首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two approaches to quantifying relationships between nutrientsupply and plant growth were compared with respect to growth,partitioning, uptake and assimilation of NO3 by non-nodulatedpea (Pisum sativum L. cv. Marma). Plants grown in flowing solutionculture were supplied with NO3 at relative addition rates(RAR) of 0·03, 0·06, 0·12, and 0·18d–1, or constant external concentrations ([NO3)of 3, 10, 20, and 100 mmol m–3 over 19 d. Following acclimation,relative growth rates (RGR)approached the corresponding RARbetween 0·03–0.12 d-1, although growth was notlimited by N supply at RAR =0.18 d-1. Growth rates showed littlechange with [NO3–] between 10–100 mmol m–3(RGR=0·15 –0·16 d-1). The absence of growthlimitation over this range was suggested by high unit absorptionrates of NO3, accumulation of NO3 in tissues andprogressive increases in shoot: root ratio. Rates of net uptakeof NO3 from 1 mol m–3 solutions were assessed relativeto the growth-related requirement for NO3, showing thatthe relative uptake capacity increased with RGR between 0·03–0·06d–1 , but decreased thereafter to a theoretical minimumvalue at RGR  相似文献   

2.
Growth-chamber studies were conducted to evaluate nitrogen assimilationby three hypernodulated soybean [Glycine max (L.) Merr.] mutants(NOD1–3, NOD2–4, NOD3–7) and the Williamsparent. Seeds were inoculated at planting and transplanted atday 7 to nutrient solution with 1 mol m–3 urea (optimizesnodule formation) or 5 mol m–3 NO3 (inhibits noduleformation). At 25 d after planting, separate plants were exposedto 15NO2 or 15NO3 for 3 to 48 h to evaluate N2 fixationand NO3 assimilation. Plant growth was less for hypernodulatedmutants than for Williams with both NO3 and urea nutrition.The major portion of symbiotically fixed 15N was rapidly assimilated(30 min) into an ethanol-soluble fraction, but by 24 h aftertreatment the ethanolinsoluble fraction in each plant part wasmost strongly labelled. Distribution patterns of 15N among organswere very similar among lines for both N growth treatments aftera 24 h 15N2 fixation period; approximate distributions were40% in nodules, 12% in roots, 14% in stems, and 34% in leaves.With urea-grown plants the totalmg 15N fixed plant–1 24h–1 was 1·18 (Williams), 1·40 (N0D1-3),107 (NOD2-4), and 0·80 (NOD3-7). The 5 mol m-3 NO3- treatmentresulted in a 95 to 97% decrease in nodule mass and 15N2 fixationby Williams, while the three mutants retained 30 to 40% of thenodule mass and 17 to 19% of the 15N2 fixation of respectiveurea-grown controls. The hypernodulated mutants, which had restrictedroot growth, absorbed less 15NO3- than Williams, irrespectiveof prior N growthcondition. The 15N from 15NO3- was primarilyretained in the soluble fraction of all plant parts through24 h. The 15N incorporation studies confirmed that nodule developmentis less sensitive to external NO3- in mutant lines than in theWilliams parent, and provide evidence that subsequent metabolismand distribution within the plant was not different among lines.These results further confirm that the hypernodulated mutantsof Williams are similar in many respects to the hyper- or supernodulatedmutants in the Bragg background, and suggest that a common mutationalevent affectingautoregulatory control of nodulation has beentargeted. Key words: Glycine max (L.) Merr., soybean, N2fixation, nitrate assimilation, nodulation mutants, 15N isotope  相似文献   

