首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two specific amino acid residues in transmembrane segments (TM) 2 and 3 are critical for the enhancement of glycine receptor (GlyR) function by volatile anesthetics. To determine which physicochemical characteristics of these sites determine their roles in anesthetic actions, an extensive series of single amino acid mutations at amino acid residue 288 (Ala-288) in TM3 of the alpha1 GlyR subunit was tested for modulation by volatile anesthetics. The mutations changed the apparent affinities of receptors for glycine; replacements with larger volumes and less hydropathy exhibited higher affinities for glycine. Potentiation by anesthetics was reduced by specific mutations at Ala-288. The molecular volume of the substituents was negatively correlated with the extent of potentiation by isoflurane, enflurane, and 1-chloro-1,2,2-trifluorocyclobutane, whereas there was no correlation between anesthetic enhancement and polarity, hydropathy, or hydrophilicity of substituents. In contrast to anesthetics, no correlation was found between the effects of the nonanesthetics 1,2-dichlorohexafluorocyclobutane or 2, 3-dichlorooctafluorobutane and any physicochemical property of the substituent. These results suggest that the molecular volume and hydropathy of the amino acid at position 288 in TM3 regulate glycine and anesthetic sensitivity of the GlyR and that this residue might represent one determinant of an anesthetic binding site.  相似文献   

2.
Although interactions of general anesthetics with soluble proteins have been studied, the specific interactions with membrane bound-proteins that characterize general anesthesia are largely unknown. The structural modulations of anesthetic interactions with synaptic ion channels have not been elucidated. Using gramicidin A as a simplified model for transmembrane ion channels, we have recently demonstrated that a pair of structurally similar volatile anesthetic and nonimmobilizer, 1-chloro-1,2,2-trifluorocyclobutane (F3) and 1,2-dichlorohexafluorocyclobutane (F6), respectively, have distinctly different effects on the channel function. Using high-resolution NMR structural analysis, we show here that neither F3 nor F6 at pharmacologically relevant concentrations can significantly affect the secondary structure of the gramicidin A channel. Although both the anesthetic F3 and the nonimmobilizer F6 can perturb residues at the middle section of the channel deep inside the hydrophobic region in the sodium dodecyl sulfate micelles, only F3, but not F6, can significantly alter the chemical shifts of the tryptophan indole N-H protons near the channel entrances. The results are consistent with the notion that anesthetics cause functional change of the channel by interacting with the amphipathic domains at the peptide-lipid-water interface.  相似文献   

3.
Biophysical studies of protein–anesthetic interactions using nuclear magnetic resonance (NMR) spectroscopy are often conducted by the addition of micro amounts of neat inhaled anesthetic which yields much higher than clinically relevant (0.2–0.5 mM) anesthetic concentrations. We report a 19F NMR technique to measure clinically relevant inhaled anesthetic concentrations from saturated aqueous solutions of these anesthetics (halothane, isoflurane, sevoflurane, and desflurane). We use a setup with a 3-mm NMR tube (containing trifluoroacetic acid as standard), coaxially inserted in a 5-mm NMR tube containing anesthetic solution under investigation. All experiments are conducted in a 5-mm NMR probe. We also have provided standard curves for four inhaled anesthetics using NMR technique. The standard curve for each of these anesthetics is helpful in determining the prerequisite amount of aqueous anesthetic solution required to prepare clinically relevant concentrations for protein–anesthetic interaction studies. Parts of the results to be presented at Society for Neuroscience meeting, 2008.  相似文献   

