首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of calcium on protein phosphorylation was investigated using intact synaptosomes isolated from rat cerebral cortex and prelabelled with 32Pi. For nondepolarised synaptosomes a group of calcium-sensitive phosphoproteins were maximally labelled in the presence of 0.1 mM calcium. The phosphorylation of these proteins was slightly decreased in the presence of strontium and absent in the presence of barium, consistent with the decreased ability of these cations to activate calcium-stimulated protein kinases. Addition of calcium alone to synaptosomes prelabelled in its absence increased phosphorylation of a number of proteins. On depolarisation in the presence of calcium certain of the calcium-sensitive phosphoproteins were further increased in labelling above nondepolarised levels. These increases were maximal and most sustained after prelabelling at 0.1 mM calcium. On prolonged depolarisation at this calcium concentration a slow decrease in labelling was observed for most phosphoproteins, whereas a greater rate and extent of decrease occurred at higher calcium concentrations. At 2.5 mM calcium a rapid and then a subsequent slow dephosphorylation was observed, indicating two distinct phases of dephosphorylation. Of all the phosphoproteins normally stimulated by depolarisation, only phosphoprotein 59 did not exhibit the rapid phase of dephosphorylation at high calcium concentrations. Replacing calcium with strontium markedly decreased the extent of change observed on depolarisation whereas barium decreased phosphorylation changes even further. Taken together these data suggest that an influx of calcium into synaptosomes initially activates protein phosphorylation, but as the levels of intrasynaptosomal calcium rise protein dephosphorylation predominates. Other phosphoproteins were dephosphorylated immediately on depolarisation in the presence of calcium. The fine control of protein phosphorylation levels exerted by calcium supports the idea that the synaptosomal phosphoproteins could play a role in modulating events such as neurotransmitter release in the nerve terminal.  相似文献   

2.
Abstract: The sequence of molecular events linking depolarisation-dependent calcium influx to the release of neurotransmitters from nerve terminals is unknown; however, calcium-stimulated protein phosphorylation may play a role. In this study the incorporation of phosphate into proteins was investigated using an intact postmitochondrial pellet isolated from rat cerebral cortex. The rate and relative incorporation of label into individual phosphoproteins depended on the prelabelling time and buffer concentrations of calcium and phosphate. After prelabelling for 45 min, depolarisation caused a >20% increase in the labelling of 10 phosphoproteins, and this initial increase was maximal with 41 mM K+ for 5 s, or 30 μ M veratridine for 15 s, in the presence of 1 mM calcium. Both agents also led to an initial dephosphorylation of four phosphoproteins. Depolarisation for 5 min led to a significant decrease in the labelling of all phosphoproteins. All of the depolarisation-stimulated changes in protein phosphorylation were calcium-dependent. The depolarisation conditions found to optimally alter the phosphorylation of synaptosomal proteins find many parallels in studies on calcium uptake and neurotransmitter release. However, the uniform responses of such a large number of phosphoproteins to the multitude of depolarisation conditions studied suggest that the changes could equally well relate to recovery events such as biosynthesis of neurotransmitters and regulation of intraterminal metabolic activity.  相似文献   

3.
Abstract: The sequence of molecular events linking depolarisation-dependent calcium influx to calcium-stimulated protein phosphorylation is unknown. In this study the effect of the neuroleptic drug fluphenazine on depolarisation-dependent protein phosphorylation was investigated using an intact postmitochondrial pellet isolated from rat cerebral cortex. Fluphenazine, in a dose-dependent manner, completely inhibited the increases in protein phosphorylation observed previously. The concentration of fluphenazine required for 50% inhibition varied for different phosphoproteins but for synapsin I was 123 μ M. Other neuroleptics produced effects similar to fluphenazine with their order of potency being thioridazine > haloperidol > trifluoperazine > fluphenazine > chlorpromazine. Fluphenazine also increased the phosphorylation of proteins in nondepolarised controls at concentrations of 20 and 60 μ M. The inhibition of depolarisation-dependent phosphorylation was apparently not due to a loss of synaptosomal integrity or viability, a decrease in calcium uptake, a change in substrate availability, or to a change in protein phosphatase activity. The data are most consistent with an inhibition of protein kinase activity by blockade of calmodulin or phospholipid activation.  相似文献   

