首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Cigarette smoking is a major pathogenic factor in lung cancer. Macrophages play an important role in host defense and adaptive immunity. These cells display diverse phenotypes for performing different functions. M2 type macrophages usually exhibit immunosuppressive and tumor-promoting characteristics. Although macrophage polarization toward the M2 phenotype has been observed in the lungs of cigarette smokers, the molecular basis of the process remains unclear. In this study, we evaluated the possible mechanisms for the polarization of mouse macrophages that are induced by cigarette smoking (CS) or cigarette smoke extract (CSE). The results showed that exposure to CSE suppressed the production of reactive oxygen species (ROS) and nitric oxide (NO) and down-regulated the phagocytic ability of Ana-1 cells. The CD163 expressions on the surface of macrophages from different sources were significantly increased in in vivo and in vitro studies. The M1 macrophage cytokines TNF-α, IL-12p40 and enzyme iNOS decreased in the culture supernatant, and their mRNA levels decreased depending on the time and concentration of CSE. In contrast, the M2 phenotype macrophage cytokines IL-10, IL-6, TGF-β1 and TGF-β2 were up-regulated. Moreover, phosphorylation of JAK2 and STAT3 was observed after the Ana-1 cells were treated with CSE. In addition, pretreating the Ana-1 cells with the STAT3 phosphorylation inhibitor WP1066 inhibited the CSE-induced CD163 expression, increased the mRNA level of IL-10 and significantly decreased the mRNA level of IL-12. In conclusion, we demonstrated that the M2 polarization of macrophages induced by CS could be mediated through JAK2/STAT3 pathway activation.  相似文献   

4.
High macrophage infiltration has been correlated to improved survival in colorectal cancer (CRC). Tumor associated macrophages (TAMs) play complex roles in tumorigenesis since they are believed to hold both tumor preventing (M1 macrophages) and tumor promoting (M2 macrophages) activities. Here we have applied an immunohistochemical approach to determine the degree of infiltrating macrophages with a M1 or M2 phenotype in clinical specimens of CRC in relation to prognosis, both in CRC in general but also in subgroups of CRC defined by microsatellite instability (MSI) screening status and the CpG island methylator phenotype (CIMP). A total of 485 consecutive CRC specimens were stained for nitric oxide synthase 2 (NOS2) (also denoted iNOS) as a marker for the M1 macrophage phenotype and the scavenger receptor CD163 as a marker for the M2 macrophage phenotype. The average infiltration of NOS2 and CD163 expressing macrophages along the invasive tumor front was semi-quantitatively evaluated using a four-graded scale. Two subtypes of macrophages, displaying M1 (NOS2+) or M2 (CD163+) phenotypes, were recognized. We observed a significant correlation between the amount of NOS2+ and CD163+ cells (P<0.0001). A strong inverse correlation to tumor stage was found for both NOS2 (P<0.0001) and CD163 (P<0.0001) infiltration. Furthermore, patients harbouring tumors highly infiltrated by NOS2+ cells had a significantly better prognosis than those infiltrated by few NOS2+ cells, and this was found to be independent of MSI screening status and CIMP status. No significant difference was found on cancer-specific survival in groups of CRC with different NOS2/CD163 ratios. In conclusion, an increased infiltration of macrophages with a M1 phenotype at the tumor front is accompanied by a concomitant increase in macrophages with a M2 phenotype, and in a stage dependent manner correlated to a better prognosis in patients with CRC.  相似文献   

