首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Profitability of beef production can be increased by genetically improving carcass traits. To construct breeding value evaluations for carcass traits, breed-specific genetic parameters were estimated for carcass weight, carcass conformation and carcass fat in five beef cattle breeds in Finland (Hereford, Aberdeen Angus, Simmental, Charolais and Limousin). Conformation and fat were visually scored using the EUROP carcass classification. Each breed was separately analyzed using a multitrait animal model. A total of 6879–19 539 animals per breed had phenotypes. For the five breeds, heritabilities were moderate for carcass weight (h2=0.39 to 0.48, s.e.=0.02 to 0.04) and slightly lower for conformation (h2=0.30 to 0.44, s.e.=0.02 to 0.04) and carcass fat (h2=0.29 to 0.44, s.e.=0.02 to 0.04). The genetic correlation between carcass weight and conformation was favorable in all breeds (rG=0.37 to 0.53, s.e.=0.04 to 0.05), heavy carcasses being genetically more conformed. The phenotypic correlation between carcass weight and carcass fat was moderately positive in all breeds (rP=0.21 to 0.32), implying that increasing carcass weight was related to increasing fat levels. The respective genetic correlation was the strongest in Hereford (rG=0.28, s.e.=0.05) and Angus (rG=0.15, s.e.=0.05), the two small body-sized British breeds with the lowest conformation and the highest fat level. The correlation was weaker in the other breeds (rG=0.08 to 0.14). For Hereford, Angus and Simmental, more conformed carcasses were phenotypically fatter (rP=0.11 to 0.15), but the respective genetic correlations were close to zero (rG=0.05 to 0.04). In contrast, in the two large body-sized and muscular French breeds, the genetic correlation between conformation and fat was negative and the phenotypic correlation was close to zero or negative (Charolais: rG=0.18, s.e.=0.06, rP=0.02; Limousin: rG=0.56, s.e.=0.04, rP=0.13). The results indicate genetic variation for the genetic improvement of the carcass traits, favorable correlations for the simultaneous improvement of carcass weight and conformation in all breeds, and breed differences in the correlations of carcass fat.  相似文献   

2.
Genetic parameters for meat quality traits and their relationships with body weight and breast development were estimated for a total of 420 male turkeys using REML. The birds were slaughtered in a commercial plant and the traits measured included pH at 20 min (pH20) and 24 h post-mortem (pHu) and colour of the breast and thigh meat. The heritabilities of the rate and the extent of the pH fall in the breast muscle were estimated at h2 = 0.21 ± 0.04 and h2 = 0.16 ± 0.04, respectively. Heritabilities ranging from 0.10 to 0.32 were obtained for the colour indicators in the breast muscle. A marked negative genetic correlation (rg = -0.80 ± 0.10) was found between pH20 and lightness (L*) of breast meat, both traits corresponding to PSE indicators. The pH20 in the thigh muscle had a moderate heritability (h2 = 0.20 ± 0.07) and was partially genetically related to pH20 in the breast muscle (rg = 0.45 ± 0.17). Body weight and breast yield were positively correlated with both initial and ultimate pH and negatively with the lightness of breast meat.  相似文献   

3.
Carcass data were collected from 24 kids (average live weight of 12.5±5.5 kg; range 4.5 to 22.4 kg) of Jarmelista Portuguese native breed, to evaluate bioelectrical impedance analysis (BIA) as a technique for prediction of light kid carcass and muscle chemical composition. Resistance (Rs, Ω) and reactance (Xc, Ω), were measured in the cold carcasses with a single frequency bioelectrical impedance analyzer and, together with impedance (Z, Ω), two electrical volume measurements (VolA and VolB, cm2/Ω), carcass cold weight (CCW), carcass compactness and several carcass linear measurements were fitted as independent variables to predict carcass composition by stepwise regression analysis. The amount of variation explained by VolA and VolB only reached a significant level (P<0.01 and P<0.05, respectively) for muscle weight, moisture, protein and fat-free soft tissue content, even so with low accuracy, with VolA providing the best results (0.326⩽R2⩽0.366). Quite differently, individual BIA parameters (Rs, Xc and Z) explained a very large amount of variation in dissectible carcass fat weight (0.814⩽R2⩽0.862; P<0.01). These individual BIA parameters also explained a large amount of variation in subcutaneous and intermuscular fat weights (respectively 0.749⩽R2⩽0.793 and 0.718⩽R2⩽0.760; P<0.01), and in muscle chemical fat weight (0.663⩽R2⩽0.684; P<0.01). Still significant but much lower was the variation in muscle, moisture, protein and fat-free soft tissue weights (0.344⩽R2⩽0.393; P<0.01) explained by BIA parameters. Still, the best models for estimation of muscle, moisture, protein and fat-free soft tissue weights included Rs in addition to CCW, and accounted for 97.1% to 99.8% (P<0.01) of the variation observed, with CCW by itself accounting for 97.0% to 99.6% (P<0.01) of that variation. Resistance was the only independent variable selected for the best model predicting subcutaneous fat weight. It was also selected for the best models predicting carcass fat weight (combined with carcass length, CL; R2=0.943; P<0.01) and intermuscular fat weight (combined with CCW; R2=0.945; P<0.01). The best model predicting muscle chemical fat weight combined CCW and Z, explaining 85.6% (P<0.01) of the variation observed. These results indicate BIA as a useful tool for prediction of light kids’ carcass composition.  相似文献   

