首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inorganic pyrophosphatase from Mycobacterium tuberculosis (Mt-PPase) is one of the possible targets for the rational design of anti-tuberculosis agents. In this paper, functional properties of this enzyme are characterized in the presence of the most effective activators--Mg2+ and Mn2+. Dissociation constants of Mt-PPase complexed with Mg2+ or Mn2+ are essentially similar to those of Escherichia coli PPase. Stability of a hexameric form of Mt-PPase has been characterized as a function of pH both for the metal-free enzyme and for Mg2+- or Mn2+-enzyme. Hexameric metal-free Mt-PPase has been shown to dissociate, forming monomers at pH below 4 or trimers at pH from 8 to 10. Mg2+ or Mn2+ shift the hexamer-trimer equilibrium found for the apo-Mt-PPase at pH 8-10 toward the hexameric form by stabilizing intertrimeric contacts. The pK(a) values have been determined for groups that control the observed hexamer-monomer (pK(a) 5.4), hexamer-trimer (pK(a) 7.5), and trimer-monomer (pK(a) 9.8) transitions. Our results demonstrate that due to the non-conservative amino acid residues His21 and His86 in the active site of Mt-PPase, substrate specificity of this enzyme, in contrast to other typical PPases, does not depend on the nature of the metal cofactor.  相似文献   

2.
Magnesium, the second most abundant cellular cation after potassium, is essential to regulate numerous cellular functions and enzymes, including ion channels, metabolic cycles, and signaling pathways, as attested by more than 1000 entries in the literature. Despite significant recent progress, however, our understanding of how cells regulate Mg2+ homeostasis and transport still remains incomplete. For example, the occurrence of major fluxes of Mg2+ in either direction across the plasma membrane of mammalian cells following metabolic or hormonal stimuli has been extensively documented. Yet, the mechanisms ultimately responsible for magnesium extrusion across the cell membrane have not been cloned. Even less is known about the regulation in cellular organelles. The present review is aimed at providing the reader with a comprehensive and up-to-date understanding of the mechanisms enacted by eukaryotic cells to regulate cellular Mg2+ homeostasis and how these mechanisms are altered under specific pathological conditions.  相似文献   

3.
The Ca2+-binding helix-loop-helix structural motif called “EF-hand” is a common building block of a large family of proteins that function as intracellular Ca2+-receptors. These proteins respond specifically to micromolar concentrations of Ca2+ in the presence of ~1000-fold excess of the chemically similar divalent cation Mg2+. The intracellular free Mg2+ concentration is tightly controlled in a narrow range of 0.5-1.0 mM, which at the resting Ca2+ levels is sufficient to fully or partially saturate the Ca2+-binding sites of many EF-hand proteins. Thus, to convey Ca2+ signals, EF-hand proteins must respond differently to Ca2+ than to Mg2+. In this review the structural aspects of Mg2+ binding to EF-hand proteins are considered and interpreted in light of the recently proposed two-step Ca2+-binding mechanism (Grabarek, Z., J. Mol. Biol., 2005, 346, 1351). It is proposed that, due to stereochemical constraints imposed by the two-EF-hand domain structure, the smaller Mg2+ ion cannot engage the ligands of an EF-hand in the same way as Ca2+ and defaults to stabilizing the apo-like conformation of the EF-hand. It is proposed that Mg2+ plays an active role in the Ca2+-dependent regulation of cellular processes by stabilizing the “off state” of some EF-hand proteins, thereby facilitating switching off their respective target enzymes at the resting Ca2+ levels. Therefore, some pathological conditions attributed to Mg2+ deficiency might be related to excessive activation of underlying Ca2+-regulated cellular processes. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