4.
The membrane localization and properties of two halogenated cyclobutanes were examined using 2H and 19F NMR. The common predictors of potency indicate that these two compounds will have anesthetic activity; however, 1,2-dichlorohexafluorocyclobutane (c(CCIFCCIFCF2CF2)) is not an effective anesthetic, whereas 1-chloro-1,2,2-trifluorocyclobutane (c(CCIFCF2CH2CH2)) is an effective general anesthetic. Using 2H NMR, the effect of these compounds on the acyl chain packing in palmitoyl (d31) oleoylphosphatidylcholine membranes was examined. The addition of the anesthetic c(CCIFCF2CH2CH2) results in small increases in the segmental order near the headgroup, whereas segments deeper in the bilayer show decreases in order. These results are consistent with those obtained previously for halothane, isoflurane, and enflurane. On the addition of the nonanesthetic c(CCIFCCIFCF2CF2), the segmental order in vitually unchanged, except for a slightly changed order near the segents 10-12 of the palmitoyl chains. These results, and the 19F chemical shifts, indicate that the anesthetic c(CCIFCF2CH2CH2) exhibits a preference for the membrane interface, as do the other general anesthetics, whereas the nonanesthetic c(CCIFCIFCF2CF2) resides within the membrane hydrocarbon core. The compound c(CCIFCCIFCF2CF2) and other nonanesthetic halocarbons have lower molecular dipole moments compared to effective anesthetic halocarbons, which may account for their altered distribution within the membrane. These data strongly suggest that preferential localization of a halocarbon within the membrane interface is a predictor of anesthetic potency. Furthermore, the data indicate that the properties and forces in the membrane interface deserve consideration as mediators of anesthetic activity.  相似文献   

5.
Molecular genetic analysis of volatile-anesthetic action.   总被引:7,自引:2,他引:5       下载免费PDF全文
The mechanism(s) and site(s) of action of volatile inhaled anesthetics are unknown in spite of the clinical use of these agents for more than 150 years. In the present study, the model eukaryote Saccharomyces cerevisiae was used to investigate the action of anesthetic agents because of its powerful molecular genetics. It was found that growth of yeast cells is inhibited by the five common volatile anesthetics tested (isoflurane, halothane, enflurane, sevoflurane, and methoxyflurane). Growth inhibition by the agents is relatively rapid and reversible. The potency of these compounds as yeast growth inhibitors directly correlates with their lipophilicity as is predicted by the Meyer-Overton relationship, which directly correlates anesthetic potency of agents and their lipophilicity. The effects of isoflurane on yeast cells were characterized in the most detail. Yeast cells survive at least 48 h in a concentration of isoflurane that inhibits colony formation. Mutants resistant to the growth-inhibitory effects of isoflurane are readily selected. The gene identified by one of these mutations, zzz4-1, has been cloned and characterized. The predicted ZZZ4 gene product has extensive homology to phospholipase A2-activating protein, a GO effector protein of mice. Both zzz4-1 and a deletion of ZZZ4 confer resistance to all five of the agents tested, suggesting that signal transduction may be involved in the response of these cells to volatile anesthetics.  相似文献   

6.
General anesthetics produce a reversible coma-like state through modulation of excitatory and inhibitory synaptic transmission. Recent evidence suggests that anesthetic exposure can also lead to sustained cognitive dysfunction. However, the subcellular effects of anesthetics on the structure of established synapses are not known. We investigated effects of the widely used volatile anesthetic isoflurane on the structural stability of hippocampal dendritic spines, a postsynaptic structure critical to excitatory synaptic transmission in learning and memory. Exposure to clinical concentrations of isoflurane induced rapid and non-uniform shrinkage and loss of dendritic spines in mature cultured rat hippocampal neurons. Spine shrinkage was associated with a reduction in spine F-actin concentration. Spine loss was prevented by either jasplakinolide or cytochalasin D, drugs that prevent F-actin disassembly. Isoflurane-induced spine shrinkage and loss were reversible upon isoflurane elimination. Thus, isoflurane destabilizes spine F-actin, resulting in changes to dendritic spine morphology and number. These findings support an actin-based mechanism for isoflurane-induced alterations of synaptic structure in the hippocampus. These reversible alterations in dendritic spine structure have important implications for acute anesthetic effects on excitatory synaptic transmission and synaptic stability in the hippocampus, a locus for anesthetic-induced amnesia, and have important implications for anesthetic effects on synaptic plasticity.  相似文献   