4.
《Theriogenology》2007,67(9):2165-2172
Thirty-one bucks from two lines divergently selected for 63-d body weight (low, L and high, H) were solicited every week (twice at a 15 min interval) during 18 weeks resulting in 482 ejaculates. While differing markedly on adult body weight (L: 4650 g versus H: 5925 g), both lines had the same testis weight. Libido did not differ between the lines. The proportion of ejaculates suitable for insemination was markedly higher in the L line (66.5% versus 44.2%). Mass motility and the volume of the ejaculates were higher in the L line while the sperm concentration was higher in the H line. Overall, the total number of spermatozoa per ejaculate was similar in both lines but the efficient number of spermatozoa per ejaculate, a synthetic criterion taking into account the ability of the ejaculate for insemination was higher in the L line (229 versus 170 × 106). The L line had higher values of average path velocity, linearity and curvilinear velocity but a lower value of beat cross frequency. In the L line, both ejaculates had the same concentration, while in the H line, the first ejaculate was more concentrated than the second one. Some male reproductive traits are therefore genetically related to body weight.  相似文献   

5.
TM-QTL is a quantitative trait locus (QTL) on ovine chromosome 18 (OAR18) known to affect loin muscling in Texel sheep. Previous work suggested that its mode of inheritance is consistent with paternal polar overdominance, but this has yet to be formally demonstrated. This study used purebred Texel sheep segregating for TM-QTL to confirm its presence in the chromosomal region in which it was first reported and to determine its pattern of inheritance. To do so, this study used the first available data from a Texel flock, which included homozygote TM-QTL carriers (TM/TM; n=34) in addition to homozygote non-carriers (+/+; n=40 and, heterozygote TM-QTL-carriers inheriting TM-QTL from their sire (TM/+; n=53) or their dam (+/TM; n=17). Phenotypes included a wide range of loin muscling, carcass composition and tissue distribution traits. The presence of a QTL affecting ultrasound muscle depth on OAR18 was confirmed with a paternal QTL effect ranging from +0.54 to +2.82 mm UMD (s.e. 0.37 to 0.57 mm) across the sires segregating for TM-QTL. Loin muscle width, depth and area, loin muscle volume and dissected M. longissimus lumborum weight were significantly greater for TM/+ than +/+ lambs (+2.9% to +7.9%; P<0.05). There was significant evidence that the effect of TM-QTL on the various loin muscling traits measured was paternally polar overdominant (P<0.05). In contrast, there was an additive effect of TM-QTL on both live weight at 20 weeks and carcass weight; TM/TM animals were significantly (P<0.05) heavier than +/+ (+11.1% and +7.3%, respectively) and +/TM animals (+11.9% and +11.7%, respectively), with TM/+ intermediate. Weights of the leg, saddle and shoulder region (corrected for carcass weight) were similar in the genotypic groups. There was a tendency for lambs inheriting TM-QTL from their sire to be less fat with slightly more muscle than non-carriers. For example, carcass muscle weight measured by live animal CT-scanning was 2.8% higher in TM/TM than +/+ lambs (P<0.05), carcass muscle weight measured by carcass CT-scanning was 1.36% higher in TM/+ than +/+ lambs (P<0.05), and weight of fat trimmed from the carcass cuts was significantly lower for TM/+ than +/+ lambs (−11.2%; P<0.05). No negative effects of TM-QTL on carcass traits were found. Optimal commercial use of TM-QTL within the sheep industry would require some consideration, due to the apparently different mode of action of the two main effects of TM-QTL (on growth and muscling).  相似文献   