4.
(Ca2+ + Mg2+)-ATPase from sarcoplasmic reticulum has been reconstituted with dipalmitoylphosphatidylcholine, and the activating effect of ATP and Ca2+ on this enzyme has been studied at different temperatures. It has been found that two kinetic forms of the enzyme are interconverted at about 31°C, and this is possibly related to a phase change in the phospholipid which is more directly associated with the protein. Above 31°C the enzyme is less dependent on ATP activation at high ATP concentrations but shows positive cooperativity for Ca2+ activation. On the other hand, below 31°C, the reconstituted enzyme is more dependent on ATP for activation at high ATP concentrations than the purified ATPase and does not show cooperativity for Ca2+ activation.  相似文献   

5.
Many diseases such as cardiac arrhythmia, diabetes, and chronic alcoholism are associated with a marked decrease of plasma and parenchymal Mg(2+), and Mg(2+) administration is routinely used therapeutically. This study uses isolated rat hepatocytes to ascertain if and under which conditions increases in extracellular Mg(2+) result in an increase in intracellular Mg(2+). In the absence of stimulation, changing extracellular Mg(2+) had no effect on total cellular Mg(2+) content. By contrast, carbachol or vasopressin administration promoted an accumulation of Mg(2+) that increased cellular Mg(2+) content by 13.2 and 11.8%, respectively, and stimulated Mg(2+) uptake was unaffected by the absence of extracellular Ca(2+). Mg(2+) efflux resulting from stimulation of alpha- or beta-adrenergic receptors operated with a Mg(2+):Ca(2+) exchange ratio of 1. These data indicate that cellular Mg(2+) uptake can occur rapidly and in large amounts, through a process distinct from Mg(2+) release, but operating only upon specific hormonal stimulation.  相似文献   

6.
Eccentric is a newly-isolated mutant of Paramecium tetraurelia that fails to swim backwards in response to Mg2+. In the wild type, this backward swimming results from Mg2+ influx via a Mg2+-specific ion conductance (I Mg. Voltage-clamp analysis confirmed that, as suspected, step changes in membrane potential over a physiological range fail to elicit I Mg from eccentric. Further electrophysiological investigation revealed a number of additional ion-current defects in eccentric: (i) The Ca2+ current activated upon depolarization inactivates more slowly in eccentric than in the wild type, and it requires longer to recover from this inactivation. (ii) The Ca2+-dependent Na+ current deactivates significantly faster in the mutant, (iii) The two K+ currents observed upon hyperpolarization are reduced by >60% in eccentric. It is difficult to envision how these varied pleiotropic effects could result from loss of a single ion current. Rather, they suggest that the eccentric mutation affects a global regulatory system. Two plausible hypotheses are discussed.We are grateful to Dr. Yoshiro Saimi for his comments and suggestions on this work, and for the support of the Lucille P. Markey Charitable trust and the National Institutes of Health (GM22714 and GM38646).  相似文献   

7.
The structure of aggregates formed due to DNA interaction with dioleoylphosphatidylcholine (DOPC) vesicles in presence of Ca2+ and Mg2+ cations was investigated using synchrotron small-angle X-ray diffraction. For DOPC/DNA = 1:1 mol/base and in the range of concentration of the cation2+ 0-76.5 mM, the diffractograms show the coexistence of two lamellar phases: Lx phase with repeat distance dLx ∼ 8.26-7.39 nm identified as a phase where the DNA strands are intercalated in water layers between adjacent lipid bilayers, and LDOPC phase with repeat distance dDOPC ∼ 6.45-5.65 nm identified as a phase of partially dehydrated DOPC bilayers without any divalent cations and DNA strands. The coexistence of these phases was investigated as a function of DOPC/DNA molar ratio, length of DNA fragments and temperature. If the amount of lipid increases, the fraction of partially dehydrated LDOPC phase is limited, depends on the portion of DNA in the sample and also on the length of DNA fragments. Thermal behaviour of DOPC + DNA + Ca2+ aggregates was investigated in the range 20-80 °C. The transversal thermal expansivities of both phases were evaluated.  相似文献   