7.
To investigate the mechanism of action of volatile anesthetics, we are studying mutants of the yeast Saccharomyces cerevisiae that have altered sensitivity to isoflurane, a widely used clinical anesthetic. Several lines of evidence from these studies implicate a role for ubiquitin metabolism in cellular response to volatile anesthetics: (i) mutations in the ZZZ1 gene render cells resistant to isoflurane, and the ZZZ1 gene is identical to BUL1 (binds ubiquitin ligase), which appears to be involved in the ubiquitination pathway; (ii) ZZZ4, which we previously found is involved in anesthetic response, is identical to the DOA1/UFD3 gene, which was identified based on altered degradation of ubiquitinated proteins; (iii) analysis of zzz1Delta zzz4Delta double mutants suggests that these genes encode products involved in the same pathway for anesthetic response since the double mutant is no more resistant to anesthetic than either of the single mutant parents; (iv) ubiquitin ligase (MDP1/RSP5) mutants are altered in their response to isoflurane; and (v) mutants with decreased proteasome activity are resistant to isoflurane. The ZZZ1 and MDP1/RSP5 gene products appear to play important roles in determining effective anesthetic dose in yeast since increased levels of either gene increases isoflurane sensitivity whereas decreased activity decreases sensitivity. Like zzz4 strains, zzz1 mutants are resistant to all five volatile anesthetics tested, suggesting there are similarities in the mechanisms of action of a variety of volatile anesthetics in yeast and that ubiquitin metabolism affects response to all the agents examined.  相似文献   

8.
Partitioning of four modern inhalational anesthetics (halothane, isoflurane, enflurane, and sevoflurane) between the gas phase and nine organic solvents that model different amino acid side-chains and lipid membrane domains was performed in an effort to define which microenvironments present in proteins and lipid bilayers might be favored. Compared to a purely aliphatic environment (hexane), the presence of an aromatic-, alcohol-, thiol- or sulfide group on the solvent improved anesthetic partitioning, by factors of 1.3-5.2 for halothane, 1.7-5.6 for isoflurane, 1.7-7.6 for enflurane, and 1.5-7.3 for sevoflurane. The most favorable solvent for halothane partitioning was ethyl methyl sulfide, a model for methionine. Enflurane and isoflurane partitioned most extensively into methanol, a model for serine, and sevoflurane into ethanol, a model for threonine. Isoflurane also partitioned favorably into ethyl methyl sulfide. The results suggest that volatile general anesthetics interact better with partly polar groups, which are present on amino acids frequently found buried in the hydrophobic core of proteins, compared to purely aliphatic side-chains. Furthermore, if an anesthetic molecule was located in a saturated region of a phospholipid bilayer membrane, there would be an energetically favorable driving force for it to move into several higher dielectric microenvironments present on membrane proteins. The results provide evidence that proteins rather than lipids are the likely targets of volatile general anesthetics in biological membranes.  相似文献   

9.
The effect of isoflurane on erythrocyte membranes has been investigated by means of attenuated total reflection infrared spectroscopy. Infrared spectra were measured on sonicated erythrocyte ghosts layered upon a ZnSe crystal covered with D(2)O saline solutions containing increasing amounts of isoflurane. At clinically relevant anesthetic concentrations and 37 degrees C, significant changes in the structural and dynamic properties of the membrane phospholipid bilayers are observed. Both the acyl chain methylene symmetric and asymmetric stretching modes and the carbonyl ester stretching band displayed frequency shifts interpreted as transitions toward disordered liquid-like structure accompanied by dehydration of the phospholipid polar heads. In turn, no secondary structure-linked changes are observed in the amide I region of membrane proteins. Higher anesthetic concentrations (500-900 microM), resulted in progressive detachment of the multilayers from the ATR crystal and irreversible formation of denatured protein. Polarization studies in correspondence of the acyl lipid methylene stretching bands indicated that isoflurane decreases the dichroic ratio thus inducing disorder in the orientation of the lipid acyl chains.  相似文献   

