首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fifty-four different sugarcane resistance gene analogue (RGA) sequences were isolated, characterized, and used to identify molecular markers linked to major disease-resistance loci in sugarcane. Ten RGAs were identified from a sugarcane stem expressed sequence tag (EST) library; the remaining 44 were isolated from sugarcane stem, leaf, and root tissue using primers designed to conserved RGA motifs. The map location of 31 of the RGAs was determined in sugarcane and compared with the location of quantitative trait loci (QTL) for brown rust resistance. After 2 years of phenotyping, 3 RGAs were shown to generate markers that were significantly associated with resistance to this disease. To assist in the understanding of the complex genetic structure of sugarcane, 17 of the 31 RGAs were also mapped in sorghum. Comparative mapping between sugarcane and sorghum revealed syntenic localization of several RGA clusters. The 3 brown rust associated RGAs were shown to map to the same linkage group (LG) in sorghum with 2 mapping to one region and the third to a region previously shown to contain a major rust-resistance QTL in sorghum. These results illustrate the value of using RGAs for the identification of markers linked to disease resistance loci and the value of simultaneous mapping in sugarcane and sorghum.  相似文献   

2.
A major rust resistance gene has been identified in a self-progeny of the sugarcane cultivar R570. Until now, this gene was known to be linked to a marker revealed by the sugarcane probe CDSR29 but unassigned to any linkage group of the current genetic map. We used synteny relationships between sugarcane and three other grasses in an attempt to saturate the region around this rust resistance gene. Comparison of sugarcane, sorghum, maize and rice genetic maps led to the identification of homoeologous chromosome segments at the extremity of sorghum linkage group D, rice linkage group 2, maize linkage group 4 and in the centromeric region of maize linkage group 5. One hundred and eighty-four heterologous probes were selected and tested for cross-hybridization with sugarcane DNA; 106 produced a good hybridization signal and were hybridized on 88 individuals of the R570 selfed progeny. Two hundred and seventeen single-dose markers were added to the R570 genetic map, of which 66% mapped to linkage group VII, together with the rust resistance gene. This gene has now been mapped to the end of a co-segregating group consisting of 19 RFLP markers. None of the mapped loci were located closer to the gene than CDSR29. The gene thus appears to reside at the edge of a ’’synteny cluster’’ used to describe the different grass genomes. Received: 12 January 2000 / Accepted: 21 March 2000  相似文献   

3.
4.
Grain mold and rust are diseases that can significantly reduce sorghum grain yield. Breeding for resistance to these diseases is hindered by inefficient disease screening. A viable option to greatly improve breeding efficiency is to identify molecular markers or genes linked to the host resistance. In this study, we applied 14,739 single nucleotide polymorphism markers to the sorghum mini core of 242 accessions that had been evaluated for rust resistance in both greenhouse and field and for grain mold in the field for 2 years. Through association mapping we have identified two loci linked to grain mold resistance and five loci linked to rust resistance. Among the two loci linked to grain mold resistance, one contained a homolog of the maize nonhost resistance gene Rxo1. Two of rust-linked loci each contained the rust resistance gene homologous to the maize rust resistance gene Rp1-D which is the B locus (the A locus containing Pu was not linked in this study) and to the wheat rust resistance gene Lr1. The remaining loci contained genes important in other steps of the defense response, such as cyclophilins that mediate resistance response preceding hypersensitive response (HR) and Hin1 directly involved in producing HR. The results from this study will facilitate marker-assisted selection of host resistance to grain mold and rust in sorghum.  相似文献   