6.
Myogenic differentiation 1 (MyoD1) genes belong to the MyoD gene family and play key roles in growth and muscle development. This study was designed to investigate the effects of variants in the MyoD1 gene on duck growth and carcass traits. Three duck populations (Cherry Valley, Jingjiang, and Muscovy) were sampled, their growth and carcass traits were measured, and they were genotyped using the PCR–RFLP method. The results showed one novel polymorphism, an alteration in intron 2 of the MyoD1 gene (A to T). It was associated with the traits of weight at 8?weeks, carcass weight, breast muscle weight, leg muscle weight, eviscerated percentage, percentage of leg muscle weight, dressing percentage, and lean meat percentage. This alteration in intron 2 of MyoD1 may be linked with potential major loci or genes affecting some growth and carcass traits.  相似文献   

7.
Chicken carcass traits are economically important for the chicken industry. Detecting which genes affect chicken carcass traits is of great benefit to the genetic improvement of this important agricultural species. To investigate the genetic mechanism of carcass traits in chickens, we carried out a genome-wide association study (GWAS). A total of 435 Chinese indigenous chickens were phenotyped for carcass weight (CW), eviscerated weight with giblets (EWG), and eviscerated weight (EW) after slaughter at 91 days and were genotyped using a 600-K single nucleotide polymorphism (SNP) genotyping array. Twenty-four birds were selected for sequencing, and the 600 K SNP panel data were imputed to sequence data with the 24 birds as the reference. Univariate GWASs were performed with GEMMA software using the whole genome sequence data imputed from SNP chip data. Finally, 3, 25, and 63 suggestively significant SNPs were identified to be associated with carcass weight (CW), eviscerated weight with giblets (EWG), and eviscerated weight (EW), respectively. Six candidate genes, RNF219, SCEL, MYCBP2, ETS1, APLP2, and PRDM10 were detected. SCEL and MYCBP2 were potentially associated with these three traits, RNF219 and APLP2 were potentially associated with EWG and EW, and ETS1 and PRDM10 were only potentially associated with EWG and EW, respectively. Compared with forefathers’ research, 10 reported QTLs associated with CW were located within a 5-Mb distance near the SNPs with P value lower than 1×10?5. This study enriched the knowledge of the genetic mechanisms of chicken carcass traits.  相似文献   

8.
A simple index that reflects the potential eating quality of beef carcasses is very important for producer feedback. The Meat Standards Australia (MSA) Index reflects variation in carcass quality due to factors that are influenced by producers (hot carcass weight, rib fat depth, hump height, marbling and ossification scores along with milk fed veal category, direct or saleyard consignment, hormonal growth promotant status and sex). In addition, processor impacts on meat quality are standardised so that the MSA Index could be compared across time, breed and geographical regions. Hence, the MSA Index was calculated using achilles hung carcasses, aged for 5 days postmortem. Muscle pH can be impacted by production, transport, lairage or processing factors, hence the MSA Index assumes a constant pH of 5.6 and loin temperature of 7oC for all carcasses. To quantify the cut weight distribution of the 39 MSA cuts in the carcass, 40 Angus steers were sourced from the low (n=13), high (n=15) and myostatin (n=12) muscling selection lines. The left side of each carcass was processed down to the 39 trimmed MSA cuts. There was no difference in MSA cut distribution between the low and high muscling lines (P>0.05), although there were differences with nine cuts from the myostatin line (P<0.05). There was no difference in the MSA Index calculated using actual muscle percentages and using the average from the low and high muscling lines (R2=0.99). Different cooking methods impacted via a constant offset between eating quality and carcass input traits (R2=1). The MSA Index calculated for the four most commercially important cuts was highly related to the index calculated using all 39 MSA cuts (R2=0.98), whilst the accuracy was lower for an index calculated using the striploin (R2=0.82). Therefore, the MSA Index was calculated as the sum of the 39 eating quality scores predicted at 5 days ageing, based on their most common cooking method, weighted by the proportions of the individual cut relative to total weight of all cuts. The MSA Index provides producers with a tool to assess the impact of management and genetic changes on the predicted eating quality of the carcass. The MSA Index could also be utilised for benchmarking and to track eating quality trends at farm, supply chain, regional, state or national levels.  相似文献   