3.
Respiratory oxygen consumption by roots was 1·4- and1·6-fold larger in NH+4-fed than in NO-3-fed wheat (Triticumaestivum L.) and maize (Zea mays L.) plants respectively. Higherroot oxygen consumption in NH+4-fed plants than in NO-3-fedplants was associated with higher total nitrogen contents inNH+4-fed plants. Root oxygen consumption was, however, not correlatedwith growth rates or shoot:root ratios. Carbon dioxide releasewas 1·4- and 1·2-fold larger in NO+3-fed thanin NH+4-fed wheat and maize plants respectively. Differencesin oxygen and carbon dioxide gas exchange rates resulted inthe gas exchange quotients of NH-4-fed plants (wheat, 0·5;maize, 0·6) being greatly reduced compared with thoseof NO-3-fed plants (wheat, 1·0; maize, 1·1). Measuredrates of HCO-3 assimilation by PEPc in roots were considerablylarger in 4 mM NH+4-fed than in 4 NO-3 plants (wheat, 2·6-fold;maize, 8·3-fold). These differences were, however, insufficientto account for the observed differences in root carbon dioxideflux and it is probable that HCO-3 uptake is also importantin determining carbon dioxide fluxes. Thus reduced root extension in NH+4-fed compared with NO-3-fedwheat plants could not be ascribed to differences in carbondioxide losses from roots.Copyright 1993, 1999 Academic Press Triticum aestivum, wheat, Zea mays, maize assimilation, ammonium assimilation, root respiration  相似文献   

4.
Three-month-old Carrizo citrange (hybrid of Citrus sinensisL. OsbeckxPoncirus trifoliata Blanco) seedlings were grown incontrolled environment chambers in pots of fine sand. Plantswere irrigated with either non-saline or saline solutions overa 3-week period. After these treatments, plants were transferredto vessels containing a 5 m M15NO3K (96% atom excess15N) solution,and transpiration as well as concentration of15N and Cl-in roots,stem and leaves were measured after 24 h. Transpiration and15NO3-uptakerates were inhibited after exposure to NaCl and the concentrationof salt pre-treatment determined the intensity of this inhibitoryeffect. To determine the effect of transpiration on NO3-absorption,net15NO3-uptake rate was measured in salt stressed and non-stressedplants exposed to different light intensities or relative humiditiesand also in detached roots. Reduction in NO3-uptake was moreclosely related to Cl-antagonism from salt stress than to reducedtranspiration rate. Copyright 1999 Annals of Botany Company Nitrate, absorption, inhibition transport system, salt, light and humidity.  相似文献   

5.
The effect of light on NO3 utilization was investigatedin non-nodulated soybean (Clycine max L. Merr., cv. Kingsoy)plants during a 14/10 h light/dark period at a constant temperatureof 26C. A 30–50% decrease of net NO3 uptake ratewas observed 2–6 h after the lights were turned off. Thiswas specifically due to an inhibition of NO3 influx asmeasured by 15N incorporation during 5 min. The absolute valuesof NO3 efflux depended on whether the labelling protocolinvolved manipulation of the plants or not, but were not affectedby illumination of the shoots. Darkness had an even more markedeffect in lowering the reduction of 15NO3 in both rootsand shoots, as well as xylem transport of 15NO3 and reduced15N. Concurrently with this slowing down of transport and metabolicprocesses, accumulations of NO3 and Asn were significantlystimulated in roots during the dark period. These data are discussedin view of the hypothesis that darkness adversely affects NO3uptake through specific feedback control, in response to alterationsin the later steps of N utilization which are more directlydependent on light. Key words: Glycine max, light/dark cycles, nitrate uptake, nitrate reduction  相似文献   

6.
Experiments with simulated swards of perennial ryegrass (Loliumperenne L.) grown in flowing nutrient solution with NO3- heldat 0.1 mg N I–1 show that the rate of NO3- uptake wasrelated to diurnal, day-to-day, and seasonal changes in radiation.In summer the diurnal variation in NO3-uptake ranged from 25to 50 mg N m–2 h–1 and the day-to-day variationranged from 500 to 1500 mg N m–2 d–1. Mean dailyrates of uptake over 12 d periods in summer and in winter averaged908 and 44 mg N m–2, respectively. The pattern of NO3-uptake followed that of CO2 flux with the maximum rate of theformer occurring 5 or 6 h after the maximum CO2 influx. Afterdefoliation, NO3- uptake was severely curtailed for 2 d concomitantwith a very small influx of CO2. Analysis of the changes thatoccurred in the rate of NO3- uptake immediately after the switchingon or off of artificial light suggests that two reversible processesmay be involved in the relation between NO3-uptake and radiation,one with a longer and the other with a shorter time constant.  相似文献   