5.
Crown rust resistance is an important selection criterion in ryegrass breeding. The disease, caused by the biotrophic fungus Puccinia coronata, causes yield losses and reduced quality. In this study, we used linkage mapping and QTL analysis to unravel the genomic organization of crown rust resistance in a Lolium perenne population. The progeny of a pair cross between a susceptible and a resistant plant were analysed for crown rust resistance. A linkage map, consisting of 227 loci (AFLP, SSR, RFLP and STS) and spanning 744 cM, was generated using the two-way pseudo-testcross approach from 252 individuals. QTL analysis revealed four genomic regions involved in crown rust resistance. Two QTLs were located on LG1 (LpPc4 and LpPc2) and two on LG2 (LpPc3 and LpPc1). They explain 12.5, 24.9, 5.5 and 2.6% of phenotypic variance, respectively. An STS marker, showing homology to R genes, maps in the proximity of LpPc2. Further research is, however, necessary to check the presence of functional R genes in this region. Synteny at the QTL level between homologous groups of chromosomes within the Gramineae was observed. LG1 and LG2 show homology with group A and B chromosomes of oat on which crown rust-resistance genes have been identified, and with the group 1 chromosomes of the Triticeae, on which leaf rust-resistance genes have been mapped. These results are of major importance for understanding the molecular background of crown rust resistance in ryegrasses. The identified markers linked to crown rust resistance have the potential for use in marker-assisted breeding.  相似文献   

6.
Recombination between paralogues at the Rp1 rust resistance locus in maize   总被引:7,自引:0,他引:7  
Rp1 is a complex rust resistance locus of maize. The HRp1-D haplotype is composed of Rp1-D and eight paralogues, seven of which also code for predicted nucleotide binding site-leucine rich repeat (NBS-LRR) proteins similar to the Rp1-D gene. The paralogues are polymorphic (DNA identities 91-97%), especially in the C-terminal LRR domain. The remaining family member encodes a truncated protein that has no LRR domain. Seven of the nine family members, including the truncated gene, are transcribed. Sequence comparisons between paralogues provide evidence for past recombination events between paralogues and diversifying selection, particularly in the C-terminal half of the LRR domain. Variants selected for complete or partial loss of Rp1-D resistance can be explained by unequal crossing over that occurred mostly within coding regions. The Rp1-D gene is altered or lost in all variants, the recombination breakpoints occur throughout the genes, and most recombinant events (9/14 examined) involved the same untranscribed paralogue with the Rp1-D gene. One recombinant with a complete LRR from Rp1-D, but the amino-terminal portion from another homologue, conferred the Rp1-D specificity but with a reduced level of resistance.  相似文献   

7.
8.
Recombination at the Rp1 locus of maize.   总被引:11,自引:0,他引:11  
Summary The Rp1 locus of maize determines resistance to races of the maize rust fungus (Puccinia sorghi). Restriction fragment length polymorphism markers that closely flank Rp1 were mapped and used to study the genetic fine structure and role of recombination in the instability of this locus. Susceptible progeny, lacking the resistance of either parent, were obtained from test cross progeny of several Rp1 heterozygotes. These susceptible progeny usually had non-parental genotypes at flanking marker loci, thereby verifying their recombinational origin. Seven of eight Rp1 alleles (or genes) studied were clustered within about 0.2 map units of each other. Rpl G, however, mapped from 1–3 map units distal to other Rp1 alleles. Rp5 also mapped distally to most Rp1 alleles. Other aspects of recombination at Rp1 suggested that some alleles carry duplicated sequences, that mispairing can occur, and that unequal crossing-over may be a common phenomenon in this region; susceptible progeny from an Rp1 A homozygote had recombinant flanking marker genotypes, and susceptible progeny from an Rp1 DlRp1 F heterozygote showed both possible nonparental flanking marker genotypes.  相似文献   

9.
A large sugarcane EST (expressed sequence tag) project recently gave us access to 261,609 EST sequences from sugarcane, assembled into 81,223 clusters. Among these, we identified 88 resistance gene analogs (RGAs) based on their homology to typical pathogen resistance genes, using a stringent BLAST search with a threshold e-value of e(-50). They included representatives of the three major groups of resistance genes with NBS/LRR, LRR or S/T KINASE domains. Fifty RGAs showed a total of 148 single-dose polymorphic RFLP markers, which could be located on the sugarcane reference genetic map (constructed in cultivar R570, 2n=approximately 115). Fifty-five SSR loci corresponding to 134 markers in R570 were also mapped to enable the classification of the various haplotypes into homology groups. Several RGA clusters were found. One cluster of two LRR-like loci mapped close to the only disease resistance gene known so far in sugarcane, which confers resistance to common rust. Detailed sequence comparison between two NBS/LRR RGA clusters in relation to their orthologs in rice and maize suggests their polyphyletic origins, and indicates that the degree of divergence between paralogous RGAs in sugarcane can be larger than that from an ortholog in a distant species.  相似文献   

