首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kallikrein family is a group of 15 serine protease genes clustered on chromosome 19q13.4. Binding of kallikreins to protease inhibitors is an important mechanism for regulating their enzymatic activity and may have potential clinical applications. Human kallikrein gene 5 (KLK5) is a member of this family and encodes for a secreted serine protease (hK5). This kallikrein was shown to be differentially expressed at the mRNA and protein levels in diverse malignancies. Our objective was to study the enzymatic activity and the interaction of recombinant hK5 protein with protease inhibitors. Recombinant hK5 protein was produced in yeast and mammalian expression systems and purified by chromatography. HPLC fractionation, followed by ELISA-type assays, immunoblotting and radiolabeling experiments were performed to detect the possible interactions between hK5 and proteinase inhibitors in serum. Enzymatic deglycosylation was performed to examine the glycosylation pattern of the protein. The enzymatic activity of hK5 was tested using trypsin and chymotrypsin-specific synthetic fluorogenic substrates. In serum and ascites fluid, in addition to the free ( approximately 40 kDa) form, hK5 forms complexes with alpha(1)-antitrypsin and alpha(2)-macroglobulin. These complexes were detected by hybrid ELISA-type assays using hK5-specific coating antibodies and inhibitor detection antibodies. The ability of hK5 to bind to these inhibitors was further verified in vitro. Spiking of serum samples with 125I-labeled hK5 results in the distribution of the protein in two higher molecular mass (bound) forms, in addition to the unbound form. The hK5 mature enzyme is active and shows trypsin, but not chymotrypsin-like, activity. The pro-form of hK5 is not active. Recombinant hK5 shows a higher than predicted molecular mass due to glycosylation. hK5 is partially complexed with alpha(1)-antitrypsin and alpha(2)-macroglobulin in serum and ascites fluid of ovarian cancer patients. The recombinant protein is glycosylated and its mature form shows trypsin-like activity.  相似文献   

2.
Human tissue kallikreins (hKs) are a family of fifteen serine proteases. Several lines of evidence suggest that hKs participate in proteolytic cascade pathways. Human kallikrein 5 (hK5) has trypsin-like activity, is able to self-activate, and is co-expressed in various tissues with other hKs. In this study, we examined the ability of hK5 to activate other hKs. By using synthetic heptapeptides that encompass the activation site of each kallikrein and recombinant pro-hKs, we demonstrated that hK5 is able to activate pro-hK2 and pro-hK3. We then showed that, following their activation, hK5 can internally cleave and deactivate hK2 and hK3. Given the predominant expression of hK2 and hK3 in the prostate, we examined the pathophysiological role of hK5 in this tissue. We studied the regulation of hK5 activity by cations (Zn2+, Ca2+, Mg2+, Na2+, and K+) and citrate and showed that Zn can efficiently inhibit hK5 activity at levels well below its normal concentration in the prostate. We also show that hK5 can degrade semenogelins I and II, the major components of the seminal clot. Semenogelins can reverse the inhibition of hK5 by Zn2+, providing a novel regulatory mechanism of its serine protease activity. hK5 is also able to internally cleave insulin-like growth factor-binding proteins 1, 2, 3, 4, and 5, but not 6, suggesting that it might be involved in prostate cancer progression through growth factor regulation. Our results uncover a kallikrein proteolytic cascade pathway in the prostate that participates in seminal clot liquefaction and probably in prostate cancer progression.  相似文献   

3.
Kallikreins are a subgroup of serine proteases that are involved in the posttranslational processing of polypeptide precursors. Growing evidence suggests that many kallikreins are implicated in carcinogenesis. In rodents, kallikreins are encoded by a large multigene family, but in humans, only three genes have been identified. By using the positional candidate approach, we were able to identify a new kallikrein-like gene, tentatively named KLK12 (for kallikrein gene 12). This new gene maps to chromosome 19q13.3-q13.4, is formed of five coding exons, and shows structural similarity to serine proteases and other known kallikreins. KLK12 is expressed in a variety of tissues including salivary gland, stomach, uterus, lung, thymus, prostate, colon, brain, breast, thyroid, and trachea. We identified three splicing forms of KLK12 that are expressed in many tissues. Our preliminary results indicate that the expression of KLK12 is down-regulated at the mRNA level in breast cancer tissues and is up-regulated by steroid hormones in breast and prostate cancer cell lines. This gene may be involved in the pathogenesis and/or progression of certain cancer types and may find applicability as a novel cancer biomarker.  相似文献   

