首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ciguatera fish poisoning (CFP) is a serious health problem in tropical regions and is caused by the bioaccumulation of lipophilic toxins produced by dinoflagellates in the genus Gambierdiscus. Gambierdiscus species are morphologically similar and are difficult to distinguish from one another even when using scanning electron microscopy. Improved identification and detection methods that are sensitive and rapid are needed to identify toxic species and investigate potential distribution and abundance patterns in relation to incidences of CFP. This study presents the first species‐specific, semi‐quantitative polymerase chain reaction (qPCR) assays that can be used to address these questions. These assays are specific for five Gambierdiscus species and one undescribed ribotype. The assays utilized a SYBR green format and targeted unique sequences found within the SSU, ITS, and the D1/D3 LSU ribosomal domains. Standard curves were constructed using known concentrations of cultured cells and 10‐fold serial dilutions of rDNA PCR amplicons containing the target sequence for each specific assay. Assay sensitivity and accuracy were tested using DNA extracts purified from known concentrations of multiple Gambierdiscus species. The qPCR assays were used to assess Gambierdiscus species diversity and abundance in samples collected from nearshore areas adjacent to Ft. Pierce and Jupiter, Florida USA. The results indicated that the practical limit of detection for each assay was 10 cells per sample. Most interestingly, the qPCR analysis revealed that as many as four species of Gambierdiscus were present in a single macrophyte sample.  相似文献   

2.
Respiratory tract infections with nontuberculous mycobacteria (NTM) are increasing in prevalence and are a significant cause of lung function decline in individuals with cystic fibrosis (CF). NTM have been detected in culture-independent analyses of CF airway microbiota at lower rates than would be expected based on published prevalence data, likely due to poor lysing of the NTM cell wall during DNA extraction. We compared a standard bacterial lysis protocol with a modified method by measuring NTM DNA extraction by qPCR and NTM detection with bacterial 16S rRNA gene sequencing. The modified method improved NTM DNA recovery from spiked CF sputum samples by a mean of 0.53 log10 copies/mL for M. abscessus complex and by a mean of 0.43 log10 copies/mL for M. avium complex as measured by qPCR targeting the atpE gene. The modified method also improved DNA sequence based NTM detection in NTM culture-positive CF sputum and bronchoalveolar lavage samples; however, both qPCR and 16S rRNA gene sequencing remained less sensitive than culture for NTM detection. We highlight the limitations of culture-independent identification of NTM from CF respiratory samples, and illustrate how alterations in the bacterial lysis and DNA extraction process can be employed to improve NTM detection with both qPCR and 16S rRNA gene sequencing.  相似文献   

3.
Aims: Compare specificity and sensitivity of quantitative PCR (qPCR) assays targeting single and multi‐copy gene regions of Escherichia coli. Methods and Results: A previously reported assay targeting the uidA gene (uidA405) was used as the basis for comparing the taxonomic specificity and sensitivity of qPCR assays targeting the rodA gene (rodA984) and two regions of the multi‐copy 23S ribosomal RNA gene (EC23S and EC23S857). Experimental analyses of 28 culture collection strains representing E. coli and 21 related non‐target species indicated that the uidA405 and rodA984 assays were both 100% specific for E. coli while the EC23S assay was only 29% specific. The EC23S857 assay was only 95% specific due to detection of E. fergusonii. The uidA405, rodA984, EC23S and EC23S857 assays were 85%, 85%, 100% and 86% sensitive, respectively, in detecting 175 presumptive E. coli culture isolates from fresh, marine and waste water samples. In analyses of DNA extracts from 32 fresh, marine and waste water samples, the rodA984, EC23S and EC23S857 assays detected mean densities of target sequences at ratios of approximately 1 : 1, 243 : 1 and 6 : 1 compared with the mean densities detected by the uidA405 assay. Conclusions: The EC23S assay was less specific for E. coli, whereas the rodA984 and EC23S857 assay taxonomic specificities and sensitivities were similar to those of the uidA405 gene assay. Significance and Impact: The EC23S857 assay has a lower limit of detection for E. coli cells than the uidA405 and rodA984 assays due to its multi‐copy gene target and therefore provides greater analytical sensitivity in monitoring for these faecal pollution indicators in environmental waters by qPCR methods.  相似文献   