5.
Macrophages have been implicated in the pathogenesis of classical Hodgkin lymphoma (cHL) and have been suggested to have a negative impact on outcome. Most studies addressing the role of macrophages in cHL have relied on identification of macrophages by generic macrophage antigens, e.g., CD68. We have therefore conducted an in situ analysis of macrophage polarization in a series of 100 pediatric cHL (pcHL) cases using double staining immunohistochemistry, combining CD68 or CD163 with pSTAT1 (M1-like) or CMAF (M2-like). M1- or M2-polarised microenvironment was defined by an excess of one population over the other (>1.5). Expression of STAT1 and LYZ genes was also evaluated by RT-qPCR. Patients <14 years and EBV+ cases displayed higher numbers of CD68+pSTAT1+ cells than older children and EBV- cases, respectively (P=0.01 and P=0.02). A cytotoxic tumor microenvironment, defined by a CD8+/FOXP3+ ratio >1.5 was associated with higher numbers of CD68+pSTAT1+ (P=0.025) and CD163+pSTAT1+ macrophages (P<0.0005). Levels of STAT1 and LYZ expression were associated with the numbers of CD68+pSTAT1+ macrophages. EBV+ cHL cases disclosed a predominant M1 polarized microenvironment similar to Th1 mediated inflammatory disorders, while EBV- cHL showed a predominant M2 polarized microenvironment closer to Th2 mediated inflammatory diseases. Better overall-survival (OS) was observed in cases with higher numbers of CD163+pSTAT1+ macrophages (P=0.02) while larger numbers of CD163+CMAF+ macrophages were associated with worse progression-free survival (PFS) (P=0.02). Predominant M1-like polarization as disclosed by CD163+pSTAT1+/CD163+CMAF+ ratio > 1.5 was associated with better OS (P= 0.037). In conclusion, macrophage polarization in pcHL correlates with prevalent local T cell response and may be influenced by the EBV-status of neoplastic cells. Besides, M1-like and M2-like macrophages displayed differential effects on outcome in pcHL.  相似文献   

6.
Th1 cytokines promote monocyte differentiation into proatherogenic M1 macrophages, while Th2 cytokines lead to an "alternative" anti-inflammatory M2 macrophage phenotype. Here we show that in human atherosclerotic lesions, the expression of M2 markers and PPARgamma, a nuclear receptor controlling macrophage inflammation, correlate positively. Moreover, PPARgamma activation primes primary human monocytes into M2 differentiation, resulting in a more pronounced anti-inflammatory activity in M1 macrophages. However, PPARgamma activation does not influence M2 marker expression in resting or M1 macrophages, nor does PPARgamma agonist treatment influence the expression of M2 markers in atherosclerotic lesions, indicating that only native monocytes can be primed by PPARgamma activation to an enhanced M2 phenotype. Furthermore, PPARgamma activation significantly increases expression of the M2 marker MR in circulating peripheral blood mononuclear cells. These data demonstrate that PPARgamma activation skews human monocytes toward an anti-inflammatory M2 phenotype.  相似文献   

7.
8.
During activation, macrophages undergo physiological changes affecting their surface protein expression and cytokine production and have been subsequently categorized into M1 (classically-activated) and M2 (alternatively-activated) macrophages. It remains unclear which lymphocyte population provides the immune microenvironment to regulate macrophage polarization. In this study, we establish a functional and phenotypic profile of peritoneal macrophages from C57BL/6 wild-type mice. We also showed that Rag1−/− and Rag2−/−γc−/− mice have similar, exaggerated M1 characteristics in comparison to control mice, suggesting that NK and/or NK-T cells may not be essential in this process. By controlling for environmental factors, we determine that lymphocyte-derived cytokines, rather than inherent properties of macrophages themselves, are crucial for their regulation. Lastly, we report that macrophages from CD4−/− mice display an M1 profile, suggesting that CD4+ T-cells play a dominant role over other lymphocyte populations in providing the cytokine environment for regulating macrophages towards an M2 profile under normal wild-type conditions.  相似文献   

9.
Innate immunity is crucial for an effective host defense against pathogenic microorganisms in periodontal tissues. As periodontal ligament (PDL) cells synthesize immunomodulatory cytokines, the aim of this in?vitro study was to investigate whether these cells can interact with innate immune cells. Resting and inflammatory primed (IL-1β, TNF-α, HMGB1) human PDL cells were co-cultured with human monocyte-derived dendritic cells or macrophages. Migration, phenotypic maturation and modulation of phagocytosis of Porphyromonas gingivalis by immune cells were investigated upon co-culture with PDL cells and/or their released soluble factors. PDL cells interacted with immune cells under both non-inflammatory and inflammatory conditions. Immune cell migration was significantly enhanced by co-culture with PDL cells, which also affected their phenotypic maturation both through cell-cell contact and through released soluble mediators. The dendritic cell maturation markers CD83 and CD86 were upregulated as much as both 'alternatively activated' M2 macrophage maturation markers CD23 and CD163. In contrast, the 'classically activated' M1 macrophage maturation marker CD64 was downregulated. Finally, PDL cells significantly enhanced the phagocytosis of Porphyromonas gingivalis by immune cells. Our experiments revealed that PDL cells are not only structural elements of the periodontium, but actively influence immune responses by interaction with innate immune cells.  相似文献   