8.
Regulation of magnesium homeostasis and transport in mammalian cells   总被引:2,自引:0,他引:2  
Magnesium is the second most abundant cation within the cell after potassium and plays an important role in numerous biological functions. Several pieces of experimental evidence indicate that mammalian cells tightly regulate Mg2+ content by precise control mechanisms operating at the level of Mg2+ entry and efflux across the cell membrane, as well as at the level of intracellular Mg2+ buffering and organelle compartmentation under resting conditions and following hormonal stimuli. This review will attempt to elucidate the mechanisms involved in hormonal-mediated Mg2+ extrusion and accumulation, as well as the physiological implications of changes in cellular Mg2+ content following hormonal stimuli.  相似文献   

9.
The herbicide endothall (7-oxabicyclo 2.2.1 heptane-2, 3-dicarboxylic acid) was applied to cotton ( Gossypium hirsutum L. cv. Acala SJ-1) cotyledon discs. Treatment with 10−4 M endothall for 24 h resulted in injury which was expressed by increased leakage of electrolytes, development of necrotic areas, increased level of polyphenols and tissue browning. We examined whether treatments which decrease chilling injury would also decrease injury caused by the herbicide. Tissue from seedlings grown at 28°C was more sensitive to endothall than that from seedlings grown at 15°C. Pretreatment with 10−5 M abscisic acid greatly decreased the leakage of electrolytes, necrotic areas, and tissue browning caused by endothall. Similar pretreatment did not prevent the increase of polyphenols caused by the herbicide. The treatment with abscisic acid was more effective in protection against the herbicide injury when applied several hours prior to the herbicidal treatment. This time requirement indicates that the mechanism by which abscisic acid induces resistance to the herbicide depends, at least partially, on active metabolism. We suggest that the increased resistance to herbicide stress by abscisic acid is another example of a common resistance mechanism to various stresses in which abscisic acid is involved.  相似文献   

10.
This study investigated the morphological and biochemical characteristics of the CB1, CB3, CB5, CB8 and CB12 cotton varieties and evaluated their effects on third instar larval movement, and body weight of the cotton armyworm Spodoptera litura at different developmental stages. The cotton varieties differed in their plant architecture, branching, stem color and hairiness, leaf color and hairiness, leaf trichome density, flower color, numbers of leaves and bolls per plant, concentrations of protein and starch, and boll length, width and weight. The CB1 and CB3 varieties possessed significantly higher trichome densities, while CB8 produced larger and heavier bolls. Boll bearing was found to be highest in CB1 and lowest in CB8. Biochemical analyses indicated the highest percentage of protein in CB5, and of starch in CB8; concentrations of both were lowest in CB12. Cotton varieties did not affect larval foraging, but their abundance on leaflet, mature and square differed significantly. Analysis of the growth response parameters of S. litura as a result of feeding on the tested varieties revealed that larval instars, pupae and adult moths attained the highest body weight on CB8, followed by CB5, and the lowest weight on CB12. Collectively, the results of this study show that the CB5 and CB8 varieties are favorable host‐plants for cotton armyworms; therefore, these varieties are the least suitable for cultivation.  相似文献   

11.
We characterized the effects of intracellular Mg2+ (Mg2+i) on potassium currents mediated by the Kv1.5 and Kv2.1 channels expressed in Xenopus oocytes. Increase in Mg2+i caused a voltage-dependent block of the current amplitude, apparent acceleration of the current kinetics (explained by a corresponding shift in the steady-state activation) and leftward shifts in activation and inactivation dependencies for both channels. The voltage-dependent block was more potent for Kv2.1 [dissociation constant at 0 mV, Kd(0), was ~70 mM and the electric distance of the Mg2+ binding site, , was 0.2] than for the Kv1.5 channel [Kd(0)~40 mM and =0.1]. Similar shifts in the voltage-dependent parameters for both channels were described by the Gouy-Chapman formalism with the negative charge density of 1 e/100 Å2. Additionally, Mg2+i selectively reduced a non-inactivating current and increased the accumulation of inactivation of the Kv1.5, but not the Kv2.1 channel. A potential functional role of the differential effects of Mg2+i on the Kv channels is discussed.  相似文献   