4.
Aims: To assess two real‐time PCR methods (the Riviere and Qvarnstrom assays) for environmental Acanthamoeba. Methods and Results: DNA extracted from Acanthamoeba castellanii taken from water and biofilms of cooling towers was analysed by the Riviere and Qvarnstrom assays. To quantify environmental Acanthamoeba, the calibration curves (DNA quantity vs cell number) were constructed with samples spiked with A. castellanii. The calibration curves for both quantitative PCR assays showed low variation (coefficient of variation of Ct≤ 5·7%) and high linearity (R2 ≥ 0·99) over six orders of magnitudes with detection limit of three cells per water sample. DNA quantity determined by Qvarnstrom assay was equivalent between trophozoites and cysts (P = 0·49), whereas a significant difference was observed with Riviere assay (P < 0·0001). Riviere assay failed to detect Acanthamoeba in 21% (15/71) of the environmental samples which were positively detected by Qvarnstrom assay, while one sample (1·4%) was shown positive by Riviere assay but negative by Qvarnstrom assay. Moreover, Acanthamoeba counts by Qvarnstrom assay were greater than those by Riviere assay (P < 0·0001). Conclusions: Qvarnstrom assay performs better than Riviere assay for detection and quantification of Acanthamoeba in anthropogenic water and biofilms. Significance and Impact of the Study: Qvarnstrom assay may significantly contribute to a better knowledge about the distribution and abundance of Acanthamoeba in environments.  相似文献   

5.
We investigated a harmful algal bloom (HAB) associated with the massive fish kills in Johor Strait, Malaysia, which recurred a year after the first incident in 2014. This incident has urged for the need to have a rapid and precise method in HAB monitoring. In this study, we develop a SYBR green‐based real‐time PCR (qPCR) to detect the culpable dinoflagellate species, Karlodinium australe. Species‐specific qPCR primers were designed in the gene region of the second internal transcribed spacer of the ribosomal RNA gene (rDNA). The species specificity of the primers designed was evaluated by screening on the non‐target species (Karlodinium veneficum, Takayama spp., and Karenia spp.) and no cross‐detection was observed. The extractable gene copies per cell of K. australe determined in this study were 19 998 ± 505 (P < 0.0001). Estimation of cell densities by qPCR in the experimental spiked samples showed high correlation with data determined microscopically (R2 = 0.93). Using the qPCR assay developed in this study, we successfully detected the 2015 bloom species as K. australe. Single‐cell PCR and rDNA sequencing from the field samples further confirmed the finding. With the sensitivity as low as five cells, the qPCR assay developed in this study could effectively and rapidly detect cells of K. australe in the environmental samples for monitoring purpose.  相似文献   

6.
Aims: To develop a quantitative PCR assay for sensitive and specific detection of Mycobacterium avium ssp. paratuberculosis (Map) in a range of dairy products. Methods and Results: TaqMan® assays were designed to target the IS900 and f57 genetic elements of Map. Both real‐time PCR assays were integrated with the Adiapure® Map DNA extraction kit and assessed separately for the detection/quantification of Map in spiked milk, Cheddar cheese and milk powder. Assays were validated against Cheddar cheese samples containing known concentrations of Map. The IS900 qPCR assay was significantly more sensitive than the assay based on the f57 primer/probe. At a threshold cycle value of 38, limits of detection (LOD) for the IS900 qPCR assay were 0·6 CFU ml?1, 2·8 CFU g?1 and 30 CFU g?1 for artificially contaminated pasteurized milk, whole milk powder and Cheddar cheese, respectively. The respective LOD’s for the f57 assay were 6·2 CFU ml?1, 26·7 CFU g?1 and 316 CFU g?1. Conclusion: The integrated Adiapure® extraction – IS900 real time assay described is a sensitive, quantitative method for the detection of Map in dairy products. This is the first study to consider qPCR as a quantitative estimation of Map‐DNA in cheese and whole milk powder. Significance and Impact of the Study: The assay developed allows sensitive detection and quantification of Map DNA in a range of dairy products which is valuable for the screening and surveillance of this potential zoonotic organism.  相似文献   

7.