10.
11.
S Curry  W R Lieb  N P Franks 《Biochemistry》1990,29(19):4641-4652
The effects of a diverse range of 36 general anesthetics and anesthetic-like compounds on a highly purified preparation of the bacterial luciferase enzyme from Vibrio harveyi have been investigated. Under conditions where the flavin site was saturated, almost all of the anesthetics inhibited the peak enzyme activity and slowed the rate of decay. However, a small number of the more polar agents only inhibited at high concentrations, while stimulating activity at lower concentrations. The inhibition was found to be competitive in nature, with the anesthetics acting by competing for the binding of the aldehyde substrate n-decanal. The anesthetic binding site on the enzyme could accommodate only a single molecule of a large anesthetic but more than one molecule of a small anesthetic, consistent with the site having circumscribed dimensions. The homologous series of n-alcohols and n-alkanes exhibited cutoffs in inhibitory potency, but these cutoffs occurred at very different chain lengths (about C10 for the n-alkanes and C15 for the n-alcohols), mimicking similar cutoffs observed for general anesthetic potencies in animals. Binding constants determined from peak height measurements showed that the inhibitor binding site was predominantly hydrophobic (with a mean delta delta G CH2 of -5.0 kJ/mol), but fluctuations in the binding constants with chain length revealed regions in the binding site with polar characteristics. Binding constants to an intermediate form of the enzyme (intermediate II) were also determined, and these confirmed the principal features of the binding site deduced from the peak height measurements. The long-chain compounds, however, bound considerably tighter to the intermediate II form of the enzyme, and this was shown to account for the biphasic decay kinetics that were observed with these compounds. Overall, there was poor agreement between the EC50 concentrations for inhibiting the luciferase enzyme from V. harveyi and those which induce general anesthesia in animals, with bulky compounds being much less potent, and moderately long chain alcohols being much more potent, as luciferase inhibitors than as general anesthetics.  相似文献   

12.
Despite the clinical ubiquity of anesthesia, the molecular basis of anesthetic action is poorly understood. Amongst the many molecular targets proposed to contribute to anesthetic effects, the voltage gated sodium channels (VGSCs) should also be considered relevant, as they have been shown to be sensitive to all general anesthetics tested thus far. However, binding sites for VGSCs have not been identified. Moreover, the mechanism of inhibition is still largely unknown. The recently reported atomic structures of several members of the bacterial VGSC family offer the opportunity to shed light on the mechanism of action of anesthetics on these important ion channels. To this end, we have performed a molecular dynamics “flooding” simulation on a membrane-bound structural model of the archetypal bacterial VGSC, NaChBac in a closed pore conformation. This computation allowed us to identify binding sites and access pathways for the commonly used volatile general anesthetic, isoflurane. Three sites have been characterized with binding affinities in a physiologically relevant range. Interestingly, one of the most favorable sites is in the pore of the channel, suggesting that the binding sites of local and general anesthetics may overlap. Surprisingly, even though the activation gate of the channel is closed, and therefore the pore and the aqueous compartment at the intracellular side are disconnected, we observe binding of isoflurane in the central cavity. Several sampled association and dissociation events in the central cavity provide consistent support to the hypothesis that the “fenestrations” present in the membrane-embedded region of the channel act as the long-hypothesized hydrophobic drug access pathway.  相似文献   