10.
Smith SM  Pryor AJ  Hulbert SH 《Genetics》2004,167(4):1939-1947
The maize Rp1 rust resistance locus is a complex consisting of a family of closely related resistance genes. The number of Rp1 paralogs in different maize lines (haplotypes) varied from a single gene in some stocks of the inbred A188 to >50 genes in haplotypes carrying the Rp1-A and Rp1-H specificities. The sequences of paralogs in unrelated haplotypes differ, indicating that the genetic diversity of Rp1-related genes is extremely broad in maize. Two unrelated haplotypes with five or nine paralogs had identical resistance phenotypes (Rp1-D) encoded in genes that differed by three nucleotides resulting in a single amino acid substitution. Genes in some haplotypes are more similar to each other than to any of the genes in other haplotypes indicating that they are evolving in a concerted fashion.  相似文献   

11.
Hu G  Richter TE  Hulbert SH  Pryor T 《The Plant cell》1996,8(8):1367-1376
The rp1 locus of maize controls race-specific resistance to the common rust fungus Puccinia sorghi. Four mutant or recombinant Rp1 alleles (rp1-NC3, Rp1-D21, Rp1-MD19, and Rp1-Kr1N) were identified. They condition necrotic phenotypes in the absence of the rust pathogen. These Rp1 lesion mimics fall into three different phenotypic classes: (1) The rp1-NC3 and Rp1-D21 alleles require rust infection or other biotic stimulus to initiate necrotic lesions. These alleles react strongly to all maize rust biotypes tested and also to nonhost rusts. (2) The Rp1-MD19 allele, which has a similar phenotype, also requires a biotic stimulus to initiate lesions. However, Rp1-MD19 shows the race specificity of the Rp1-D gene. (3) The Rp1-Kr1N allele specifies a diffuse necrotic phenotype in the absence of any biotic stimulus and a race-specific reaction when inoculated with maize rust.  相似文献   

12.
In maize, the Rp3 gene confers resistance to common rust caused by Puccinia sorghi. Flanking marker analysis of rust-susceptible rp3 variants suggested that most of them arose via unequal crossing over, indicating that rp3 is a complex locus like rp1. The PIC13 probe identifies a nucleotide binding site-leucine-rich repeat (NBS-LRR) gene family that maps to the complex. Rp3 variants show losses of PIC13 family members relative to the resistant parents when probed with PIC13, indicating that the Rp3 gene is a member of this family. Gel blots and sequence analysis suggest that at least 9 family members are at the locus in most Rp3-carrying lines and that at least 5 of these are transcribed in the Rp3-A haplotype. The coding regions of 14 family members, isolated from three different Rp3-carrying haplotypes, had DNA sequence identities from 93 to 99%. Partial sequencing of clones of a BAC contig spanning the rp3 locus in the maize inbred line B73 identified five different PIC13 paralogues in a region of approximately 140 kb.  相似文献   

13.
Many characterized plant disease resistance genes encode proteins which have conserved motifs such as the nucleotide binding site. Conservation extends across different species, therefore resistance genes from one species can be used to isolate homologous regions from another by employing DNA sequences encoding conserved protein motifs as probes. Here we report the isolation and characterization of a barley (Hordeum vulgare L.) resistance gene analog family consisting of nine members homologous to the maize rust resistance gene Rp1-D. Five barley Rp1-D homologues are clustered within approximately 400 kb on chromosome 1(7H), near, but not co-segregating with, the barley stem rust resistance gene Rpg1; while others are localized on chromosomes 3(3H), 5(1H), 6(6H) and 7(5H). Analyses of predicted amino-acid sequences of the barley Rp1-D homologues and comparison with known plant disease resistance genes are presented.  相似文献   