Background

Staphylococcus aureus is a common and significant pathogen in cystic fibrosis. We sought to determine if quantitative PCR (qPCR) and 16S rRNA gene sequencing could provide a rapid, culture-independent approach to the identification of S. aureus airway infections.

Methods

We examined the sensitivity and specificity of two qPCR assays, targeting the femA and 16S rRNA gene, using culture as the gold standard. In addition, 16S rRNA gene sequencing to identify S. aureus directly from airway samples was evaluated. DNA extraction was performed with and without prior enzymatic digestion.

Results

87 samples [42 oropharyngeal (OP) and 45 expectorated sputum (ES)] were analyzed. 59 samples (68%) cultured positive for S. aureus. Using standard extraction techniques, sequencing had the highest sensitivity for S. aureus detection (85%), followed by FemA qPCR (52%) and 16SrRNA qPCR (34%). For all assays, sensitivity was higher from ES samples compared to OP swabs. Specificity of the qPCR assays was 100%, but 21.4% for sequencing due to detection of S. aureus in low relative abundance from culture negative samples. Enzymatic digestion increased the sensitivity of qPCR assays, particularly for OP swabs.

Conclusion

Sequencing had a high sensitivity for S. aureus, but low specificity. While femA qPCR had higher sensitivity than 16S qPCR for detection of S. aureus, neither assay was as sensitive as sequencing. The significance of S. aureus detection with low relative abundance by sequencing in culture-negative specimens is not clear.  相似文献   

8.
Aims: The aim of this study was to explore a new PCR target gene for Vibrio parahaemolyticus, based on the histone‐like nucleoid structure (H‐NS) gene. Methods and Results: Primers for the H‐NS gene were designed for specificity to Vparahaemolyticus and incorporated into a PCR assay. The PCR assay was able to specifically detect all of the 82 Vparahaemolyticus strains tested, but did not result in amplification in the 47 other Vibrio spp. and nonVibrio spp. strains. The detection limit of the PCR assay was 0·14 pg purified genomic DNA and 1·8 × 105 CFU g?1 spiked oyster samples from Vparahaemolyticus RIMD2210633. Furthermore, a multiplex PCR assay targeting the hns, tdh and trh genes was successfully developed to detect virulent Vparahaemolyticus strains. Conclusions: The H‐NS‐based PCR assay developed in this study was sensitive and specific, with great potential for field detection of Vparahaemolyticus in seawater or seafood samples. Significance and Impact of the Study: The H‐NS gene was validated as a new specific marker gene in PCR assays for accurate detection and identification of Vparahaemolyticus, which has the potential to be applied in diagnostics and taxonomic studies.  相似文献   

9.
Aim: To develop a TaqMan probe‐based, highly sensitive and specific quantitative PCR (qPCR) assay for the detection and quantification of Mycoplasma suis in the blood of pigs. Methods and Results: Primers and probes specific to Myc. suis 16S rRNA gene were designed. The qPCR assay’s specificity, detection limit, intra‐ and inter‐assay variability were evaluated and its performance was compared with a Myc. suis conventional PCR assay (cPCR). Blood of two experimentally infected pigs, 40 Indiana pigs, 40 Brazilian sows and 28 peccaries were tested. The assay detected as few as ten copies of Myc. suis plasmids and was 100‐fold more sensitive than the cPCR. No cross‐reactivity with nontarget pig mycoplasmas was observed. An average of 1·62 × 1011 and 2·75 × 108 target copies ml?1 of blood were detected in the acutely and chronically infected pigs, respectively. Three (7·5%) pigs and 32 (80·0%) sows were positive while all peccaries were negative for Myc. suis. Conclusion: The developed qPCR assay is highly sensitive and specific for Myc. suis detection and quantification. Significance and Impact of the Study: TaqMan qPCR is an accurate and quick test for detection of Myc. suis infected pigs, which can be used on varied instrumentation platforms.  相似文献   