4.
Human tissue kallikrein 14 (KLK14) is a novel extracellular serine protease. Clinical data link KLK14 expression to several diseases, primarily cancer; however, little is known of its (patho)-physiological role. To functionally characterize KLK14, we expressed and purified recombinant KLK14 in mature and proenzyme forms and determined its expression pattern, specificity, regulation, and in vitro substrates. By using our novel immunoassay, the normal and/or diseased skin, breast, prostate, and ovary contained the highest concentration of KLK14. Serum KLK14 levels were significantly elevated in prostate cancer patients compared with healthy males. KLK14 displayed trypsin-like specificity with high selectivity for P1-Arg over Lys. KLK14 activity could be regulated as follows: 1) by autolytic cleavage leading to enzymatic inactivation; 2) by the inhibitory serpins alpha1-antitrypsin, alpha2-antiplasmin, antithrombin III, and alpha1-antichymotrypsin with second order rate constants (k(+2)/Ki) of 49.8, 23.8, 1.48, and 0.224 microM(-1) min(-1), respectively, as well as plasminogen activator inhibitor-1; and 3) by citrate and zinc ions, which exerted stimulatory and inhibitory effects on KLK14 activity, respectively. We also expanded the in vitro target repertoire of KLK14 to include collagens I-IV, fibronectin, laminin, kininogen, fibrinogen, plasminogen, vitronectin, and insulin-like growth factor-binding proteins 2 and 3. Our results indicate that KLK14 may be implicated in several facets of tumor progression, including growth, invasion, and angiogenesis, as well as in arthritic disease via deterioration of cartilage. These findings may have clinical implications for the management of cancer and other disorders in which KLK14 activity is elevated.  相似文献   

5.
Human kallikrein 14 (KLK14) is a member of the human kallikrein gene family of serine proteases, and its protein, hK14, has recently been suggested to serve as a new ovarian and breast cancer marker. To gain insights into hK14's physiological functions, the active recombinant enzyme was obtained in an enzymatically pure state for biochemical and enzymatic characterizations. We studied its substrate specificity and behavior to various protease inhibitors, and identified candidate physiological substrates. hK14 had trypsin-like activity with a strong preference for Arg over Lys in the P1 position, and its activity was inhibited by typical serine protease inhibitors. The protease degraded casein, fibronectin, gelatin, collagen type I, collagen type IV, fibrinogen, and high-molecular-weight kininogen. Furthermore, it rapidly hydrolyzed insulin-like growth factor binding protein-3 (IGFBP-3). These findings suggest that hK14 may be implicated in tumor progression in ovarian carcinoma.  相似文献   

6.
Human kallikrein 8 (hK8), whose gene was originally cloned as the human ortholog of a mouse brain protease, is known to be associated with diseases such as ovarian cancer and Alzheimer's disease. Recombinant human pro-kallikrein 8 was activated with lysyl endopeptidase-conjugated beads. Amino-terminal sequencing of the activated enzyme demonstrated the cleavage of a 9-aa propeptide from the pro-enzyme. The substrate specificity of activated hK8 was characterized using synthetic fluorescent substrates. hK8 showed trypsin-like specificity, as predicted from sequence analysis and enzymatic characterization of the mouse ortholog. All synthetic substrates tested containing either arginine or lysine at P1 position were cleaved by hK8. The highest kcat/Km value of 20x10(3)M-1 s-1 was observed with Boc-Val-Pro-Arg-7-amido-4-methylcoumarin. The activity of hK8 was inhibited by antipain, chymostatin, and leupeptin. The concentration for 50% inhibition by the best inhibitor, antipain, was 0.46 microM. The effect of different metal ions on the enzyme activity was analyzed. Whereas Na+ had no effect on hK8 activity, Ni2+ and Zn2+ decreased the activity and Ca2+, Mg2+, and K+ had a stimulatory effect. Ca2+ was the best activator, with an optimal concentration of approximately 10 microM.  相似文献   