7.
Chickpea cultivar ILC 482 was inoculated with salt-tolerantRhizobium strain Ch191 in solution culture with different saltconcentrations added either immediately with inoculation or5 d later. The inhibitory effect of salinity on nodulation ofchickpea occurred at 40 dS m–1 (34.2 mol m–3 NaCl)and nodulation was completely inhibited at 7 dS m–1 (61.6mol m–3 NaCl); the plants died at 8 dS m–1 (71.8mol m–3 NaCl). Chickpea cultivar ILC 482 inoculated with Rhizobium strain Ch191spcstrwas grown in two pot experiments and irrigated with saline water.Salinity (NaCl equivalent to 1–4 dS m–1) significantlydecreased shoot and root dry weight, total nodule number perplant, nodule weight and average nodule weight. The resultsindicate that Rhizobium strain Ch191 forms an infective andeffective symbiosis with chickpea under saline and non-salineconditions; this legume was more salt-sensitive compared tothe rhizobia, the roots were more sensitive than the shoots,and N2 fixation was more sensitive to salinity than plant growth. Key words: Cicer arietinum, nodulation, N2 fixation, Rhizobium, salinity  相似文献   

8.
The processes of NO3 uptake and transport and the effectsof NH4+ or L-glutamate on these processes were investigatedwith excised non-mycorrhizal beech (Fagus sylvatica L.) roots.NO3 net uptake followed uniphasic Michaelis-Menten kineticsin a concentration range of 10µM to 1 mM with an apparentKm of 9.2 µM and a Vmax of 366 nmol g–1 FW h–1.NH4+, when present in excess to NO3, or 10 mM L-glutamateinhibited the net uptake of NO3 Apparently, part of NO3taken up was loaded into the xylem. Relative xylem loading ofNO3 ranged from 3.21.6 to 6.45.1% of NO3 netuptake. It was not affected by treatment with NH4+ or L-glutamate.16N/13N double labelling experiments showed that NO3efflux from roots increased with increasing influx of NO3and, therefore, declined if influx was reduced by NH4+ or L-glutamateexposure. From these results it is concluded that NO3net uptake by non-mycorrhizal beech roots is reduced by NH4+or L-glutamate at the level of influx and not at the level ofefflux. Key words: Nitrate transport, net uptake, influx, efflux, ammonium, Fagus, Fagaceae  相似文献   

9.
Tuberized tap roots of Witloof chicory (Cichorium intybus L.)were forced by placing in a dark chamber in a hydroponic systemunder high RH to produce an etiolated bud, the chicon. Plantswere fed nutrient solutions with two NO3concentrations of 1·5or 18 mol m–3 NO3, or demineralized water. The nutrientsolutions were labelled with 2% atom excess 15N. Although thechicon biomass increased with increasing NO3 concentration inthe nutrient solution, the chicon dry weight remained unchanged.The increased chicon biomass was, therefore, due to more waterin the chicon. The N in the chicon originated from either anendogenous source, the root, and/or an exogenous source, thenutrient solution. Organic N reserves remobilization and transferto the chicon were not been affected by NO3 supply. At the endof the forcing period 75% of the root N had been remobilized.Differences in the amount of N in the chicons of the three treatmentswere due to the uptake of exogenous N. The flux of exogenousnitrogen to the chicon in high NO3-plants was 2- to 6-fold higherthan in the low NO3-plants and, at the end of the forcing period,exogenous nitrogen contributed 30% of total chicon N in highNO3-plants and 10% in low NO3-plants. Net uptake of NO3 by chicory plants during the forcing processwas a function of N influx and N efflux. The increase in N influxwas accompanied by an increase in exogenous N flux to the chiconand probably a shift in root and/or chicon osmotic potentialwhich increased water flux to the chicon. Since NO3 did notaccumulate in either the chicon or the root, it is proposedthat osmotic solutes, such as organic acids and amino acidsmay be involved in osmotic potential changes in chicory duringthe forcing process. Key words: Cichorium intybus L., efflux, influx, nitrogen (15NO3) nutrition, remobilization  相似文献   