10.
A rapid and sensitive direct cell semi-nested PCR assay was developed for the detection of viable toxigenic V. cholerae in environmental water samples. The semi-nested PCR assay amplified cholera toxin (ctxA2B) gene present in the toxigenic V. cholerae. The detection sensitivity of direct cell semi-nested PCR was 2 × 103 CFU of V. cholerae whereas direct cell single-step PCR could detect 2 × 104 CFU of V. cholerae. The performance of the assay was evaluated using environmental water samples after spiking with known number of Vibrio cholerae O1. The spiked water samples were filtered through a 0.22 micrometer membrane and the bacteria retained on filters were enriched in alkaline peptone water and then used directly in the PCR assay. The semi-nested PCR procedure coupled with enrichment could detect less than 1 CFU/ml in ground water and sea water whereas 2 CFU/ml and 20 CFU/ml could be detected in pond water and tap water, respectively. The proposed method is simple, faster than the conventional detection assays and can be used for screening of drinking water or environmental water samples for the presence of toxigenic V. cholerae.  相似文献   

11.
Targeted species‐specific and community‐wide molecular diagnostics tools are being used with increasing frequency to detect invasive or rare species. Few studies have compared the sensitivity and specificity of these approaches. In the present study environmental DNA from 90 filtered seawater and 120 biofouling samples was analyzed with quantitative PCR (qPCR), droplet digital PCR (ddPCR) and metabarcoding targeting the cytochrome c oxidase I (COI) and 18S rRNA genes for the Mediterranean fanworm Sabella spallanzanii. The qPCR analyses detected S. spallanzanii in 53% of water and 85% of biofouling samples. Using ddPCR S. spallanzanii was detected in 61% of water of water and 95% of biofouling samples. There were strong relationships between COI copy numbers determined via qPCR and ddPCR (water R2 = 0.81, p < .001, biofouling R2 = 0.68, p < .001); however, qPCR copy numbers were on average 125‐fold lower than those measured using ddPCR. Using metabarcoding there was higher detection in water samples when targeting the COI (40%) compared to 18S rRNA (5.4%). The difference was less pronounced in biofouling samples (25% COI, 29% 18S rRNA). Occupancy modelling showed that although the occupancy estimate was higher for biofouling samples (ψ = 1.0), higher probabilities of detection were derived for water samples. Detection probabilities of ddPCR (1.0) and qPCR (0.93) were nearly double metabarcoding (0.57 to 0.27 marker dependent). Studies that aim to detect specific invasive or rare species in environmental samples should consider using targeted approaches until a detailed understanding of how community and matrix complexity, and primer biases affect metabarcoding data.  相似文献   

12.
Aims: To develop a rapid, sensitive, specific tool for the detection and quantification of Lactococcus garvieae in food and environmental samples. Methods and Results: A real‐time quantitative PCR (qPCR) assay with primers for CAU12F and CAU12R based on the 16S rRNA gene of L. garvieae was successfully established. The limit of detection for L. garvieae genomic DNA was 1 ng DNA in conventional PCR and 32 fg with a mean CT value of 36·75 in qPCR. Quantification of L. garvieae vegetative cells was linear (R2 = 0·99) over a 7‐log‐unit dynamic range down to ten L. garvieae cells. Conclusions: This method is highly specific, sensitive and reproducible for the detection of L. garvieae compared to gel‐based conventional PCR assays, thus providing precise quantification of L. garvieae in food and natural environments. Significance and Impact of the Study: This work provides efficient diagnostic and monitoring tools for the rapid identification of L. garvieae, an emerging pathogen in aquaculture and an occasional human pathogen from other members of the genus Lactobacillus.  相似文献   

13.
14.
Aims: The current study was aimed to develop a loop‐mediated isothermal amplification (LAMP) combined with amplicon detection by chromatographic lateral flow dipstick (LFD) assay for rapid and specific detection of Vibrio parahaemolyticus. Methods and Results: Biotinylated LAMP amplicons were produced by a set of four designed primers that recognized specifically the V. parahaemolyticus thermolabile haemolysin (tlh) gene followed by hybridization with an FITC‐labelled probe and LFD detection. The optimized time and temperature conditions for the LAMP assay were 90 min at 65°C. The LAMP–LFD method accurately identified 28 isolates of V. parahaemolyticus but did not detect 24 non‐parahaemolyticus Vibrio isolates and 35 non‐Vibrio bacterial isolates. The sensitivity of LAMP–LFD for V. parahaemolyticus detection in pure cultures was 120 CFU ml?1. In the case of spiked shrimp samples without enrichment, the detection limit for V. parahaemolyticus was 1·8 × 103 CFU g?1 or equivalent to 3 CFU per reaction while that of conventional PCR was 30 CFU per reaction. Conclusions: The established LAMP–LFD assay targeting tlh gene was specific, rapid and sensitive for identification of V. parahaemolyticus. Significance and Impact of the Study: The developed LAMP–LFD assay provided a valuable tool for detection of V. parahaemolyticus and can be used effectively for identification of V. parahaemolyticus in contaminated food sample.  相似文献   