14.
Regions of amino acid conservation in the NBS domain of NBS-LRR resistance proteins facilitated the PCR isolation of eight resistance gene analog (RGA) sequences from genomic DNA of rice, barley, and Aegilops tauschii. These clones and other RGAs previously isolated from maize, rice, and wheat were assigned to 13 classes by DNA-sequence comparison and by their patterns of hybridisation to restricted barley DNA. Using a doubled-haploid mapping population, probes from 12 RGA classes were used to map 17 loci in the barley genome. Many of these probes have been used for mapping in wheat, and the collective data indicate that the positions of orthologous RGAs are conserved between barley and wheat. RGA loci were identified in the vicinity of barley leaf rust resistance loci Rph4, Rph7, and Rph10. Recombinants were identified between RGA loci and Rph7 and Rph10, while a cluster of RGA sequences detected by probe 5.2 cosegregated with Rph4 in 55 F2 lines.  相似文献   

15.
Genes at the maize Rp1 rust resistance complex often mispair in meiosis, which allows genes to recombine unequally, creating recombinant haplotypes. Four recombinant haplotypes were identified from progeny of an Rp1-D/Rp1-I heterozygote that conferred a nonparental resistance specificity designated Rp1-I*. Sequence comparisons of paralogs in the recombinant and parental haplotypes demonstrated that all four recombinants were derived from intergenic (between gene) recombination events. The sequence of paralogs in the HRp1-I parental haplotype indicated this haplotype includes 41 or more rp1 genes, at least 31 of which are transcribed. The results indicate that most of the novel resistance specificities that have arisen spontaneously at Rp1 are the result of reassort ment of existing Rp1 genes.  相似文献   

16.
A number of agronomically important grasses (sorghum, wheat, panicum, sugar cane, oats, rice and barley) are shown to contain sequences homologous to rp1, a maize gene that confers race-specific resistance to the rust fungus Puccinia sorghi. Mapping of rp1-related sequences in barley identified three unlinked loci on chromosomes 1HL, 3HL and 7HS. The locus located on chromosome 7HS comprises a small gene family of at least four members, two of which were isolated and are predicted to encode nucleotide binding site-leucine-rich repeat (NBS-LRR) proteins that are respectively 58% and 60% identical to the maize rp1 protein. Evidence of positive selection for sequence diversification acting upon these two barley genes was observed; however, diversifying selection was restricted to the carboxy terminal half of the LRR domain. One of these rp1 homologous genes cosegregated with the barley Rpg1 stem rust resistance gene amongst 148 members of the Steptoe × Morex double haploid mapping family. Three other unrelated resistance gene-like sequences, potentially encoding NBS-LRR proteins, are also shown to be linked to the Rpg1 locus but not cosegregating with the gene. Received: 2 August 1999 / Accepted: 28 September 1999  相似文献   

17.
A mapping population was created to detect quantitative trait loci (QTL) for resistance to stem rust caused by Puccinia graminis subsp. graminicola in Lolium perenne. A susceptible and a resistant plant were crossed to produce a pseudo-testcross population of 193 F1 individuals. Markers were produced by the restriction-site associated DNA (RAD) process, which uses massively parallel and multiplexed sequencing of reduced-representation libraries. Additional simple sequence repeat (SSR) and sequence-tagged site (STS) markers were combined with the RAD markers to produce maps for the female (738 cM) and male (721 cM) parents. Stem rust phenotypes (number of pustules per plant) were determined in replicated greenhouse trials by inoculation with a field-collected, genetically heterogeneous population of urediniospores. The F1 progeny displayed continuous distribution of phenotypes and transgressive segregation. We detected three resistance QTL. The most prominent QTL (qLpPg1) is located near 41 cM on linkage group (LG) 7 with a 2-LOD interval of 8 cM, and accounts for 30–38% of the stem rust phenotypic variance. QTL were detected also on LG1 (qLpPg2) and LG6 (qLpPg3), each accounting for approximately 10% of phenotypic variance. Alleles of loci closely linked to these QTL originated from the resistant parent for qLpPg1 and from both parents for qLpPg2 and qLpPg3. Observed quantitative nature of the resistance may be due to partial-resistance effects against all pathogen genotypes, or qualitative effects completely preventing infection by only some genotypes in the genetically mixed inoculum. RAD markers facilitated rapid construction of new genetic maps in this outcrossing species and will enable development of sequence-based markers linked to stem rust resistance in L. perenne.  相似文献   