4.
The effects of taurine on ATP-dependent calcium ion uptake and protein phosphorylation of rat retinal membrane preparations were investigated. Taurine (20 mM) stimulates ATP-dependent calcium ion uptake by twofold in crude retinal homogenates. In contrast, it inhibits the phosphorylation of specific membrane proteins as shown by acrylamide gel electrophoresis and autoradiography. The close structural analogue of taurine, 2-aminoethylhydrogen sulfate, demonstrates similar effects in both systems, i.e., stimulation of ATP-dependent calcium ion uptake and inhibition of protein phosphorylation, whereas isethionic acid and guanidinoethanesulfonate have no effect on either system. A P1 subcellular fraction of the retinal membrane preparation that contains photoreceptor cell synaptosomes has a higher specific activity for the uptake of calcium ions. Phosphorylation of specific proteins in the P1 fraction is also inhibited by the addition of 20 mM taurine. Taurine has no effect on retinal ATPase activities or on phosphatase activity, thus suggesting that it directly affects a kinase system.  相似文献   

5.
Depolarization of synaptosomes is known to cause a calcium-dependent increase in the phosphorylation of a number of proteins. It was the aim of this study to determine which protein kinases are activated on depolarization by analyzing the incorporation of 32Pi into synaptosomal phosphoproteins and phosphopeptides. The following well-characterized phosphoproteins were chosen for study: phosphoprotein "87K," synapsin Ia and Ib, phosphoproteins IIIa and IIIb, the catalytic subunits of calmodulin kinase II, and the B-50 protein. Each was initially identified as a phosphoprotein in lysed synaptosomes after incubation with [gamma-32P]ATP. Mobility on two-dimensional polyacrylamide gels and phosphorylation by specific protein kinases were the primary criteria used for identification. A technique was developed that allowed simultaneous analysis of the phosphopeptides derived from all of these proteins. Phosphopeptides were characterized in lysed synaptosomes after activating cyclic AMP-, calmodulin-, and phospholipid-stimulated protein kinases in the presence of [gamma-32P]ATP. Phosphoproteins labelled in intact synaptosomes after incubation with 32Pi were then compared with those seen after ATP-labelling of lysed synaptosomes. As expected from previous work, phosphoprotein "87K," and synapsin Ia and Ib were labelled, but for the first time, phosphoproteins IIIa, IIIb, and the B-50 protein were identified as being labelled in intact synaptosomes; the calmodulin kinase II subunits were hardly phosphorylated. From a comparison of the phosphopeptide profiles it was found that cyclic AMP-, calmodulin-, and phospholipid-stimulated protein kinases are all active in intact synaptosomes and their activity is dependent on extrasynaptosomal calcium. The activation of cyclic AMP-stimulated protein kinases in intact synaptosomes was confirmed by the addition of dibutyryl cyclic AMP and theophylline which specifically increased the labelling of phosphopeptides in synapsin Ia and Ib and in phosphoproteins IIIa and IIIb. On depolarization of intact synaptosomes, a number of phosphopeptides showed increased labelling and the pattern suggested that cyclic AMP-, calmodulin-, and phospholipid-stimulated protein kinases were all activated. No new peptides were phosphorylated, suggesting that depolarization simply increased the activity of already active protein kinases and that there was no depolarization-specific increase in protein phosphorylation.  相似文献   

6.
This study examined the hypothesis that ATP, released together with norepinephrine (NE) from brain noradrenergic nerve terminals, may serve as a cosubstrate for an extracellular protein phosphorylation system that regulates the reuptake of the transmitter, NE. The possible regulation of high-affinity uptake (uptake 1) of [3H]NE by divalent cations and ATP, both of which are involved in protein phosphorylation, was examined in rat cerebral cortical synaptosomes. A marked inhibition of uptake 1 by 5'-adenylylimidodiphosphate [App(NH)p], a nonhydrolyzable, competitive antagonist of ATP, was observed. A similar inhibition of uptake was observed when Ca2+ and Mg2+ were both omitted from the incubation medium. App(NH)p distinguished the actions of Ca2+ from those of Mg2+: Ca2+-stimulated uptake 1 was blocked by App(NH)p; Mg2+-stimulated uptake was not. In parallel experiments, the patterns of protein phosphorylation in crude and purified preparations of synaptosomes were examined under conditions similar to those used in uptake assays. A striking correlation was found between the inhibition of uptake 1, by either App(NH)p or Ca-omission, and inhibition of the phosphorylation of one specific, 39,000-dalton, Ca2+-dependent, protein component in synaptosomes. This 39K protein was distinct from the alpha subunit of pyruvate dehydrogenase, a mitochondrial protein of similar electrophoretic mobility. These findings are consistent with the possibility that an ectokinase on synaptosomes utilizes extracellular ATP and Ca2+ in phosphorylating a protein(s) associated with the regulation of NE uptake.  相似文献   