9.
Genomic selection is becoming a common practise in dairy cattle, but only few works have studied its introduction in pig selection programs. Results described for this species are highly dependent on the considered traits and the specific population structure. This paper aims to simulate the impact of genomic selection in a pig population with a training cohort of performance-tested and slaughtered full sibs. This population is selected for performance, carcass and meat quality traits by full-sib testing of boars. Data were simulated using a forward-in-time simulation process that modeled around 60K single nucleotide polymorphisms and several quantitative trait loci distributed across the 18 porcine autosomes. Data were edited to obtain, for each cycle, 200 sires mated with 800 dams to produce 800 litters of 4 piglets each, two males and two females (needed for the sib test), for a total of 3200 newborns. At each cycle, a subset of 200 litters were sib tested, and 60 boars and 160 sows were selected to replace the same number of culled male and female parents. Simulated selection of boars based on performance test data of their full sibs (one castrated brother and two sisters per boar in 200 litters) lasted for 15 cycles. Genotyping and phenotyping of the three tested sibs (training population) and genotyping of the candidate boars (prediction population) were assumed. Breeding values were calculated for traits with two heritability levels (h2=0.40, carcass traits, and h2=0.10, meat quality parameters) on simulated pedigrees, phenotypes and genotypes. Genomic breeding values, estimated by various models (GBLUP from raw phenotype or using breeding values and single-step models), were compared with the classical BLUP Animal Model predictions in terms of predictive ability. Results obtained for traits with moderate heritability (h2=0.40), similar to the heritability of traits commonly measured within a sib-testing program, did not show any benefit from the introduction of genomic selection. None of the considered genomic models provided improvements in prediction ability of pigs with no recorded phenotype. However, a few advantages were found for traits with low heritability (h2=0.10). These heritability levels are characteristic for meat quality traits recorded after slaughtering or for reproduction or health traits, typically recorded on field and not in performance stations. Other scenarios of data recording and genotyping should be evaluated before considering the implementation of genomic selection in a pig-selection scheme based on sib testing of boars.  相似文献   

10.
Melanocortin 4 receptor (MC4R) plays a crucial part in regulating feeding behavior in humans and rodents. We detected two single nucleotide polymorphisms (SNPs; c.108G → A and c.627C → T) in the goose MC4R gene and genotyped 94 Landes geese for association analysis with several carcass traits. Significant associations (P < 0.05) were obtained for c.108G → A with carcass weight, breast muscle percentage, and leg muscle percentage, and for c.627C → T with body weight, carcass weight, semi-eviscerated weight, and eviscerated weight. We re-constructed haplotypes based on the two SNPs and analyzed diplotypes in association with carcass traits, obtaining significant associations with several of the traits. These results suggest that polymorphisms in the MC4R gene could have effects on carcass traits in Landes geese. More study is required to confirm these results.  相似文献   

11.
Records were collected in an experimental herd over an 11-year period from purebred Charolais heifers (n = 351), cows (n = 615) and young entire bulls (n = 383). The objective of the study was to estimate the genetic relationship between the components of female ovarian activity (age at puberty and postpartum anoestrus length), their growth rate and body condition score and beef traits measured on related bulls. Two methods were used to estimate age at puberty and postpartum anoestrus length: the detection of oestrous behaviour and a test of cyclicity based on plasmatic progesterone assay. This study shows the existence of significant heritability estimates for the different cyclicity traits (h2 between 0.11 and 0.38). Most of the genetic correlation coefficients between ovarian activity and growth rate of females and males are negative and favourable (rg between -0.43 and 0.06). Cyclicity is also favourably related with body condition score in young or adult females (rg between -0.65 and -0.22). The genetic relationship between female ovarian activity and proportion of adipose tissue in the male carcass is, however, close to zero. These results show that an antagonism between male beef traits measured in this study and female ovarian activity is unlikely to be a cause for concern in the short term.  相似文献   