13.
The structural perturbations of the fully hydrated dimyristoyl-phosphatidylcholine bilayer induced by the presence of hexafluoroethane C(2F6), a "nonimmobilizer," have been examined by molecular dynamics simulations and compared with the effects produced by halothane CF3CHBrCl, an "anesthetic," on a similar bilayer (DPPC) (Koubi et al., Biophys. J. 2000. 78:800). We find that the overall structure of the lipid bilayer and the zwitterionic head-group dipole orientation undergo only a slight modification compared with the pure lipid bilayer, with virtually no change in the potential across the interface. This is in contrast to the anesthetic case in which the presence of the molecule led to a large perturbation of the electrostatic potential across to the membrane interface. Similarly, the analysis of the structural and dynamical properties of the lipid core are unchanged in the presence of the nonimmobilizer although there is a substantial increase in the microscopic viscosity for the system containing the anesthetic. These contrasting perturbations of the lipid membrane caused by those quite similarly sized molecules may explain the difference in their physiological effects as anesthetics and nonimmobilizers, respectively.  相似文献   

14.
A number of compounds showing general anesthetic action in the rotifer Brachionus calyciflorus were investigated in the presence of acetylcholine. Non-ionizing anesthetics, including tricaine, showed no interaction with acetylcholine. However, highly ionized compounds like the local anesthetics procaine and lidocaine, the muscarinic blocker and local anesthetic atropine, and the beta-adrenergic blocker propranolol showed a synergistic effect with acetylcholine. ACh increased the general anesthetic effect of these compounds in a statistically highly significant dose-dependent fashion. To account for the mechanism of this unusual and novel effect it is proposed that these compounds interact with the anesthetic binding site of the rotifer cholinoceptor ionophore in the open state. It is also proposed that non-ionizing compounds have a general membrane effect only. In addition to anesthesia, atropine and propranolol cause foot paralysis in B. calyciflorus. This other novel effect is also enhanced by acetylcholine as well as decamethonium, a neuromuscular blocker.  相似文献   

15.
P Tang  J Hu  S Liachenko    Y Xu 《Biophysical journal》1999,77(2):739-746
Although it plays no clinical role in general anesthesia, gramicidin A, a transmembrane channel peptide, provides an excellent model for studying the specific interaction between volatile anesthetics and membrane proteins at the molecular level. We show here that a pair of structurally similar volatile anesthetic and nonimmobilizer (nonanesthetic), 1-chloro-1,2,2-trifluorocyclobutane (F3) and 1, 2-dichlorohexafluorocyclobutane (F6), respectively, interacts differently with the transmembrane peptide. With 400 microM gramicidin A in a vesicle suspension of 60 mM phosphatidylcholine-phosphatidylglycerol (PC/PG), the intermolecular cross-relaxation rate constants between (19)F of F3 and (1)H in the chemical shift regions for the indole and backbone amide protons were 0.0106 +/- 0.0007 (n = 12) and 0.0105 +/- 0.0014 (n = 8) s(-1), respectively. No cross-relaxation was measurable between (19)F of F6 and protons in these regions. Sodium transport study showed that with 75 microM gramicidin A in a vesicle suspension of 66 mM PC/PG, F3 increased the (23)Na apparent efflux rate constant from 149.7 +/- 7.2 of control (n = 3) to 191.7 +/- 12.2 s(-1) (n = 3), and the apparent influx rate constant from 182.1 +/- 15.4 to 222.8 +/- 21.7 s(-1) (n = 3). In contrast, F6 had no effects on either influx or efflux rate. It is concluded that the ability of general anesthetics to interact with amphipathic residues near the peptide-lipid-water interface and the inability of nonimmobilizer to do the same may represent some characteristics of anesthetic-protein interaction that are of importance to general anesthesia.  相似文献   

