that generates analytic solutions for membrane potential transforms at any point on the dendritic tree of neurons with arbitrary dendritic geometries, in response to synaptic “current” inputs. Such solutions permit the computation of transients in neurons with arbitrary geometry and may facilitate analysis of the role of dendrites in such cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号