18.
Microsatellite markers have been extensively utilised in the leguminosae for genome mapping and identifying major loci governing traits of interest for eventual marker-assisted selection (MAS). The lack of available lentil-specific microsatellite sequences and gene-based markers instigated the mining and transfer of expressed sequence tag simple sequence repeat (EST-SSR)/SSR sequences from the model genome Medicago truncatula, to enrich an existing intraspecific lentil genetic map. A total of 196 markers, including new 15 M. truncatula EST-SSR/SSR, were mapped using a population of 94 F5 recombinant inbred lines produced from a cross between cv. Northfield (ILL5588)?×?cv. Digger (ILL5722) and clustered into 11 linkage groups (LG) covering 1156.4?cM. Subsequently, the size and effects of quantitative trait loci (QTL) conditioning Ascochyta lentis resistance at seedling and pod/maturity stages were characterised and compared. Three QTL were detected for seedling resistance on LG1 and LG9 and a further three were detected for pod/maturity resistance on LG1, LG4 and LG5. Together, these accounted for 34 and 61% of the total estimated phenotypic variation, respectively, and demonstrated that resistance at the different growth stages is potentially conditioned by different genomic regions. The flanking markers identified may be useful for MAS and for the future pyramiding of potentially different resistance genes into elite backgrounds that are resistant throughout the cropping season.  相似文献   

19.
The objective of this investigation was to tag a locus for white rust resistance in a Brassica rapa ssp. oleifera F2 population segregating for this trait, using bulked segregant analysis with random amplified polymorphic DNA (RAPD) markers, linkage mapping and a candidate gene approach based on resistance gene analogs (RGAs). The resistance source was the Finnish line Bor4109. The reaction against white rust races 7a and 7v was scored in 20 seedlings from each self-pollinated F2 individual. The proportion of resistant plants among these F3 families varied from 0 to 67%. Bulked segregant analysis did not reveal any markers linked with resistance and, therefore, a linkage map with 81 markers was created. A locus that accounted for 18.4% of the variation in resistance to white rust was mapped to linkage group (LG) 2 near the RAPD marker Z19a. During the study, a bacterial resistance gene homologous to Arabidopsis RPS2 and six different RGAs were sequenced. RPS2 and five of the RGAs were mapped to linkage groups LG1, LG4 and LG9. Unfortunately, none of the RGAs could be shown to be associated with white rust resistance.Communicated by H.C. BeckerThe nucleotide sequence data reported has been deposited in the Genbank under the accession numbers AF315081–AF315087.  相似文献   

20.
Rp1 is a disease resistance complex and is the terminal morphological marker on the short arm of maize chromosome 10. Several restriction fragment length polymorphisms (RFLPs), which map within 5 map units of Rp1, were examined to determine if they are also complex in structure. Two RFLP loci, which mapped distally to Rp1, BNL3.04 and PIO200075, existed in a single copy in all maize lines examined. These two loci cosegregated perfectly in 130 test cross progeny. Two RFLP loci that map proximally to Rp1 had unusual structures, which have not yet been reported for maize RFLPs; the loci were complex, with variable numbers of copies in different maize lines. One of the loci, NPI285, occasionally recombined in meiosis to yield changes in the number of copies of sequences homologous to the probe. The other proximal locus, detected by the probes NPI422, KSU3, and KSU4, was relatively stable in meiosis and no changes in the number of restriction fragments were observed. The similarity in map position between Rp1 and the complex RFLP loci indicate there may be genomic areas where variable numbers of repeated sequences are common. The structure of these complex loci may provide insight into the structure and evolution of Rp1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号