10.
Nitrate provision has been found to regulate the capacity forChara corallina cells to take up nitrate. When nitrate was suppliedto N sufficient cells maximum nitrate uptake was reached after8 h. Prolonged treatment of the cells in the absence of N alsoresulted in the apparent ability of these cells to take up nitrate.Chlorate was found to substitute partially for nitrate in the‘induction’ step. The effects on nitrate reductionwere separated from those on nitrate uptake by experiments usingtungstate. Tungstate pretreatment had no effect on NO3uptake ‘induced’ by N starvation, but inhibitedNO3 uptake associated with NO3 pretreatment. Chloridepretreatment similarly had no effect on NO3 uptake ‘induced’by N deprivation, but inhibited NO3 uptake followingNO3 pretreatment. The data suggest that there are atleast two mechanisms responsible for the ‘induction’of nitrate uptake by Chara cells, one associated with NO3reduction and ‘induced’ by CIO3 or NO3and one associated with N deprivation. Key words: Nitrate, Chlorate, Chara corallina, Induction  相似文献   

11.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown as simulated swards for 71 d in flowing nutrientsolutions with roots at 11 C and shoots at 20/15 C, day/night,under natural illumination. Root temperatures were then changedto 3, 5, 7, 11, 13, 17 or 25 C and the total N2, fixation over21 d was measured in the absence of a supply mineral N. Alltreatments were subsequently supplied with 10 mmol m–2NO2 in the flowing solutions for 14 d, and the relativeuptake of N by N2, fixation and NO3 uptake was compared.Net uptake of K+ was measured on a daily basis. Root temperature had little effect on root d. wt over the 35-dexperimental period, but shoot d. wt increased by a factor of3.5 between 3 and 25 C, with the sharpest increase occurringat 7–11 C. Shoot: root d. wt ratios increased from 25to 68 with increasing temperature at 7–25 C. N2-fixationper plant (in the absence of NO2 ) increased with roottemperature at 3–13C, but showed little change above13 C. The ratios of N2 fixation: NO2 uptake over 14d (mol N: mol N) were 0.47–0.77 at 3–7 C, 092–154at 11–17 C, and 046 at 25 C, reflecting the dominanceof NO3 uptake over N2 fixation at extremes of high andlow root temperature. The total uptake of N varied only slightlyat 11–25 –C (095–110 mmol N plant–1),the decline in N2 fixation as root temperature increased above11 C was compensated for by the increase in NO 3 uptake.The % N in shoot dry matter declined with decreasing root temperature,from 32% at 13 C to 15% at 3 C. In contrast, concentrationsof N expressed on a shoot water content basis showed a modestdecrease with increasing temperature, from 345 mol m–3at 3 C to 290 mol m–3 at 25 C. Trifolium repens L, white clover, root temperature, N2 fixation, potassium uptake, nitrate uptake, flowing solution culture  相似文献   