7.
8.
《Process Biochemistry》2014,49(6):955-962
An extracellular protease from a newly isolated seawater haloalkaliphilic bacterium, haloalkaliphilic bacteria Ve2-20-91 [HM047794], was purified and characterized. The enzyme is a monomer with a 37.2 kDa estimated molecular weight. It catalyzed reactions in the pH range 8–11 and performed optimally at pH 10. While maximal activity occurred at 50 °C, the temperature profile shifted from 50 to 80 °C in 1–3 M NaCl. The enzyme's thermal stability was probed using circular dichroism (CD) spectroscopy with NaCl at 50 and 70 °C. The changes in the enzyme's secondary structure were also analyzed using Fourier transform infrared spectroscopy (FTIR). The N-terminal amino acid sequence GKDGPPGLCGFFGCI exhibited low homology with other bacterial proteases, which highlights the enzyme's novelty. The enzyme was labile in anionic surfactant (1% w/v SDS) but showed stability in non-ionic surfactants (Tween 20, Tween 80 and Triton X-100 all 1% v/v), commercial detergents, and oxidizing and reducing agents. The enzyme's excellent stability in commercial detergents highlights its potential as a detergent additive.  相似文献   

9.
Human HtrA2 is a novel member of the HtrA serine protease family and shows extensive homology to the Escherichia coli HtrA genes that are essential for bacterial survival at high temperatures. HumHtrA2 is also homologous to human HtrA1, also known as L56/HtrA, which is differentially expressed in human osteoarthritic cartilage and after SV40 transformation of human fibroblasts. HumHtrA2 is upregulated in mammalian cells in response to stress induced by both heat shock and tunicamycin treatment. Biochemical characterization of humHtrA2 shows it to be predominantly a nuclear protease which undergoes autoproteolysis. This proteolysis is abolished when the predicted active site serine residue is altered to alanine by site-directed mutagenesis. In human cell lines, it is present as two polypeptides of 38 and 40 kDa. HumHtrA2 cleaves beta-casein with an inhibitor profile similar to that previously described for E. coli HtrA, in addition to an increase in beta-casein turnover when the assay temperature is raised from 37 to 45 degrees C. The biochemical and sequence similarities between humHtrA2 and its bacterial homologues, in conjunction with its nuclear location and upregulation in response to tunicamycin and heat shock suggest that it is involved in mammalian stress response pathways.  相似文献   

10.
The cDNA for the zyme/protease M/neurosin gene (HGMW-approved symbol PRSS9) has recently been identified. Zyme appears to play a role in Alzheimer disease as well as in breast cancer. In this paper, we describe the complete genomic organization of the zyme gene. Zyme spans 10.5 kb of genomic sequence on chromosome 19q13.3-q13.4. The gene consists of seven exons, the first two of which are untranslated. All splice junctions follow the GT/AG rule, and the intron phases are identical to those of many other genes belonging to the same family, i.e., the kallikreins, NES1, and neuropsin. Fine-mapping of the genomic locus indicates that zyme lies upstream of the NES1 gene and downstream from the PSA and KLK2 genes. Tissue expression studies indicate that zyme is expressed mainly in brain tissue, including spinal cord and cerebellum, in mammary gland, and in kidney and uterus. Zyme is regulated by steroid hormones in the breast carcinoma cell line BT-474. Estrogens and progestins, and to a lesser extent androgens, up-regulate the zyme gene in a dose-dependent manner.  相似文献   

11.
Abstract Proteolytic enzymes are involved in almost all biological processes reflecting their importance in health and disease. The human genome contains nearly 600 protease-encoding genes forming more than 2% of the total human proteome. The serine proteases, with about 180 members, built the oldest and second largest family of human proteases. Ten years ago, a novel serine protease family named the type II transmembrane family (TTSP) was identified. This minireview summarizes the up-to-date knowledge about the still growing TTSPs, particularly focusing on the pathophysiological functions of the family member type II transmembrane serine protease (TMPRSS) 4. Recent studies provided important data on TMPRSS4 activity associated with the spreading of influenza viruses, mediated by the cleavage of hemagglutinin. Progression and metastatic potential of several cancers is concordant with an increased expression of TMPRSS4, though being a possible diagnostic marker. However, to benefit from TMPRSS4 as a therapeutic target, more data concerning its physiological relevance are needed, as done by a specific morpholino knockdown in zebrafish embryos.  相似文献   