7.
Abstract: Protein synthesis plays an important role in the viability and function of the cell. There is evidence indicating that Ca2+ may be a physiological regulator of the translational process. In the present study, the effect of agents that increase intracellular calcium levels by different mechanisms, as well as repercussion on the rate of protein synthesis, including phosphorylation of initiation factor 2α subunit, and double-stranded RNA-dependent eIF-2α kinase (PKR) activity were analyzed. Glutamate (100 µ M ) and K+ (60 m M ), which increase intracellular calcium levels (the former mostly by the influx of extracellular calcium via voltage-sensitive calcium channels, and the latter by receptor-operated calcium channels), and carbachol (1 m M ), as well as glutamate, which mobilizes intracellular calcium from the endoplasmic reticulum via activation of inositol 1,4,5-trisphosphate receptor, did not modify any of the analyzed parameters. Nevertheless, 100 n M ryanodine, which increases intracellular calcium concentration by activating the ryanodine receptor, promoted a significant decrease in the rate of protein synthesis and increased both initiation factor 2α subunit phosphorylation and PKR activity. From our results, we can conclude that inhibition of protein synthesis is dependent on the mobilization of intracellular calcium from internal stores. Moreover, they strongly suggest that this inhibition is only promoted when calcium is increased via ryanodine receptor, and possibly by activation of PKR activity.  相似文献   

8.
The release of GABA induced by veratridine shows no correlation with the synaptosomal Ca content and is therefore not mediated by the release of mitochondrial Ca. Instead, with both Ca-repleted and -depleted synaptosomes, the extent of GABA efflux is correlated with the decrease in plasma membrane potential. The slow release of GABA induced by protonophores and the Ca-dependent release induced by ionophore A23187 are also consequences of the depolarization of the plasma membrane, rather than of elevated cytosolic Ca. Finally, the ability of verapamil to inhibit the release of GABA induced by low veratridine concentrations is due to the ability of the Ca channel inhibitor to antagonize the action of veratridine, rather than to inhibit Ca entry into the synaptosome. It is concluded that it is essential to monitor plasma membrane potentials in experiments in which amino acid efflux from synaptosomes is induced.  相似文献   

9.
Abstract: The rat μ-opioid receptor (rMOR1), expressed in human embryonic kidney 293 (HEK293) cells, shows a desensitization to the inhibitory effect of the μ agonist DAMGO on adenylate cyclase activity within 4 h of DAMGO preincubation. To investigate the role of calcium/calmodulin-dependent protein kinase II (CaM kinase II) on μ-opioid receptor desensitization, we coexpressed rMOR1 and constitutively active CaM kinase II in HEK293 cells. This coexpression led to a faster time course of agonist-induced desensitization of the μ-opioid receptor. The increase of desensitization could not be observed with a μ-opioid receptor mutant (S261A/S266A) that lacks two putative CaM kinase II phosphorylation sites in the third intracellular loop. In addition, injection of CaM kinase II in Xenopus oocytes led only to desensitization of expressed rMOR1, but not of an S261A/S266A receptor mutant. These results suggest that phosphorylation of Ser261 and Ser266 by CaM kinase II is involved in the desensitization of the μ-opioid receptor.  相似文献   