12.
Relationships between nitrate (NO-3) supply, uptake and assimilation,water uptake and the rate of mobilization of seed reserves wereexamined for the five main temperate cereals prior to emergencefrom the substrate. For all species, 21 d after sowing (DAS),residual seed dry weight (d.wt) decreased while shoot plus rootd.wt increased (15–30%) with increased applied NO-3concentrationfrom 0 to 5–20 mM . Nitrogen (N) uptake and assimilationwere as great with addition of 5 mM ammonium (NH+4) or 5 mMNO-3but NH+4did not affect the rate of mobilization of seedreserves. Chloride (Cl-) was similar to NO-3in its effect onmobilization of seed reserves of barley (Hordeum vulgare L.).Increased rate of mobilization of seed reserves with additionalNO-3or Cl-was associated with increases in shoot, root and residualseed anion content, total seedling water and residual seed watercontent (% water) 21 DAS. Addition of NH+4did not affect totalseedling water or residual seed water content. For barley suppliedwith different concentrations of NO-3or mannitol, the rate ofmobilization of seed reserves was positively correlated (r >0.95)with total seedling water and residual seed water content. Therate of mobilization of seed reserves of barley was greaterfor high N content seed than for low N content seed. Seed watercontent was greater for high N seed than for low N seed, 2 DAS.Additional NO-3did not affect total seedling water or residualseed water content until 10–14 DAS. The effects of seedN and NO-3on mobilization of seed reserves were detected 10and 14 DAS, respectively. It is proposed that the increasedrate of mobilization of seed reserves of temperate cereals withadditional NO-3is due to increased water uptake by the seedlingwhile the seed N effect is due to increased water uptake bythe seed directly. Avena sativa L.; oat; Hordeum vulgare L.; barley; Secale cereale L.; rye; xTriticosecale Wittm.; triticale; Triticum aestivum L.; wheat; nitrate; seed; germination; seed reserve mobilization  相似文献   

13.
The growth of four heathland species, two grasses (D. flexuosa,M. caerulea) and two dwarf shrubs (C. vulgaris, E. tetralix),was tested in solution culture at pH 4.0 with 2 mol m–3N, varying the N03/NH4+ ratio up to 40% nitrate. In addition,measurements of NRA, plant chemical composition, and biomassallocation were carried out on a complete N03/NH4+ replacementseries up to 100% nitrate. With the exception of M. caerulea, the partial replacement ofNH4+ by NO3 tended to enhance the plant's growth ratewhen compared to NH4+ only. In contrast to the other species,D. flexuosa showed a very flexible response in biomass allocation:a gradual increase in the root weight ratio (RWR) with NO3increasing from 0 to 100%. In the presence of NH4+, grassesreduced nitrate in the shoot only; roots did not become involvedin the reduction of nitrate until zero ambient NH4+. The dwarfshrubs, being species that assimilate N exclusively in theirroots, displayed an enhanced root NRA in the presence of nitrate;in contrast to the steady increase with increasing NO3in Calluna roots, enzyme activity in Erica roots followed arather irregular pattern. Free nitrate accumulated in the tissuesof grasses only, and particularly in D. flexuosa. The relative uptake ratio for NO3 [(proportion of nitratein N uptake)/(proportion of nitrate in N supply)] was lowestin M. caerulea and highest in D. flexuosa. Whereas M. caeruleaand the dwarf shrubs always absorbed ammonium highly preferentially(relative uptake ratio for NO3 <0.20), D. flexuosashowed a strong preference for NO3 at low external nitrate(the relative uptake ratio for N03 reaching a value of2.0 at 10% NO3). The ecological significance of thisprominent high preference for NO3 at low NO3/NH4+ratio by D. flexuosa and its consequences for soil acidificationare briefly discussed. Key words: Ammonium, heathland lants, N03/NH4+ ratio, nitrate, nitrate reductase activity, soil acidification, specific absorption rate  相似文献   