12.
Heart sarcolemma has been shown to contain an ATPase hydrolizing system which is activated by millimolar concentrations of divalent cations such as Ca2+ or Mg2+. Although Ca2+-dependent ATPase is released upon treating sarcolemma with trypsin, a considerable amount of the divalent cation dependent ATPase activity was retained in the membrane. This divalent cation dependent ATPase was solubilized by sonication of the trypsin-treated dog heart sarcolemma with 1% Triton X-100. The solubilized enzyme was subjected to column chromatography on a Sepharose-6B column, followed by ion-exchange chromatography on a DEAE cellulose column. The enzyme preparation was found to be rather labile and thus the purity of the sample could not be accurately assessed. The solubilized ATPase preparations did not show any cross-reactivity with dog heart myosin antiserum or with Na+ + K+ ATPase antiserum. The enzyme was found to be insensitive to inhibitors such as ouabain, verapamil, oligomycin and vanadate. The enzyme preparation did not exhibit any Ca2+-stimulated Mg2+ dependent ATPase activity. Furthermore, the low affinity of the enzyme for Ca2– (Ka = 0.3 mM) rules out the possibility of its involvement in the Ca2+ pump mechanism located in the plasma membrane of the cardiac cell.  相似文献   

13.
Internal Mg2+ blocks many potassium channels including Kv1.5. Here, we show that internal Mg2+ block of Kv1.5 induces voltage-dependent current decay at strongly depolarised potentials that contains a component due to acceleration of C-type inactivation after pore block. The voltage-dependent current decay was fitted to a bi-exponential function (tau(fast) and tau(slow)). Without Mg2+, tau(fast) and tau(slow) were voltage-independent, but with 10 mM Mg2+, tau(fast) decreased from 156 ms at +40 mV to 5 ms at +140 mV and tau(slow) decreased from 2.3 s to 206 ms. With Mg2+, tail currents after short pulses that allowed only the fast phase of decay showed a rising phase that reflected voltage-dependent unbinding. This suggested that the fast phase of voltage-dependent current decay was due to Mg2+ pore block. In contrast, tail currents after longer pulses that allowed the slow phase of decay were reduced to almost zero suggesting that the slow phase was due to channel inactivation. Consistent with this, the mutation R487V (equivalent to T449V in Shaker) or increasing external K+, both of which reduce C-type inactivation, prevented the slow phase of decay. These results are consistent with voltage-dependent open-channel block of Kv1.5 by internal Mg2+ that subsequently induces C-type inactivation by restricting K+ filling of the selectivity filter from the internal solution.  相似文献   

14.
Mg(2+) competitively inhibits spermine transport in energized rat liver mitochondria (RLM) and exhibits a K(i) of 0.1mM on the initial rate and an I(50) of 0.6mM on total spermine accumulation after 20 min. Addition of 2mM Mg(2+) after spermine accumulation induces release of the polyamine. In view of the fact that spermine cycles across the inner membrane under physiological conditions, these results demonstrate that Mg(2+) inhibits spermine influx but does not affect the efflux pathway of the polyamine; the inhibitory effect occurs via an interaction with the specific site responsible for spermine transport. Instead, spermine inhibits Mg(2+) binding without affecting the rate of Mg(2+) transport, suggesting that both cations bind to the same site, which, however, is not used for Mg(2+) transport. Spermine also inhibits Mg(2+) efflux from RLM induced under conditions of the "low conductance state," a preliminary step preceding permeability transition pore opening.  相似文献   