10.
Ong CT  Sedy JR  Murphy KM  Kopan R 《PloS one》2008,3(7):e2823
Recent reports suggested that Delta1, 4 and Jagged1, 2 possessed the ability to instruct CD4+ T cell into selection of Th1 or Th2 fates, respectively, although the underlying mechanism endowing the cleaved Notch receptor with memory of ligand involved in its activation remains elusive. To examine this, we prepared artificial antigen-presenting cells expressing either DLL1 or Jag1. Although both ligands were efficient in inducing Notch2 cleavage and activation in CD4+ T or reporter cells, the presence of Lunatic Fringe in CD4+ T cells inhibited Jag1 activation of Notch1 receptor. Neither ligand could induce Th1 or Th2 fate choice independently of cytokines or redirect cytokine-driven Th1 or Th2 development. Instead, we find that Notch ligands only augment cytokine production during T cell differentiation in the presence of polarizing IL-12 and IL-4. Moreover, the differentiation choices of naïve CD4+ T cells lacking γ-secretase, RBP-J, or both in response to polarizing cytokines revealed that neither presenilin proteins nor RBP-J were required for cytokine-induced Th1/Th2 fate selection. However, presenilins facilitate cellular proliferation and cytokine secretion in an RBP-J (and thus, Notch) independent manner. The controversies surrounding the role of Notch and presenilins in Th1/Th2 polarization may reflect their role as genetic modifiers of T-helper cells differentiation.  相似文献   

11.

Introduction

Recent accumulating evidence indicates a crucial involvement of macrophage lineage in the pathogenesis of systemic sclerosis (SSc). To analyze the assembly of the monocyte/macrophage population, we evaluated the expression of CD163 and CD204 and various activated macrophage markers, in the inflammatory cells of the skin and in the peripheral blood mononuclear cells (PBMCs) derived from patients with SSc.

Methods

Skin biopsy specimens from 6 healthy controls and 10 SSc patients (7 limited cutaneous SSc and 3 diffuse cutaneous SSc) were analyzed by immunohistochemistry using monoclonal antibody against CD68 (pan-macrophage marker), CD163 and CD204. Surface and/or intracellular protein expression of CD14 (marker for monocyte lineage), CD163 and CD204 was analysed by flow cytometry in PBMCs from 16 healthy controls and 41 SSc patients (26 limited cutaneous SSc and 15 diffuse cutaneous SSc). Statistical analysis was carried out using Mann-Whitney U test for comparison of means.

Results

In the skin from SSc patients, the number of CD163+ cells or CD204+ cells between the collagen fibers was significantly larger than that in healthy controls. Flow cytometry showed that the population of CD14+ cells was significantly greater in PBMCs from SSc patients than that in healthy controls. Further analysis of CD14+ cells in SSc patients revealed higher expression of CD163 and the presence of two unique peaks in the CD204 histogram. Additionally, we found that the CD163+ cells belong to CD14brightCD204+ population.

Conclusions

This is the first report indicating CD163+ or CD204+ activated macrophages may be one of the potential fibrogenic regulators in the SSc skin. Furthermore, this study suggests a portion of PBMCs in SSc patients abnormally differentiates into CD14brightCD163+CD204+ subset. The subset specific to SSc may play an important role in the pathogenesis of this disease, as the source of CD163+ or CD204+ macrophages in the skin.  相似文献   

12.
Myeloid derived suppressor cells (MDSCs) expand in cancer bearing hosts and contribute to tumor immune evasion. M2 macrophages constitute a major cellular component of cancer-related inflammation. However, the correlation between circulating MDSCs and infiltrating M2 macrophages in tumor tissues from patients with esophageal cancer (ECA), and its potential relationship with the polarization of Th2 cells remain unclear. In the present study, we showed the level of MDSCs in PBMC and Arg1 in plasma were significantly elevated in ECA patients, and the increased ratio of MDSC in PBMC was closely related to the expression of CD163 in cancer tissues. In addition, the ECA patients exhibited remarkable increases in the mRNA levels of IL-4 and GATA3, as well as the protein levels of IL-13 and IL-6, but IFN-γ and IL-12 in peripheral blood were decreased. Our data indicate that the increased Th2 cytokines are associated with MDSCs and M2 macrophages polarization, and foster the infiltration of CD163+M2 macrophages in cancer tissues, which promote the formation of immunosuppressive microenvironment in ECA patients.  相似文献   