14.
The response of two speciality vegetable crops, New Zealandspinach (Tetragonia tetragonioides Pall.) and red orach (Atriplexhortensis L.), to salt application at three growth stages wasinvestigated. Plants were grown with a base nutrient solutionin outdoor sand cultures and salinized at 13 (early), 26 (mid),and 42 (late) d after planting (DAP). For the treatment saltconcentrations, we used a salinity composition that would occurin a typical soil in the San Joaquin Valley of California usingdrainage waters for irrigation. Salinity treatments measuringelectrical conductivities (ECi) of 3, 7, 11, 15, 19 and 23 dSm-1were achieved by adding MgSO4, Na2SO4, NaCl and CaCl2to thebase nutrient solution. These salts were added to the base nutrientsolution incrementally over a 5-d period to avoid osmotic shockto the seedlings. The base nutrient solution without added saltsserved as the non-saline control (3 dS m-1). Solution pH wasuncontrolled and ranged from 7.7 to 8.0. Both species were saltsensitive at the early seedling stage and became more salt tolerantas time to salinization increased. For New Zealand spinach,the salinity levels that gave maximal yields (Cmax) were 0,0 and 3.1 dS m-1and those resulting in a 50% reduction of biomassproduction (C50) were 9.1, 11.1 and 17.4 dS m-1for early, midand late salinization dates, respectively. Maximal yield ofred orach increased from 4.2 to 10.9 to 13.7 dS m-1as the timeof salinization increased from 13, to 26, to 42 DAP, respectively.The C50value for red orach was unaffected by time of salt imposition(25 dS m-1). Both species exhibited high Na+accumulation evenat low salinity levels. Examination of K-Na selectivity dataindicated that K+selectivity increased in both species withincreasing salinity. However, increased K-Na selectivity didnot explain the increased salt tolerance observed by later salinization.Higher Na-Ca selectivity was determined at 3 dS m-1in New Zealandspinach plants treated with early- and mid-salinization plantsrelative to those exposed to late salinization. This correspondedwith lower Cmaxand C50values for those plants. Lower Ca uptakeselectivity or lower Ca levels may have inhibited growth inyoung seedlings. This conclusion is supported by similar resultswith red orach. High Na-Ca selectivity found only in the early-salinizationplants of red orach corresponded to the lower Cmaxvalues measuredfor those plants. Copyright 2000 Annals of Botany Company New Zealand spinach, Tetragonia tetragonioides Pall., red orach, Atriplex hortensis L., salinity, stage of growth, ion accumulation, selectivity, plant nutrition  相似文献   

15.
The use of chlorate as an analogue for NO3 during nitrateuptake into Chara corallina cells has been investigated. NO3inhibits 36C1O3 influx into Chara over the concentrationrange 0–1000 mmol m–3. Lineweaver-Burke plots ofthe data are characteristic of competitive inhibition by NO–3in the low concentration range (0–300 mmol m–3 ClO3)and apparent KINO3 is 140 mmol m–3 which is of a similarorder of magnitude as apparent KmCIO3- 180 mmol m–3. Athigher substrate concentrations the inhibition by NO3was not characteristic of competitive or uncompetitive inhibition. 36C1O3/NO3 influx was dependent on K+ and Ca2+in the external medium and inhibited by FCCP. NO3 pretreatmentor N starvation increased subsequent 36C1O3/NO3influx into Chara. A comparison between rates of net NO3uptake and 36C1O3/NO3 influx supported the previoushypothesis that NO3 efflux is an important componentin the determination of overall uptake rates. Key words: Nitrate, Chara, 36CIO3  相似文献   