12.
A novel serine protease from Trichoderma koningii (SPTK) was synthesized and expressed in Pichia pastoris. The recombinant SPTK was completely inhibited by phenyl methyl sulfonyl fluoride (PMSF), suggesting that SPTK belonged to the subgroup of serine proteases. The optimum pH and temperature for the recombinant SPTK reaction were 6.0 and 55 °C, respectively. SPTK performed a tolerance to most organic solvents and metal ions, and the addition of Triton X-100 exhibited an activation of SPTK up to 243% of its initial activity but SDS strongly inhibited. Moreover, our study showed that a portion of SPTK was N-glycosylated during fermentation. The activity and thermal stability of the recombinant SPTK were improved after the removal of glycosylation, and the N-glycosylation of SPTK could be efficiently removed through co-culture with P. pastoris strains expressing Endo-β-N-acetylglucosaminidase H. We constructed expression vectors harboring from one to four repeats of Sptk-expressing cassettes via an in vitro BioBrick assembly approach. And the result of quantitative polymerase chain reaction (qPCR) indicated that the tandem expression cassettes were integrated into the genome of P. pastoris through a single recombination event. These strains were used to study the correlation between the gene copy number and the expression level of SPTK. The results of qPCR and enzyme activity assays indicated that the copy number variation of Sptk gene generally had a positive effect on the expression level of SPTK, while an increase in integration of target gene did not guarantee its high expression. The maximum yield and specific activity of SPTK in P. pastoris were obtained from the recombinant yeast strain harboring two-copy tandem Sptk-expressing cassettes, the yield reached 0.48 g/l after a 6-d induction using menthol in shake flasks and 3.2 g/l in high-density fermentation with specific activity of 5200 U/mg. In addition, the recombinant SPTK could efficiently degrade chicken feather and hydrolyzed the gelatin layer of photographic film. These properties made the recombinant SPTK a suitable candidate for industrial applications and for eliminating the pollution of keratin.  相似文献   

13.
We have identified TMPRSS6, a novel type 2 transmembrane serine protease. TMPRSS6 possesses all the signature motifs of the family of transmembrane serine proteases (TMPRSSs), including a transmembrane domain, an LDL receptor class A (LDLRA) domain, a scavenger receptor cysteine-rich (SRCR) domain, and a serine protease domain. The substrate specificity of TMPRSS6 is slightly different from those of other TMPRSS family members. Combined with the finding that TMPRSS6 is expressed strongly in the thyroid and weakly in the trachea, this may indicate that TMPRSS6 has a specialized role.  相似文献   

14.
Human glandular kallikrein 2 (hK2) is a serine protease expressed by the prostate gland with 80% identity in primary structure to prostate-specific antigen (PSA). Recently, hK2 was shown to activate the zymogen form of PSA (proPSA) in vitro and is likely to be the physiological activator of PSA in the prostate. hK2 is also able to activate urokinase and effectively cleave fibronectin. We studied the substrate specificity of hK2 and regulation of its activity by zinc and extracellular protease inhibitors present in the prostate and seminal plasma. The enzymatic activity and substrate specificity was studied by determining hK2 cleavage sites in the major gel proteins in semen, semenogelin I and II, and by measuring hydrolysis of various tripeptide aminomethylcoumarin substrates. HK2 cleaves substrates C-terminal of single or double arginines. Basic amino acids were also occasionally found at several other positions N-terminal of the cleavage site. Therefore, the substrate specificity of hK2 fits in well with that of a processor of protein precursors. Possible regulation mechanisms were studied by testing the ability of Zn2+ and different protease inhibitors to inhibit hK2 by kinetic measurements. Inhibitory constants were determined for the most effective inhibitors PCI and Zn2+. The high affinity of PCI for hK2 (kass = 2.0 x 10(5) M-1 x s-1) and the high concentrations of PCI (4 microM) and hK2 (0.2 microM) in seminal plasma make hK2 a very likely physiological target protease for PCI. hK2 is inhibited by Zn2+ at micromolar concentrations well below the 9 mM zinc concentration found in the prostate. The enzymatic activity of hK2 is likely to be reversibly regulated by Zn2+ in prostatic fluid. This regulation may be impaired in CAP and advanced metastatic cancer resulting in lack of control of the hK2 activity and a need for other means of control.  相似文献   