15.
A rapid and sensitive 8-h PCR assay has been developed for detection of Salmonella serovars in seafood. A total of 110 fresh and raw seafood samples were analysed for the presence of Salmonella using different enrichment periods prior to PCR assay. Seafood samples included in this study were fish, shrimps, mussels, crabs, edible oysters, and clams, collected from local fish markets in Cochin (India). The assay was performed with a Salmonella-specific 284 bp invA gene amplicon. Specificity and sensitivity of the assay were ascertained with seafoods spiked with viable Salmonella cells to a level of 106 to 2 CFU per 25 g. Detection efficiency of the assay increased with increasing enrichment period for seafood, and 33.6% of seafood samples were found positive for Salmonella by 8-h PCR assay. Detection limit for the 8-h PCR assay showed visible 284 bp amplicon from seafood homogenates spiked with 2 CFU per 25 g. Seafood samples spiked with different Salmonella serovars, namely Salmonella typhi, Salmonella typhimurium, Salmonella enteritidis, Salmonella mbandka, Salmonella bareilly, and Salmonella weltevreden, were detected, confirming this technique would be ideal for detection of the Salmonella serovars prevalent in seafood. This study also covered inhibition by the seafood matrix and the detection limit for dead Salmonella cells during the PCR assay. There was no visible inhibition of this Salmonella PCR assay by seafood matrices. The detection limit for dead Salmonella cells by 8-h PCR assay was 2 × 103 CFU per 25 g seafood. The data indicated that dead cells of Salmonella in naturally contaminated seafood samples do not interfere with the assay resulting in false positives.  相似文献   

16.
Xanthomonas fragariae is a bacterium that causes angular leaf spot of strawberry. Asymptomatic infection is common and contributes to the difficulties in disease management. The aim of this study was to develop a loop-mediated isothermal amplification (LAMP) assay as an efficient method for detection of asymptomatic infections of X. fragariae. In addition, a new method of sample preparation was developed that allows sampling of a larger amount of plant tissue, hence increasing the detection rate in real-life samples. The sample preparation procedure includes an overnight incubation of strawberry tissues in phosphate-buffered saline (PBS), followed by a quick sample concentration and a boiling step to extract DNA for amplification. The detection limit of the LAMP assay was approximately 2×103 CFU/mL for pure bacteria culture and 300 CFU/mL for bacteria spiked strawberry leaf and petiole samples. LAMP provided a 2–3 fold lower detection limit than the standard qPCR assay but was faster, and more user-friendly. The LAMP assay should serve as a rapid, sensitive and cost-effective tool for detecting asymptomatic infections of X. fragariae in strawberry nursery stock and contribute to improved disease management.  相似文献   

17.
Summary Environmental monitoring is important to enable effective resource management and public health protection as well as rapid and accurate identification of Vibrio cholerae in drinking-water sources. Traditional methods employed in identification are laborious, time-consuming and practically not viable for screening of a large number of samples. In this study, a direct cell duplex PCR assay for the detection of viable toxigenic V. cholerae in environmental water samples was developed. In the PCR assay, two gene sequences were amplified together, one of outer membrane protein (ompW), which is species-specific and another of cholera toxin (ctxAB). The detection limit of duplex PCR was 5 × 104 V. cholerae/reaction. Different environmental water samples were artificially spiked with V. cholerae O1 cells and filtered through a 0.22 μm membrane, and the filters enriched in alkaline peptone water for 6 h and then used directly in the duplex PCR assay. The PCR procedure coupled with enrichment could detect as few as 1.2 c.f.u./ml in ground water, 1.2 × 102 c.f.u. ml−1 in sewer water and 1.2 × 103c.f.u. ml−1 in tap water. The assay was successfully applied directly for screening of environmental potable water samples collected from a cholera-affected area. The proposed method is simple and can be used for environmental monitoring of toxigenic as well as non-toxigenic V. cholerae.  相似文献   