16.
Seedlings of Italian ryegrass (Lolium multiflorum Lam. cv. RVP)and clonal stolon cuttings of white clover (Trifolium repensL. cv. Blanca) were grown for 19 d in flowing solution culture,with N supplied as either 250 mmol m–3 NO3 or NH3+.Rates of net uptake, influx and translocation of NO3and NH4+ were then determined using 15N and 13N labelling techniques:between 3–5 h into the photoperiod following 8 h darknessfor white clover (CL), and for ryegrass plants that were eitherentire (IL) or with shoots excised 90 min prior to 13N influx(IC); and 75 min into the photoperiod following 37–39h darkness for ryegrass (ID). Rates of net uptake, influx andefflux of NH4+ exceeded those of NO3 in IL and IC ryegrassplants: the opposite occurred in white clover (CL). The decreasein net uptake following defoliation of ryegrass was greaterfor NH4+ (62%) than NO3 (40%). For NH4+ this was associatedwith a large decrease in influx from 110 to 6.0µmol h–1g–1 root fr. wt; but for NO3, influx only decreasedfrom 42 to 37 µmol h–1 g–1. Prolonged exposureto darkness (ID plants) also lowered net uptake of NO3and NH4+ by, respectively, 86% and 95% of IL levels. For NH4+this was characterized by a large decrease in influx and a smalldecrease in efflux; whilst for NO3 the effect of a largedecrease in influx was reinforced by a smaller increase in efflux. The data were used to estimate the translocatory fluxes of NO3(03–20µmol h–1 g–1) and NH4+ (003–0.4µmolh–1 g–1), assimilation in the roots of NO3(02–26µmol h–1 g–1) and NH+4 (05–89 µmolh–1 g–1), and the concentrations of NO3 (9–15mol m–3) in the cytoplasmic compartment of the roots.The relevance of variable influx and efflux to models for theregulation of N uptake is discussed. Key words: Lolium multiflorum, Trifolium repens, influx, efflux, nitrate, ammonium, 13N  相似文献   

17.
Experiments were performed with soybean plants to test the hypothesisthat the inhibition of NO3 uptake in darkness is dueto feedback control by NO3 and/or Asn accumulating inthe roots. Xylem export of N compounds was shown to depend onwater flux in both excised root systems and 15N-labelled intactplants, suggesting that the shortage of transpiration in darknessmay be responsible for the retention of NO3 and Asn inthe roots. This was verified in experiments where the light/darkpattern of transpiration was modulated in intact plants by changingthe relative humidity of the atmosphere. Any decrease of transpirationat night was associated with a concurrent stimulation of NO3and Asn accumulations in the roots. However, the light/darkrhythmicity of NO3 uptake was only marginally affectedby these treatments, and thusappeared quite independent fromtranspiration and root NO3 or Asn levels. Typically,the maintainance of a constant transpiration during the day/nightcycle did not suppress the inhibition of NO3 uptake indarkness, whereas it almost prevented the dark increase in rootNO3 and Asn contents. These data strongly support theconclusion that the effect of light on NO3 uptake isnot mediated by changes in translocation and accumulation ofN compounds. Key words: Glycine max, light/dark, cycles, nitrate uptake, transpiration, transport of N compounds, accumulation of N compounds  相似文献   

18.
Nitrate reductase activity (NRA, in vivo assay) and nitrate(NO-3) content of root and shoot and NO-3 and reduced nitrogencontent of xylem sap were measured in five temperate cerealssupplied with a range of NO-3 concentrations (0·1–20mol m–3) and three temperate pasture grasses suppliedwith 0·5 or 5 0 mol m–3 NO-3 For one cereal (Hordeumvulgare L ), in vitro NRA was also determined The effect ofexternal NO-3 concentration on the partitioning of NO-3 assimilationbetween root and shoot was assessed All measurements indicatedthat the root was the major site of NO3 assimilation in Avenasatwa L, Hordeum vulgare L, Secale cereale L, Tnticum aestivumL and x Triticosecale Wittm supplied with 0·1 to 1·0mol m–3 NO-3 and that for all cereals, shoot assimilationincreased in importance as applied NO-3 concentration increasedfrom 1.0 to 20 mol m–3 At 5.0–20 mol m–3 NO3,the data indicated that the shoot played an important if notmajor role in NO-3 assimilation in all cereals studied Measurementson Lolium multiflorum Lam and L perenne L indicated that theroot was the main site of NO-3 assimilation at 0.5 mol m–3NO-3 but shoot assimilation was predominant at 5.0 mol m–3NO-3 Both NRA distribution data and xylem sap analysis indicatedthat shoot assimilation was predominant in Dactylis glomerataL supplied with 0.5 or 5.0 mol m–3 NO-3 Avena sativa L., oats, Hordeum vulgare L., barley, Secale cereale L., rye, x Triticosecale Wittm., triticale, Triticum aestivum L., wheat, Dactylis glomerata L., cocksfoot, Lolium multiflorum Lam., Italian ryegrass, Lolium perenne L., perennial ryegrass, nitrate, nitrate assimilation, nitrate reductase activity, xylem sap  相似文献   