16.
General anesthetics abolish behavioral responsiveness in all animals, and in humans this is accompanied by loss of consciousness. Whether similar target mechanisms and behavioral endpoints exist across species remains controversial, although model organisms have been successfully used to study mechanisms of anesthesia. In Drosophila, a number of key mutants have been characterized as hypersensitive or resistant to general anesthetics by behavioral assays. In order to investigate general anesthesia in the Drosophila brain, local field potential (LFP) recordings were made during incremental exposures to isoflurane in wild-type and mutant flies. As in higher animals, general anesthesia in flies was found to involve a succession of distinct endpoints. At low doses, isoflurane uncoupled brain activity from ongoing movement, followed by a sudden attenuation in neural correlates of perception. Average LFP activity in the brain was more gradually attenuated with higher doses, followed by loss of movement behavior. Among mutants, a strong correspondence was found between behavioral and LFP sensitivities, thereby suggesting that LFP phenotypes are proximal to the anesthetic's mechanism of action. Finally, genetic and pharmacological analysis revealed that anesthetic sensitivities in the fly brain are, like other arousal states, influenced by dopaminergic activity. These results suggest that volatile anesthetics such as isoflurane may target the same processes that sustain wakefulness and attention in the brain. LFP correlates of general anesthesia in Drosophila provide a powerful new approach to uncovering the nature of these processes.  相似文献   

17.
18.
Pentameric ligand-gated ion channels are targets of general anesthetics. Although the search for discrete anesthetic binding sites has achieved some degree of success, little is known regarding how anesthetics work after the events of binding. Using the crystal structures of the bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC), which is sensitive to a variety of general anesthetics, we performed multiple molecular dynamics simulations in the presence and absence of the general anesthetic isoflurane. Isoflurane bound to several locations within GLIC, including the transmembrane pocket identified crystallographically, the extracellular (EC) domain, and the interface of the EC and transmembrane domains. Isoflurane also entered the channel after the pore was dehydrated in one of the simulations. Isoflurane disrupted the quaternary structure of GLIC, as evidenced in a striking association between the binding and breakage of intersubunit salt bridges in the EC domain. The pore-lining helix experienced lateral and inward radial tilting motion that contributed to the channel closure. Isoflurane binding introduced strong anticorrelated motions between different subunits of GLIC. The demonstrated structural and dynamical modulations by isoflurane aid in the understanding of the underlying mechanism of anesthetic inhibition of GLIC and possibly other homologous pentameric ligand-gated ion channels.  相似文献   

19.
The anesthetic excitement phase occurring during induction of anesthesia with volatile anesthetics is a well-known phenomenon in clinical practice. However, the physiological mechanisms underlying anesthetic-induced excitation are still unclear. Here we provide evidence from in vitro experiments performed on rat brain slices that the general anesthetic isoflurane at a concentration of about 0.1 mM can enhance neuronal network excitability in the hippocampus, while simultaneously reducing it in the neocortex. In contrast, isoflurane tissue concentrations above 0.3 mM expectedly caused a pronounced reduction in both brain regions. Neuronal network excitability was assessed by combining simultaneous multisite stimulation via a multielectrode array with recording intrinsic optical signals as a measure of neuronal population activity.  相似文献   

20.
General anesthetics have been shown to perturb the membrane properties of excitable tissues. Due to their lipid solubility, anesthetics dissolve in every membrane, penetrate into organelles and interact with numerous cellular structures in multiple ways. Several studies indicate that anesthetics alter membrane fluidity and decrease the phase-transition temperature. However, the required concentrations to induce such effects on the properties of membrane lipids are by far higher than clinically relevant concentrations. In the present study, the fluidizing effect of the anesthetic agent propofol (2,6-diisopropyl phenol: PPF), a general anesthetic extensively used in clinical practice, has been investigated on liposome dimyristoyl-L-alpha phosphatidylcholine (DMPC) and cell (erythrocyte, Neuro-2a) membranes using electron spin resonance spectroscopy (ESR) of nitroxide labeled fatty acid probes (5-, 16-doxyl stearic acid). A clear effect of PPF at concentrations higher than the clinically relevant ones was quantified both in liposome and cell membranes, while no evident fluidity effect was measured at the clinical PPF doses. However, absorption spectroscopy of merocyanine 540 (MC540) clearly indicates a PPF fluidizing capacity in liposome membrane even at these clinical concentrations. PPF may locally influence the structure and dynamics of membrane domains, through the formation of small-scale lipid domains, which would explain the lack of ESR information at low PPF concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号