13.
We investigated the effects of the Th2-like cytokines IL-4 and IL-13 and of IL-10 on the induction of iNOS and NO production in rat eosinophils. Addition of mIL-4 to the eosinophil culture increased iNOS activity and nitrite production but did not improve the stimulatory effect of IFN-gamma and LPS. In contrast to eosinophils, addition of mIL-4 to macrophage cultures inhibited the iNOS expression and nitrite production induced by IFN-gamma plus LPS. Addition of mIL-13 to the eosinophil cultures did not significantly change iNOS activity and nitrite production in cells stimulated or not with IFN-gamma plus LPS. On the other hand, IL-13 inhibited iNOS activity in IFN-gamma plus LPS-stimulated macrophages. In the presence of IL-10, iNOS activity in non-stimulated eosinophil or macrophage cultures was not significantly altered, but the enzyme expression was inhibited in IFN-gamma plus LPS-stimulated eosinophils or macrophages. The production of nitrite by eosinophils stimulated by IFN-gamma plus LPS was inhibited by the presence of IL-10 in the medium. In conclusion, eosinophils might exhibit differential modulation of the L-arginine/iNOS pathway depending on the profile of Th2 cytokines produced during allergic diseases. IL-4 appears to be an important Th2 cytokine involved in the induction of the L-arginine/iNOS pathway in eosinophils.  相似文献   

14.
Macrophage polarization plays an important role in many macrophage-related diseases. This study was designed to preliminarily explore the effects of dielectric barrier discharge (DBD) plasma on the polarization direction and cell activity of macrophages with different phenotypes (ie, M0, M1, and M2). The M1 macrophage marker inducible nitric oxide synthase (iNOS) and M2 macrophage marker cluster of differentiation 206 (CD206) were detected by western blot (WB). The effects of DBD plasma on macrophage viability were analyzed by using a cell counting kit-8 detection kit. M0, M1, and M2 macrophages exhibited a decrease in iNOS expression and an increase in CD206 expression after the DBD plasma intervention. Additionally, the decrease in macrophage viability remained non-significant after initiating the intervention. DBD plasma can promote the transformation of M0 and M1 macrophages to M2 macrophages, and can further enhance the expression of the M2 macrophage phenotype marker CD206. Our study not only demonstrates the potential therapeutic value of DBD plasma for macrophage-related diseases, but it also provides a new direction for research to improve the treatment of macrophage-related diseases. © 2023 Bioelectromagnetics Society.  相似文献   

15.
16.

Introduction

Synovial tissue macrophages play a key role in chronic inflammatory arthritis, but the contribution of different macrophage subsets in this process remains largely unknown. The main in vitro polarized macrophage subsets are classically (M1) and alternatively (M2) activated macrophages, the latter comprising interleukin (IL)-4 and IL-10 polarized cells. Here, we aimed to evaluate the polarization status of synovial macrophages in spondyloarthritis (SpA) and rheumatoid arthritis (RA).

Methods

Expression of polarization markers on synovial macrophages, peripheral blood monocytes, and in vitro polarized monocyte-derived macrophages from SpA versus RA patients was assessed by immunohistochemistry and flow cytometry, respectively. The polarization status of the intimal lining layer and the synovial sublining macrophages was assessed by double immunofluorescence staining.

Results

The expression of the IL-10 polarization marker cluster of differentiation 163 (CD163) was increased in SpA compared with RA intimal lining layer, but no differences were found in other M1 and M2 markers between the diseases. Furthermore, no significant phenotypic differences in monocytes and in vitro polarized monocyte-derived macrophages were seen between SpA, RA, and healthy controls, indicating that the differential CD163 expression does not reflect a preferential M2 polarization in SpA. More detailed analysis of intimal lining layer macrophages revealed a strong co-expression of the IL-10 polarization markers CD163 and cluster of differentiation 32 (CD32) but not any of the other markers in both SpA and RA. In contrast, synovial sublining macrophages had a more heterogeneous phenotype, with a majority of cells co-expressing M1 and M2 markers.