19.
The growth rates of four saline-lake diatom taxa were measuredunder varying conditions of salinity (5, 8 and 11), brine type(sulfate- versus bicarbonate-dominated) and nitrogen form (NH4+versus NO3), using a full factorial design. With NO3as the nitrogen source, Cyclotella quillensis, Cymbella pusillaand Anomoeoneis costata exhibited lower growth rates in thesulfate versus bicarbonate media. The strain of Chaetoceroselmorei used in these experiments, isolated from a sulfate-dominatedlake, was unable to grow on NO3 alone. In the NH4+ treatments,neither salinity nor brine type affected the growth rates ofC.quillensis or C.elmorei. When supplied with NH4+, C.pusillaand A.costata had higher growth rates in the bicarbonate versussulfate media, although for C.pusilla the difference on NH4+was not as great as on NO3. The impact of brine typeon NO3 use is consistent with the theory that sulfateinhibits molybdate uptake, as molybdenum is required for NO3use but not NH4+. Cymbella pusilla was the only taxon affectedby changes in salinity. The four taxa used in these experimentsare frequently found in saline lakes and saline-lake sediments,hence they are used in paleoclimate reconstructions; the resultspresented here provide additional information that may enhancethese diatom-based reconstructions.  相似文献   

20.
The effects of a range of applied nitrate (NO3) concentrations(0–20 mol m3) on germination and emergence percentageof Triticum aestivum L. cv. Otane were examined at 30, 60, 90and 120 mm sowing depths. Germination percentage was not affectedby either sowing depth or applied NO3 concentration whereasemergence percentage decreased with increased sowing depth regardlessof applied NO3 concentration. Nitrate did not affectemergence percentage at 30 mm sowing depth, but at 60 to 120mm depth, emergence percentage decreased sharply with an increasedapplied NO3 concentration of 0 to 1·0 mol m–3then decreased only slightly with further increases in appliedNO3 of about 5·0 mol m–3. Root and shoot growth, NO3 accumulation and nitrate reductaseactivity (NRA) of plants supplied with 0, 1·0 and 1·0mol m–3 NO3 at a sowing depth of 60 mm were measuredprior to emergence. The coleoptile of all seedlings opened withinthe substrate. Prior to emergence from the substrate, shootextension growth was unaffected by additional NO3 butshoot fr. wt. and dry wt. were both greater at 1·0 and1·0 mol m–3 NO3 than with zero NO3.Root dry wt. was unaffected by NO3. Nitrate concentrationand NRA in root and shoot were always low without NO3.At 1·0 and 10 mol m3 NO3, NO3 accumulatedin the root and shoot to concentrations substantially greaterthan that applied and caused the induction of NRA. Regardlessof the applied NO3 concentration, seedlings which failedto emerge still had substantial seed reserves one month afterplanting. Coleoptile length was substantially less for seedlingswhich did not emerge than for seedlings which emerged, but wasnot affected by NO3. It is proposed that (a) decreasedemergence percentage with increased sowing depth was due tothe emergence of leaf I from the coleoptile within the substrateand (b) decreased emergence percentage with additional NO3was due to the increased expansion of leaf 1 within the substrateresulting in greater folding and damage of the leaf. Key words: Triticum aestivwn L., nitrate, sowing depth, seedling growth, seedling emergence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号