15.
ADP-ribose pyrophosphatase (ADPRase) hydrolyzes ADP-ribose to ribose-5-phosphate and AMP. The ADPRase activity have been assessed by coupling the reaction to alkaline phosphatase and colorimetrically measuring the amount of inorganic phosphate released from AMP that is one of the products of ADPRase. Another but less sensitive colorimetric method has been employed: the reaction mixture was treated with charcoal to adsorb the adenine-containing compounds such as AMP and ADPR and subsequently remaining ribose-5-phosphate was measured colorimetrically. However, the measurement of inorganic phosphate cannot be feasible to assay ADPRase in phosphate-containing samples and the determination of ribose-5-phosphate also is less sensitive. Here we develop a fluorescent assay for ADPRase that utilizes 1, N(6)-etheno ADP-ribose, a fluorescent analogue of ADP-ribose. This method measures fluorescent 1, N(6)-etheno adenosine that is produced by coupling the hydrolysis of 1, N(6)-etheno ADP-ribose to dephosphorylation with alkaline phosphatase. The fluorometric assay is comparable in sensitivity and useful for ADPRase assay in phosphate-containing samples.  相似文献   

16.
Summary Proteolytic digestion of sarcoplasmic reticulum vesicles with trypsin has been used as a structural modification with which to examine the interaction between the ATP hydrolysis site and calcium transport sites of the (Ca2++Mg2+)-ATPase. The kinetics of trypsin fragmentation were examined and the time course of fragment production compared with ATP hydrolytic and calcium uptake activities of the digested vesicles. The initial cleavage (TD 1) of the native ATPase to A and B peptides has no effect on the functional integrity of the enzyme, hydrolytic and transport activities remaining at the levels of the undigested control. Concomitant with the second tryptic cleavage (TD 2) of the A peptide to A1 and A2 fragments, calcium transport is inhibited. Kinetic analysis demonstrates that the rate constant for inhibition of calcium uptake is correlated with the rate constant of a fragment disappearance. Both Ca2+-dependent and total ATPase activities are unaffected by this second cleavage. Passive loading of vesicles with calcium and subsequent efflux measurements show that transport inhibition is not due to increased permeability of the membrane to calcium even at substantial extents of digestion. Steady-state levels of acidstable phosphoenzyme are unaffected by either TD 1 or TD 2, indicating that uncoupling of the hydrolytic and transport functions does not increase the turnover rate of the enzyme and that TD 2 does not change the essential characteristics of the ATP hydrolysis site. Sarcoplasmic reticulum (SR) vesicles were examined for the presence of tightly bound nucleotides and are shown to contain 2.8–3.0 nmol ATP and 2.6–2.7 nmol ADP per mg SR protein. The ADP content of SR remains essentially unchanged with TD 1 cleavage of the ATPase enzyme to A and B peptides, but declines upon TD 2 in parallel with the digestion of the A fragment and the loss of calcium uptake activity of the vesicles. The ATP content is essentially constant throughout the course of trypsin digestion. The results are discussed in terms of current models of the SR calcium pump and the molecular mechanism of energy transduction.  相似文献   

17.
Two kinds of ATP binding sites were found on the ATPase molecule in deoxycholic acid-treated sarcoplasmic reticulum. One was the catalytic site (1 mol/mol active site) and its affinity was high. Upon addition of Ca2+, all the ATP bound to the catalytic site disappeared at 75 mM KCl, while a significant amount of ATP remained bound to the site at 0–2 mM KCl. The latter binding was found to be due to the formation of a slowly exchanging enzyme-ATP complex, which is in equilibrium with phosphoenzyme + ADP. The other binding site was the regulatory one (1 mol/mol active site) and its affinity was low, changing only insignificantly upon addition of Ca2+. The ATP binding to the regulatory site shifted the equilibrium between the slowly exchanging complex and EP toward EP.  相似文献   