12.
The effects of castration age, dietary protein level and the dietary lysine/methionine (lys/met) ratio on animal performance, carcass characteristics and meat quality were studied in 64 intensively reared Friesian steers. Animals underwent castration procedures at 15 days old or at 5 months old. Dietary treatments started at 90 days old, with eight animals from each castration age randomly allocated to each treatment: 14.6% v. 16.8% CP (DM basis), and 3.0 v. 3.4 lys/met, on a 2×2×2 design. The recommended ratio of 3.0 was reached with supplementation of protected methionine. Steers were slaughtered at 443.5±26.2 kg live weight when they reached 12 months old approximately. Average daily gain, cold carcass weight or carcass classification were not affected by any studied effect. Muscle moisture (P=0.024), C18:2n-6 percentage (P=0.047), polyunsaturated fatty acid/saturated fatty acid (P=0.049) and n-6/n-3 (P=0.003) were higher in late castrated animals. Both high levels of dietary protein (P=0.008) and lys/met ratio (P=0.048) increased the percentage of muscle in the carcass. A level of 16.8% of CP in the diet also increased the percentage of monounsaturated fatty acids in the intramuscular fat (P=0.032), whereas a ratio lys/met of 3.4 decreased the percentage of saturated fatty acids (P=0.028). Thus, it is recommended using diets with a high protein level (16.8%) and a high lys/met ratio (3.4) in animals slaughtered at a young age, in order to obtain carcasses with high muscle content without negatively affecting productive traits or intramuscular fat composition.  相似文献   

13.
The objectives of the present study were focused on detecting deletion mutation in bovine AMPD1 gene, and analyzing its effect on body measurement and carcass traits in Qinchuan cattle by using DNA sequencing and agarose electrophoresis methods. The 198-bp PCR products of AMPD1 gene exhibited three genotypes and two alleles were revealed: A and B. The frequencies of genotype AA/AB/BB in Qinchuan populations was 0.7163, 0.2233 and 0.0605. The χ2-test analysis demonstrated that the breed was not in agreement with Hardy–Weinberg equilibrium (P < 0.05). The association of the 18-bp deletion mutation of AMPD1 gene with body measurement and carcass traits of Qinchuan cattle were analyzed. The cattle with AA genotype had slaughter weight and carcass weight than those with genotype AB (P < 0.01 or P < 0.05). These results suggest that the 18-bp deletion mutation may influence the carcass traits in Qinchuan cattle.  相似文献   

14.
The factors influencing the priority of access to food and the effects of the priority of access to food on their carcass traits were analyzed for Japanese Black (Wagyu) cattle in a semi-intensive fattening production system. The records of 96 clinically healthy steers and heifers were analyzed. The calves at ∼3 to 4 months of age were allocated to pens with four animals per pen; all four animals in the same pen were of the same sex and of similar body size. The ranking of the animals’ priority of access to food (1st, 2nd, 3rd and 4th), which was determined by the farm manager, was used as an indicator of social dominance in the present study. Four models including sire line, maternal grandsire line and the difference in the animals’ birth dates as fixed effects were used to analyze factors influencing the priority of access to food. Ranking was represented by ordinal scores (highest=4, lowest=1) in Model 1, and the binary scores were assigned in Model 2 (highest=1; 2nd, 3rd and 4th=0), Model 3 (1st and 2nd=1; 3rd and 4th=0) and Model 4 (1st, 2nd and 3rd=1; lowest=0). The results showed that the difference in the animals’ birth dates had a significant effect on the establishment of the priority of access to food in Model 3 (P<0.05), suggesting that animals born earlier may become more dominant in the pen. The maternal grandsire line tended to affect the social rank score in Models 2 and 3 (P<0.10). Our results indicated that the maternal grandsire line may affect the temperament of calves through their mothers’ genetic performance and thereby more aggressive calves may be more dominant and have higher priority of access to food. On the other hand, there was a significant effect of the priority of access to food on beef marbling score (BMS; P<0.05), and the priority of access to food also tended to influence the carcass weight (P=0.09). The highest BMS was observed for animals with the first rank of the priority of access to food (P<0.05), and the higher-ranking animals had the tendency to be heavier carcass than the lower-ranking animals. Our findings emphasized the importance of information about the priority of access to food determined by farmers’ own observation on implementing best management practices in small-scaled semi-intensive beef cattle production systems.  相似文献   