15.
Proteolytic processing enzymes are required to convert the enkephalin precursor to active opioid peptides. In this study, a novel 33-kDa thiol protease that cleaves complete precursor in the form of [35S]methionine preproenkephalin was purified from bovine adrenal medullary chromaffin granules. Chromatography on concanavalin A-Sepharose and Sephacryl S-200, chromatofocusing, and chromatography on thiopropyl-Sepharose resulted in an 88,000-fold purification with a recovery of 35% of enzyme activity. The thiol protease is a glycoprotein with a pI of 6.0. It cleaves [35S]methionine preproenkephalin with a pH optimum of 5.5, indicating that it is functional at the intragranular pH of 5.5-6.0. Interestingly, production of trichloroacetic acid-soluble products was optimal at pH 4.0, suggesting that processing of initial precursor and intermediates may require slightly different pH conditions. The protease requires dithiothreitol for activity and is inhibited by the thiol protease inhibitors iodoacetate, p-hydroxymercuribenzoate, mercuric chloride, and cystatin. These properties distinguish it from other thiol proteases (cathepsins B, H, L, N, and S), indicating that a unique thiol protease has been identified. The enzyme converted [35S]cysteine preproenkephalin (possessing [35S]cysteine residues specifically within the precursor's NH2-terminal segment) to 22.1-, 21.6-, 17.7-, 17.3-, and 15.0-kDa intermediates that contain the precursor's NH2-terminal segment; proenkephalin in vivo is converted to similar intermediates. The enzyme cleaves peptide F at Lys-Arg and Lys-Lys dibasic amino acid sites to generate methionine enkephalin and intermediates. The appropriate vesicular localization, pH optimum, proteolytic products, and cleavage site specificity suggest that this thiol protease may be involved in enkephalin precursor processing. Most interestingly, [35S]methionine beta-preprotachykinin, a precursor of substance P, is minimally cleaved, suggesting that the thiol protease may possess some selectivity for the enkephalin precursor.  相似文献   

16.
Yamada K  Takabatake T  Takeshima K 《Gene》2000,252(1-2):209-216
Three novel cDNAs encoding serine proteases, that may play a role in early vertebrate development, have been identified from Xenopus laevis. These Xenopus cDNAs encode trypsin-like serine proteases and are designated Xenopus embryonic serine protease (Xesp)-1, Xesp-2, and XMT-SP1, a homolog of human MT-SP1. Xesp-1 is likely to be a secreted protein that functions in the extracellular space. Xesp-2 and XMP-SP1 are likely to be type II membrane proteases with multidomain structures. Xesp-2 has eight low density lipoprotein receptor (LDLR) domains and one scavenger receptor cysteine-rich (SRCR) domain, and XMT-SP1 has four LDLR domains and two CUB domains. The temporal expressions of these serine protease genes show distinct and characteristic patterns during embryogenesis, and they are differently distributed in adult tissues. Overexpression of Xesp-1 caused no significant defect in embryonic development, but overexpression of Xesp-2 or XMT-SP1 caused defective gastrulation or apoptosis, respectively. These results suggest that these proteases may play important roles during early Xenopus development, such as regulation of cell movement in gastrulae.  相似文献   

17.
A cDNA encoding a novel serine protease, which we designated spinesin, has been cloned from human spinal cord. The longest open reading frame was 457 amino acids. A homology search revealed that the human spinesin gene was located at chromosome 11q23 and contained 13 exons, the gene structure being similar to that of TMPRSS3 whose gene is also located on 11q23. Spinesin has a simple type II transmembrane structure, consisting of, from the N terminus, a short cytoplasmic domain, a transmembrane domain, a stem region containing a scavenger receptor-like domain, and a serine protease domain. Unlike TMPRSS3, it carries no low density lipoprotein receptor domain in the stem region. The extracellular region carries five N-glycosylation sites. The sequence of the protease domain carried the essential triad His, Asp, and Ser and showed some similarity to that of TMPRSS2, hepsin, HAT, MT-SP1, TMPRSS3, and corin, sharing 45.5, 41.9, 41.3, 40.3, 39.1, and 38.5% identity, respectively. The putative mature protease domain preceded by H(6)DDDDK was produced in Escherichia coli, purified, and successfully activated by immobilized enterokinase. Its optimal pH was about 10. It cleaved synthetic substrates for trypsin, which is inhibited by p-amidinophenylmethanesulfonyl fluoride hydrochloride but not by antipain or leupeptin. Northern blot analysis against mRNA from human tissues including liver, lung, placenta, and heart demonstrated a specific expression of spinesin mRNA in the brain. Immunohistochemically, spinesin was predominantly expressed in neurons, in their axons, and at the synapses of motoneurons in the spinal cord. In addition, some oligodendrocytes were clearly stained. These results indicate that spinesin is transported to the synapses through the axons after its synthesis in the cytoplasm and may play important roles at the synapses. Further analyses are required to clarify its roles at the synapses and in oligodendrocytes.  相似文献   