18.
The Mg2+ ion-assisted activation mechanism of the active site Tyr8 of a human hematopoietic prostaglandin D2 synthase (H-PGDS) was studied by ultraviolet resonance Raman (UVRR) spectroscopy. Addition of Mg2+ to the native H-PGDS at pH 8.0 resulted in the Y8a Raman band of Tyr8 shifting from 1615 cm−1 to 1600 cm−1. This large shift to lower energy of the tyrosine Y8a vibrational mode is caused by the deprotonation of the tyrosine phenol group promoted by binding of Mg2+. Upon subsequent addition of glutathione (GSH), the Mg2+/H-PGDS solution showed the Tyr8 Raman band shifted to 1611 cm−1, which is 11 cm−1 higher than the frequency of the Mg2+ complex of H-PGDS, but 4 cm−1 lower than the Mg2+ free enzyme. These UVRR observations suggest that the deprotonated Tyr8 in the presence of Mg2+ is re-protonated by the abstraction of H+ from the thiol group of GSH, and that the re-protonated Tyr8 species forms a hydrogen bond with the thiolate anion of GSH. Density functional theory calculations on several model complexes of p-cresol were also performed, which suggested that the pKa and vibrational frequencies of the Tyr8 phenol group are affected by the degree and structure of hydration of the Tyr8 residue.  相似文献   

19.
We isolated and characterized a nickel (Ni2+)-resistant mutant (GA1) of Schizosaccharomyces pombe. This mutant strain displayed resistance to both Ni2+ and Zn2+, but not to Cd2+, Co2+, and Cu2+. The growth rate of GA1 increased proportionally with increasing Mg2+ concentrations until 50 mM Mg2+. The GA1 mutation phenotype suggests a defect in Mg2+ uptake. Sequence analysis of the GA1 open reading frame (ORF) O13779, which is homologous to the prokaryotic and eukaryotic CorA Mg2+ transport systems, revealed a point mutation at codon 153 (ccc to acc) resulting in a Pro 153Thr substitution in the N-terminus of the CorA domain. Our results provide novel genetic information about Ni2+ resistance in fission yeast. Specifically, that reducing Mg2+ influx through the CorA Mg2+ transport membrane protein confers Ni2+ resistance in S. pombe. We also report that Ni2+ ion detoxification of the fission yeast is related to histidine metabolism and pH.  相似文献   

20.
In a previous report (Yu and Yang,Biochem. Biophys. Res. Commun. 207, 140–147 (1995)], phosphorylase b kinase from rabbit skeletal muscle was found to be phosphorylated and activated by a cyclic nucleotide- and Ca2+-independent protein kinase previously identified as an autophosphorylation-dependent multifunctional protein kinase (autokinase) from brain and liver (Yanget al, J. Biol. Chem. 262, 7034–7040, 9421–9427 (1987)]. In this report, the effect of Mg2+ ion concentration on the auto-kinase-catalyzed activation of phosphorylase b kinase is investigated. The levels of phosphorylation and activation of phosphorylase b kinase catalyzed by auto-kinase are found to be dependent on the concentration of Mg2+ ion used. Phosphorylation of phosphorylase b kinase at high Mg2+ ion (>9 mM) is 2–3 times higher than that observed at low Mg2+ ion (1 mM) and this results in a further 2- to 3-fold activation of the enzyme activity at high Mg2+ ion. Analysis of the phosphorylation stoichiometry of and subunits of phosphorylase b kinase at different Mg2+ ion concentrations further reveals that the phosphorylation level of the subunit remains almost unchanged, whereas the phosphorylation level of the subunit increases dramatically and correlates with the increased enzyme activity. In similarity with the subunit, phosphorylations of myelin basic protein and histone 2A by auto-kinase are also unaffected by Mg2+ ion. Taken together, the results provide initial evidence that Mg2+ ion may specifically render thea subunit a better substrate for auto-kinase to cause further phosphorylation/activation of phosphorylase b kinase, representing a new mode of control mechanism for the regulation of auto-kinase involved in the phosphorylation and concurrent activation of phosphorylase b kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号