15.
Improving feed efficiency is a key breeding goal in the beef cattle industry. In this study, we estimated the genetic parameters for feed efficiency and carcass traits in Senepol cattle raised in tropical regions. Various indicators of feed efficiency [gain to feed ratio (G:F), feed conversion ratio (FCR), residual weight gain (RG), residual intake and body weight gain (RIG), and residual feed intake (RFI)] as well as growth [final BW, average daily gain (ADG), and DM intake (DMI)], and carcass [rib-eye area (REA), backfat thickness (BF), intramuscular fat score, and carcass conformation score] traits were included in the study. After data editing, records from 1 393 heifers obtained between 2009 and 2018 were used for the analyses. We fitted an animal model that included contemporary group (animals from the same farm that were evaluated in the same test season) as the fixed effect, and a linear effect of animal age at the beginning of the test as a covariate; in addition to random direct additive genetic and residual effects. The (co)variance components were estimated by Bayesian inference in uni- and bivariate analyses. Our results showed that feed efficiency indicators derived from residual variables such as RG, RIG, and RFI can be improved through genetic selection (h2 = 0.14 ± 0.06, 0.13 ± 0.06, and 0.20 ± 0.08, respectively). Variables calculated as ratios such as G:F and FCR were more influenced by environmental factors (h2 = 0.08 ± 0.05 and 0.09 ± 0.05), and were, therefore, less suitable for use in breeding programs. The traits with the greatest and impact on genetic progress in feed efficiency were ADG, REA, and BF. The traits with the greatest and least impact on growth and carcass traits were RG and RFI, respectively. Selection for feed efficiency will result in distinct overall effects on the growth and carcass traits of Senepol heifers. Direct selection for lower RFI may reduce DMI and increase carcass fatness at the finishing stage, but it might also result in reduced growth and muscle deposition. Residual BW gain is associated with the highest weight gain and zero impact on REA and BF, however, it is linked to higher feed consumption. Thus, the most suitable feed efficiency indicator was RIG, as it promoted the greatest decrease in feed intake concomitant with faster growth, with a similar impact on carcass traits when compared to the other feed efficiency indicators.  相似文献   

16.
In order to identify genetic factors influencing muscle weight and carcass composition in chicken, a linkage analysis was performed with 278 F2 males of reciprocal crosses between the extremely different inbred lines New Hampshire (NHI) and White Leghorn (WL77). The NHI line had been selected for high meat yield and the WL77 for low egg weight before inbreeding. Highly significant quantitative trait loci (QTL) controlling body weight and the weights of carcass, breast muscle, drumsticks–thighs and wings were identified on GGA4 between 151.5 and 160.5 cM and on GGA27 between 4 and 52 cM. These genomic regions explained 13.7–40.2% and 5.3–13.8% of the phenotypic F2 variances of the corresponding traits respectively. Additional genome‐wide highly significant QTL for the weight of drumsticks–thighs were mapped on GGA1, 5 and 7. Moreover, significant QTL controlling body weight were found on GGA2 and 11. The data obtained in this study can be used for increasing the mapping resolution and subsequent gene targeting on GGA4 and 27 by combining data with other crosses where the same QTL were found.  相似文献   

17.
We investigated the nutritional effects on carcass traits, gene expression and DNA methylation in a three generation Large White pig feeding experiment. A group of experimental (E) F0 boars were fed a standard diet supplemented with high amounts of methylating micronutrients whereas a control group (C) of F0 boars received a standard diet. These differentially fed F0 boars sired F1 boars which then sired 60 F2 pigs. Carcass traits were compared between 36 F2 descendants of E F0 boars and 24 F2 descendants of C F0 boars. The two F2 offspring groups differed with respect to backfat percentage (P = 0.03) and tended to differ with respect to adipose tissue (P = 0.09), fat thickness at the 10th rib (P = 0.08) and at the croup (P = 0.09) as well as percentages of shoulder (P = 0.07). Offspring from the experimental F0 boars had a higher percentage of shoulder and were leaner compared to the control group. Gene expression profiles showed significant twofold differences in mRNA level between 8 C F2 offspring and 8 E F2 offspring for 79, 64 and 53 genes for muscle, liver and kidney RNA, respectively. We found that in liver and muscle respective pathways of lipid metabolism and metabolic pathway were over-represented for the differentially expressed genes between these groups. A DNA methylation analysis in promoters of differentially expressed genes indicated a significant difference in DNA methylation at the IYD gene. If these responses on carcass traits, gene expression and DNA methylation withstand verification and can indeed be attributed to transgenerational epigenetic inheritance, it would open up pioneering application in pork production and would have implications for human health.  相似文献   