18.
The cDNA for the trypsin-like serine protease gene (TLSP, HGMW-approved symbol PRSS20) has been recently identified. TLSP is expressed in brain and skin tissues but little else is known about this new serine protease gene. In this paper, we describe the complete genomic organization and precise mapping of the TLSP gene. This gene spans 5.3 kb of genomic sequence on chromosome 19q13.3-q13. 4. The gene consists of six exons, the first of which is untranslated. All splice junctions follow the GT/AG rule, and the intron phases are identical to those of other kallikrein-like genes, including zyme (PRSS9), NES1 (PRSSL1), and neuropsin (PRSS19). Fine-mapping of the area indicates that TLSP lies downstream from the PSA, zyme, neuropsin, and NES1 genes. Significant sequence homologies were found between TLSP and other human kallikreins. Furthermore, there is conservation of the catalytic triad (histidine, aspartic acid, serine) and of the number of coding exons (five; the same in all members of the kallikrein gene family). We thus suggest that TLSP is a new member of the human kallikrein gene family. TLSP is expressed in many tissues including cerebellum, prostate, salivary glands, stomach, lung, thymus, small intestine, spleen, liver, and uterus. TLSP expression appears to be regulated by steroid hormones in the breast carcinoma cell line BT-474.  相似文献   

19.
A new cytoplasmic endoprotease, named protease So, was purified to homogeneity from Escherichia coli by conventional procedures with casein as the substrate. Its molecular weight was 140,000 when determined by gel filtration on Sephadex G-200 and 77,000 when estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Thus, it appears to be composed of two identical subunits. Protease So had an isoelectric point of 6.4 and a K(m) of 1.4 muM for casein. In addition to casein, it hydrolyzed globin, glucagon, and denatured bovine serum albumin to acid-soluble peptides but did not degrade insulin, native bovine serum albumin, or the "auto alpha" fragment of beta-galactosidase. A variety of commonly used peptide substrates for endoproteases were not hydrolyzed by protease So. It had a broad pH optimum of 6.5 to 8.0. This enzyme is a serine protease, since it was inhibited by diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride. Although it was not inhibited by chelating agents, divalent cations (e.g., Mg(2+)) stabilized its activity. Protease So was sensitive to inhibition by N-tosyl-l-phenylalanine chloromethyl ketone but not by N-tosyl-l-lysine chloromethyl ketone. Neither ATP nor 5'-diphosphate-guanosine-3'-diphosphate affected the rate of casein hydrolysis. Protease So was distinct from the other soluble endoproteases in E. coli (including proteases Do, Re, Mi, Fa, La, Ci, and Pi) in its physical and chemical properties and also differed from the membrane-associated proteases, protease IV and V, and from two amino acid esterases, originally named protease I and II. The physiological function of protease So is presently unknown.  相似文献   

20.
The proteases are enzymes produced by several filamentous fungi with important biotechnological applications. In this work, a protease from Aspergillus flavus was characterized. The culture filtrate of A. flavus was purified to homogeneity by Sephacryl S-200 column chromatography followed by CM–cellulose. The molecular weight of the purified enzyme was estimated to be approximately 32?kDa by SDS–PAGE. The enzyme hydrolysed BTpNA (N-α-benzoyl-dl-tyrosyl-p-nitroanilide), azo-casein and casein as substrates. Optimal temperature and pH were 55?°C and 6.5, respectively. The enzyme was stimulated by Mg2+, Ca2+, Zn2+ and inhibited by Hg2+ and Ag2+ and Cu2+. The protease showed increased activity with detergents, such as Tween 80 and Triton X, and was stable to the reducing agents, such as β-mercaptoethanol. The protease activity was strongly inhibited in the presence of phenylmethylsulfonyl fluoride, indicating it is a serine protease. The enzyme entrapped in calcium alginate beads retained its activity for longer time and could be reused up to 10 times. The thermostability was increased after the immobilization and the enzyme retained 100% of activity at 45?°C after 60?min of incubation, and 90% of residual activity at 50?°C after 30?min. In contrast, the free enzyme only retained 10% of its residual activity after 60?min at 50?°C. The enzymatic preparation was demonstrated to be efficient in the capability of dehairing without destruction of the hide. The remarkable properties such as temperature, pH and immobilization stability found with this enzyme assure that it could be a potential candidate for industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号