Conclusions

The intimal lining layer but not synovial sublining macrophages display an IL-10 polarized-like phenotype, with increased CD163 expression in SpA versus RA synovitis. These differences in the distribution of the polarized macrophage subset may contribute to the outcome of chronic synovitis.  相似文献   

17.
Macrophages are important with respect to both innate and adaptive immune responses and are known to differentiate into pro-inflammatory M1- or anti-inflammatory M2-phenotypes following activation. In order to study how different bacteria affect macrophage polarization, we exposed murine RAW 264.7 macrophages to sixteen different strains representing probiotic strains, pathogens, commensals and strains of food origin. Increased inducible nitric oxide synthase (iNOS) or arginase-1 gene expression indicates M1 or M2 polarization, respectively, and was quantified by qRT-PCR. Strains of Escherichia and Salmonella elevated iNOS expression more so than strains of Enterococcus, Lactobacillus and Lactococcus, indicating that Gram-negative strains are more potent M1 inducers. However, strain-specific responses were observed. For instance, Escherichia coli Nissle 1917 was a poor inducer of iNOS gene expression compared to the other E. coli strains, while Enterococcus faecalis Symbioflor-1 was more potent in this respect compared to all the eleven Gram-positive strains tested. Macrophage polarization was further characterized by quantifying secreted pro- and anti-inflammatory cytokines. Exposure to the pathogen E. coli 042 produced a cytokine profile indicating M1 differentiation, which is in accordance with the PCR data. However, exposure to most strains resulted in either high or low secretion levels of all cytokines tested, rather than a clear M1 or M2 profile. In general, the Gram-negative strains induced high levels of cytokine secretion compared to the Gram-positive strains. Interestingly, strains of human origin had a higher impact on macrophages compared to strains of food origin.  相似文献   

18.
19.
Macrophages play a key role in the innate immune system. Macrophages are thought to originate from hematopoietic precursors or the yolk sac. Here, we describe the in vitro establishment of self-renewable GM-CSF-dependent immature macrophages (GM-IMs) from murine bone marrow (BM). GM-IMs grow continuously in vitro in conditioned medium containing GM-CSF. The immunophenotype of GM-IMs is F4/80high CD11bhigh CD11clow Ly6Clow. By comparing gene expression in GM-IMs and BM dendritic cells, we found that GM-IMs expressed lower levels of chemokines, cytokines and their receptors. GM-IMs are round in shape, attach loosely to non-coated culture dishes and have a marked phagocytic capacity. These results indicate that GM-IMs are macrophage precursor cells. Following stimulation with LPS, monocyte-like GM-IMs converted to flat macrophage-like cells that tightly adhered to non-coated culture dishes and produced pro-inflammatory cytokines TNFα, IL-6 and IL-1β. These results indicated that GM-IMs differentiated to M1 pro-inflammatory macrophages. This was confirmed by stimulation of GM-IMs with IFNγ, an inducer of M1 markers. GM-IMs showed enhanced expression of M2 macrophage markers such as Arg1 and Retnla following stimulation by Th2 cytokines IL-4 and IL-13. When GM-IMs were injected into mice at sites of wounding, wound repair was enhanced. These results indicate that GM-IMs can differentiate to M2 macrophages. When GM-IMs were injected into clodronate-treated mice, they induced resident macrophage proliferation by producing M-CSF. In conclusion we have established self-renewable GM-CSF-dependent immature macrophages in vitro from murine BM, which differentiate to M1 or M2 macrophages.  相似文献   

20.
In cancer patients pervasive systemic suppression of Dendritic Cell (DC) differentiation and maturation can hinder vaccination efficacy. In this study we have extensively characterized migratory DC subsets from human skin and studied how their migration and T cell-stimulatory abilities were affected by conditioning of the dermal microenvironment through cancer-related suppressive cytokines. To assess effects in the context of a complex tissue structure, we made use of a near-physiological skin explant model. By 4-color flow cytometry, we identified migrated Langerhans Cells (LC) and five dermis-derived DC populations in differential states of maturation. From a panel of known tumor-associated suppressive cytokines, IL-10 showed a unique ability to induce predominant migration of an immature CD14+CD141+DC-SIGN+ DC subset with low levels of co-stimulatory molecules, up-regulated expression of the co-inhibitory molecule PD-L1 and the M2-associated macrophage marker CD163. A similarly immature subset composition was observed for DC migrating from explants taken from skin overlying breast tumors. Whereas predominant migration of mature CD1a+ subsets was associated with release of IL-12p70, efficient Th cell expansion with a Th1 profile, and expansion of functional MART-1-specific CD8+ T cells, migration of immature CD14+ DDC was accompanied by increased release of IL-10, poor expansion of CD4+ and CD8+ T cells, and skewing of Th responses to favor coordinated FoxP3 and IL-10 expression and regulatory T cell differentiation and outgrowth. Thus, high levels of IL-10 impact the composition of skin-emigrated DC subsets and appear to favor migration of M2-like immature DC with functional qualities conducive to T cell tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号