18.
The Vibrio cholerae N-acetyl glucosamine-binding protein A (GbpA) is a chitin-binding protein involved in V. cholerae attachment to environmental chitin surfaces and human intestinal cells. We previously investigated the distribution and genetic variations of gbpA in a large collection of V. cholerae strains and found that the gene is consistently present and highly conserved in this species. Primers and probe were designed from the gbpA sequence of V. cholerae and a new Taq-based qPCR protocol was developed for diagnostic detection and quantification of the bacterium in environmental and stool samples. In addition, the positions of primers targeting the gbpA gene region were selected to obtain a short amplified fragment of 206 bp and the protocol was optimized for the analysis of formalin-fixed samples, such as historical Continuous Plankton Recorder (CPR) samples. Overall, the method is sensitive (50 gene copies), highly specific for V. cholerae and failed to amplify strains of the closely-related species Vibrio mimicus. The sensitivity of the assay applied to environmental and stool samples spiked with V. cholerae ATCC 39315 was comparable to that of pure cultures and was of 102 genomic units/l for drinking and seawater samples, 101 genomic units/g for sediment and 102 genomic units/g for bivalve and stool samples. The method also performs well when tested on artificially formalin-fixed and degraded genomic samples and was able to amplify V. cholerae DNA in historical CPR samples, the earliest of which date back to August 1966. The detection of V. cholerae in CPR samples collected in cholera endemic areas such as the Benguela Current Large Marine Ecosystem (BCLME) is of particular significance and represents a proof of concept for the possible use of the CPR technology and the developed qPCR assay in cholera studies.  相似文献   

19.
Monitoring of harmful algal bloom (HAB) species in coastal waters is important for assessment of environmental impacts associated with HABs. Co-occurrence of multiple cryptic species such as toxic dinoflagellate Ostreopsis species make reliable microscopic identification difficult, so the employment of molecular tools is often necessary. Here we developed new qPCR method by which cells of cryptic species can be enumerated based on actual gene number of target species. The qPCR assay targets the LSU rDNA of Ostreopsis spp. from Japan. First, we constructed standard curves with a linearized plasmid containing the target rDNA. We then determined the number of rDNA copies per cell of target species from a single cell isolated from environmental samples using the qPCR assay. Differences in the DNA recovery efficiency was calculated by adding exogenous plasmid to a portion of the sample lysate before and after DNA extraction followed by qPCR. Then, the number of cells of each species was calculated by division of the total number of rDNA copies of each species in the samples by the number of rDNA copies per cell. To test our procedure, we determined the total number of rDNA copies using environmental samples containing no target cells but spiked with cultured cells of several species of Ostreopsis. The numbers estimated by the qPCR method closely approximated total numbers of cells added. Finally, the numbers of cells of target species in environmental samples containing cryptic species were enumerated by the qPCR method and the total numbers also closely approximated the microscopy cell counts. We developed a qPCR method that provides accurate enumeration of each cryptic species in environments. This method is expected to be a powerful tool for monitoring the various HAB species that occur as cryptic species in coastal waters.  相似文献   

20.
Loop-mediated isothermal amplification (LAMP) assay is a powerful and innovative gene amplification technique that specifically amplifies the target gene under isothermal conditions with a high degree of sensitivity, rapidity and specificity. The major advantage of the LAMP assay is monitoring of amplified products without the requirement of any sophisticated equipment. In the present study a real time LAMP assay was employed for rapid and real time detection of Bacillus anthracis spores spiked in 0.1 g of soil and talcum powder ranging from 2 to 107 spores. DNA was isolated from spiked soil and talcum powder using PBS containing 1% Triton X-100, and heat treatment. Isolated DNA was used as template for LAMP and PCR. LAMP amplification was obtained in 60 min under isothermal condition at 63°C by employing a set of six primers targeting the pag gene of B. anthracis. The detection limit of LAMP assay in soil and talcum powder was found to be as low as 5 spores, compared to 103 spores and 104 spores by PCR in talcum powder and soil, respectively. The findings suggest that LAMP is a more rapid and sensitive assay than PCR for detecting anthrax spores, additionally the methodology to prepare DNA from spiked samples is simple, rapid and cost effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号