10.
The relationship between intrasynaptosomal total (CaT) and free ([Ca2+]i) calcium and 45Ca accumulation was studied under physiological and K(+)-depolarised conditions in rat cortical synaptosomes. Under physiological conditions, CaT (10.7 mM) was approximately 10,000 times higher than [Ca2+]i (118 nM), showing that there is a large reservoir of sequestered calcium in synaptosomes. 45Ca accumulation was rapid (initial rate, 3.4 nmol/mg protein/min), substantial (7 nmol/mg protein in 2 min), and depolarisation dependent, and reached equilibrium after 5 min. At equilibrium, only 10% of CaT was freely exchangeable. This pool was much larger than the free Ca2+ pool. CaT, [Ca2+]i, and 45Ca accumulations were directly related to the Ca2+ concentration in the buffer, suggesting that [Ca2+]i is not highly conserved but is maintained by simple equilibria between the various pools. Clonidine reduced 45Ca accumulation in a time- and dose-dependent manner. Maximum inhibition (40% at 100 microM) occurred at 2 min and the IC50 was 80 nM. The reduction caused by clonidine (1 microM) reached equilibrium after 5 min, but this equilibrium value was lower than in controls, suggesting that clonidine changes the exchangeable Ca2+ pool size. The effects of clonidine (1 microM) on [Ca2+]i (26% reduction) and on 45Ca accumulation (24% reduction) were most apparent under physiological conditions. However, while it was not dependent on depolarisation, it did not occur in physiological buffer containing low K+ concentration (0.1-1 mM). The inhibitory effect of clonidine on 45Ca accumulation is receptor mediated as it was antagonised by idazoxan (1 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Intracellular calcium homeostasis and its modulation by different agents was studied in control and differentiated IMR32 human neuroblastoma cells by using the Ca2+-sensitive fluorescent dye quin2. The results obtained demonstrate the existence in IMR32 cells of (a) voltage-dependent, verapamil sensitive, Ca2+ channels, which are expressed before differentiation; (b) muscarinic receptors whose activation triggers both Ca2+ influx and Ca2+ redistribution from intracellular stores, whereas nicotinic receptors and alpha-bungarotoxin binding sites do not; and (c) receptors for alpha-latrotoxin (the major toxin of the black widow spider venom), which are well-known markers of the neuronal presynaptic membrane. Up to now, no cell lines of human origin sensitive to this toxin have been identified. These results confirm that IMR32 cells are very convenient model cells for studying specific aspects of the neurochemistry and neurobiology of the human neuron at the molecular and cellular levels.  相似文献   

12.
The mechanism of the electrical-to-chemical decoding involved in the preferential release of the transmitters acetylcholine and vasoactive intestinal polypeptide (VIP) by electrical field stimulation at low (5 Hz) and high (50 Hz) frequencies was studied in superfused myenteric neurons. The stimulation-induced uptake of 45Ca2+ accompanying high frequency stimulation was markedly reduced by 10 microM nifedipine, a specific blocker of L-type voltage-sensitive Ca2+ channels (VSCCs), as was also the preferential high-frequency release of VIP. By contrast, the 45Ca2+ uptake during low-frequency stimulation was somewhat lower per pulse, and neither this uptake nor the preferential release of acetylcholine occurring at this frequency was significantly reduced by nifedipine. These findings suggest that the release of acetylcholine and VIP involve different VSCCs. The pattern of in vitro protein thiophosphorylation in tissue extracts of differentially stimulated myenteric neurons involved polypeptides of 205, 173, 86, 73, 57, 54, 46, 32, 28, and 24 kDa and was also markedly stimulus and nifedipine dependent. This suggests that different phosphoproteins are involved during the frequency-dependent activation of the different Ca2+ channels and exocytotic mechanisms.  相似文献   

13.
14.
The coupling mechanism of the gamma-aminobutyric acid (GABA)B receptor, one of the subtypes of GABA receptors, with calcium ion channel and GTP-binding protein was examined using a crude synaptic membrane (P2) fraction from the bovine cerebral cortex and a fraction solubilized with sodium deoxycholate. In the P2 fraction, [3H]GABA binding to the GABAB receptor was increased significantly by the addition of calcium ion, and this enhancement was accentuated further by calcium ion channel blockers such as nicardipine and diltiazem. In contrast, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a calmodulin antagonist, did not affect on the calcium ion-induced enhancement of GABAB receptor binding. These results suggest that the GABAB receptor may be functionally coupled with the calcium ion channel, which exhibits an inhibitory modulation against the receptor. On the other hand, GABAB receptor binding, which was noncompetitively inhibited by guanine nucleotides such as GTP, guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), guanosine 5'-(beta, gamma-imido)triphosphate [Gpp(NH)p], and GDP, was competitively inhibited by (-)-baclofen. Although the affinity of (-)-baclofen for the GABAB receptor was decreased in the presence of GTP, pretreatment of the P2 fraction with islet-activating protein (IAP) eliminated the effect of GTP. In addition, GABA and (-)-baclofen induced an increase of GTPase activity in the P2 fraction, and this increase was also eliminated by treatment with IAP. These results suggest that the GABAB receptor may also be functionally coupled with IAP-sensitive GTP-binding protein. Treatment of the P2 fraction with sodium deoxycholate resulted in the highest solubilization of GABAB receptor among various detergents examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effect of omega-conotoxin GVIA (CgTX), an N-and L-type voltage-sensitive calcium channel (VSCC) blocker, on the release of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) in the striatum before and during transient cerebral ischemia in spontaneously hypertensive rats was studied using an in vivo brain dialysis technique. Continuous perfusion of CgTX in the striatum was started 20 min before ischemia and concentrations of dopamine and DOPAC in the dialysate were measured using HPLC with an electro-chemical detector. Before ischemia, both 10 and 100 microM CgTX significantly lowered the concentration of dopamine, to 49% of the basal values. DOPAC concentrations also decreased significantly, by 28 and 17%, respectively. Forebrain ischemia, produced by bilateral carotid artery occlusion, reduced striatal blood flow to less than 6% of the resting value in each group. During 20 min of ischemia, the vehicle group showed a marked increase in dopamine (175 times the basal concentration). In the 10 or 100 microM CgTX perfusion group, in contrast, dopamine release was significantly attenuated, to 38 or 29% of the vehicle group, respectively. DOPAC concentrations decreased during ischemia to 58% of the basal value in the vehicle group and 49% in both CgTX groups. These results indicate that the massive release of striatal dopamine during ischemia depends largely on the influx of extracellular calcium via CgTX-sensitive VSCCs.  相似文献   

16.
The effects of two organic Ca2+ antagonists (verapamil and nitrendipine) and of two inorganic Ca2+ channel blockers (Co2+ and ruthenium red) on the Na+-dependent release of gamma-amino-n-butyric acid (GABA) triggered by veratrine and monensin in the absence of external Ca2+ were studied in mouse brain synaptosomes. Ca2+-independent release of GABA stimulated by the Na+ channel activator veratrine was inhibited with micromolar concentrations of verapamil and nitrendipine. In contrast, GABA release induced by the Na+ ionophore monensin was insensitive to the organic Ca2+ antagonists. Verapamil also failed to modify A23187-stimulated release of GABA in the presence of Ca2+ but inhibited high K+-induced release of the transmitter. Co2+ partially diminished veratrine-induced release but did not change monensin-induced release. Releasing responses to monensin and veratrine were insensitive to ruthenium red, which inhibited the Ca2+-dependent component of GABA release evoked by high K+ depolarization. These data demonstrate that the mechanism of inducing GABA release is different for veratrine and monensin, as evidenced by their differing sensitivities to inhibition by Ca2+ channel antagonists and organic Ca2+ blockers. It is concluded that voltage-sensitive Ca2+ channels of the presynaptic membrane are not involved in the inhibitory action of Ca2+ antagonists on the Na+-dependent, Ca2+-independent mechanism of GABA release.  相似文献   

17.
18.
Abstract: We heat shocked 21- and 35-day-old fetal rat cerebral explants at 45°C for 18 min and performed immunocytochemistry and immunoblot analysis of sodium dodecyl sulfate extracts using the monoclonal anti-τ antibodies Tau-1, Tau-5, Tau-46, and PHF-1 and the peroxidase-antiperoxidase technique or 125I-labeled protein A. Tau-1 and PHF-1 recognize nonphosphorylated and phosphorylated epitopes, respectively, and both Tau-5 and Tau-46 recognize phosphate-independent epitopes. τ immunoreactivity was confined to neurons and increased in heat-shocked perikarya but not axons. At 0 h after heat shocking, there was dephosphorylation of τ exemplified by (1) faster migration of τ isoforms with resultant loss or attenuation of the 60- and 52-kDa τ isoforms recognized by all four anti-τ antibodies and concomitant accentuation of the fastest moving 50-kDa τ isoform recognized by Tau-1, Tau-5, and Tau-46; and (2) significant increase in the nonphosphorylated Tau-1 epitope with resultant decreases in the ratio of total (phosphorylated plus nonphosphorylated) τ to nonphosphorylated τ and the difference of total τ minus nonphosphorylated τ. τ was phosphorylated back to the control level by 12 h and remained so at 24 and 48 h after heat shocking. Treatment of explants with cycloheximide, a protein synthesis inhibitor, did not prevent the heat shocking-induced dephosphorylation of τ. Treatment of explants with the inhibitors of protein phosphatases PP1 and PP2A, okadaic acid or calyculin A, produced hyperphosphorylated τ polypeptides, prevented the heat shocking-induced dephosphorylation of τ, and intensified the immunoreactivity of the neurofilament subunit H with the only antiphosphoneurofilament antibody that reacts with intraneuronal neurofibrillary tangles. In 35-day-old explants, in addition to the three 50-, 52-, and 60-kDa τ isoforms seen in 21-day-old explants, a 66-kDa τ polypeptide was also present.  相似文献   

19.
Abstract: Exposure of human SK-N-MC neurotumor cells to 4β-phorbol 12-myristate 13-acetate (PMA) increased isoproterenol stimulation of cyclic AMP levels by severalfold. This potentiation was blocked by inhibitors of protein kinase C (PKC) and did not occur in cells in which PKC had been down-regulated. PMA treatment also enhanced the stimulation by dopamine, cholera toxin, and forskolin. Thus, the effect of PMA on the adenylylcyclase system was postreceptor and involved either the guanine nucleotide binding regulatory (G) proteins or the cyclase itself. As PMA treatment did not impair the inhibition of isoproterenol stimulation by neuropeptide Y, an involvement of the inhibitory G protein Gi was unlikely. Cholate extracts of membranes from control and PMA-treated cells were equally effective in the reconstitution of adenylylcyclase activity in S49 cyc? membranes, which lack the stimulatory G protein subunit G; thus, Gs did not appear to be the target of PMA action. Membranes from PMA-treated cells exhibited increased adenylylcyclase activity to all stimulators including Mn2+ and Mn2+ plus forskolin. In addition, activity was increased when control membranes were incubated with ATP and purified PKC from rat brain. This is consistent with a direct effect of PKC on the adenylylcyclase catalyst in SK-N-MC cells. PMA treatment also resulted in a shift to less sensitivity in the Kact for isoproterenol but not for dopamine or CGP-12177 (a β3-adrenergic agonist) stimulation. Thus, the β1 but not the D1 or β3 receptors were being desensitized by PKC activation. Analysis of SK-N-MC cells by western blotting with antibodies against different PKC isozymes revealed that both the α and ζ isozymes were present in these cells. Whereas PKC-α was activated and translocated from cytosol to membrane by phorbol esters, the ζ isozyme was not. Thus, PKC-α, which has been implicated in desensitization in other cell lines, also appears to potentiate adenylylcyclase activity.  相似文献   

20.
This study was undertaken to examine the role of phospholipase A2 and protein kinase C in the potentiation of beta-adrenoceptor-mediated cyclic AMP formation by alpha-adrenoceptors in rat cerebral cortical slices. Inhibition of arachidonic acid metabolism by a range of cyclooxygenase and lipoxygenase inhibitors had no effect on the potentiation of isoprenaline-stimulated cyclic AMP. Conversely, stimulation of leukotriene formation had no effect on the response to isoprenaline. The phospholipase A2 activator, melittin, stimulated cyclic AMP and potentiated the effect of isoprenaline, but these responses were not influenced by cyclooxygenase or lipoxygenase inhibitors. Indomethacin was also ineffective against the potentiation of vasoactive intestinal peptide-stimulated cyclic AMP by noradrenaline. Phorbol ester potentiated the cyclic AMP response to isoprenaline, and this potentiation was antagonized by three different putative protein kinase C inhibitors. However, the same inhibitors did not affect the alpha-adrenoceptor-stimulated enhancement of the response to isoprenaline. We have found no evidence, therefore, to support the suggestion that arachidonic acid and its metabolites and/or protein kinase C mediate the alpha-adrenoceptor modulation of beta-adrenoceptor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号