18.
The objective of this study was to evaluate the effects of the energy restriction of gestation of adult ewes from day 45 to day 115 on lamb live performance parameters, carcass and meat traits. In experiment I, dietary energy was restricted at 70% of the metabolizable energy (ME) requirements, after which ewes were re-fed ad libitum until lambing. In experiment II, dietary energy was restricted at 60% of the ME requirements, and ewes were re-fed to ME requirements until lambing. All ewes grazed together from the end of the restriction periods to weaning. Lambs were weaned and lot fed until slaughter. Feed intake, weight gain and feed efficiency were recorded, and body fat thickness and ribeye area (REA) were measured in the longissimus thoracis muscle. After slaughter, carcass weight and yield, fat depth, carcass and leg length, and frenched rack and leg weights and yields were determined. Muscle fiber type composition, Warner-Bratzler shear force, pH and color were determined in the longissimus lumborum muscle. In experiment I, energy restriction followed by ad libitum feeding affected lamb birth weight (P<0.05); however, no effects (P>0.05) were observed on later BW, REA, BF or carcass traits. Lambs born to non-restricted-fed ewes had higher (P<0.05) weight and yield of the frenched rack cut and their meat tended (P=0.11) to be tender compared with that of lambs from restricted ewes. The percentage of oxidative muscle fibers was lower for lambs born to non-restricted ewes (P<0.05); however, no effects of ewe treatment were observed on other muscle fiber types. For experiment II, energy restriction followed by ME requirements feeding, affected (P<0.01) pre-weaning live weight gain, weaning and final weights. Lambs from restricted ewes had higher (P<0.05) feed intake as % of leg weight and a trend to be less efficient (P=0.16) than lambs from unrestricted dams. Ribeye area and BF were not influenced by treatment. Treatment significantly affected slaughter weight, but had no effects on carcass yield and traits or on meat traits. The results obtained in both experiments indicate submitting ewes to energy restriction during gestation affects the performance of their progeny but the final outcome would depend on the ewe’s re-feeding level during late gestation and the capacity of the offspring to compensate the in utero restriction after birth.  相似文献   

19.
We estimated the heritabilities (h2) and genetic and phenotypic correlations among individual and groups of fatty acids, as well as their correlations with six important carcass and meat-quality traits in Korean Hanwoo cattle. Meat samples were collected from the longissimus dorsi muscles of 1000 Hanwoo steers that were 30-month-old (progeny of 85 proven Hanwoo bulls) to determine intramuscular fatty acid profiles. Phenotypic data on carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), marbling score (MS), Warner–Bratzler shear force (WBSF) and intramuscular fat content (IMF) were also investigated using this half-sib population. Variance and covari.ance components were estimated using restricted maximum likelihood procedures under univariate and pairwise bivariate animal models. Oleic acid (C18:1n-9) was the most abundant fatty acid, accounting for 50.69% of all investigated fatty acids, followed by palmitic (C16:0; 27.33%) and stearic acid (C18:0; 10.96%). The contents of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were 41.64%, 56.24% and 2.10%, respectively, and the MUFA/SFA ratio, PUFA/SFA ratio, desaturation index (DI) and elongation index (EI) were 1.36, 0.05, 0.59 and 0.66, respectively. The h2 estimates for individual fatty acids ranged from very low to high (0.03±0.14 to 0.63±0.14). The h2 estimates for SFAs, MUFAs, PUFAs, DI and EI were 0.53±0.14, 0.49±0.14, 0.23±0.10, 0.51±0.13 and 0.53±0.13, respectively. The genetic and phenotypic correlations among individual fatty acids and fatty acid classes varied widely (−0.99 to 0.99). Notably, C18:1n-9 had favourable (negative) genetic correlations with two detrimental fatty acids, C14:0 (−0.76) and C16:0 (−0.92). Genetic correlations of individual and group fatty acids with CWT, EMA, BFT, MS, WBSF and IMF ranged from low to moderate (both positive and negative) with the exception of low-concentration PUFAs. Low or near-zero phenotypic correlations reflected potential non-genetic contributions. This study provides insights on genetic variability and correlations among intramuscular fatty acids as well as correlations between fatty acids and carcass and meat-quality traits, which could be used in Hanwoo breeding programmes to improve fatty acid compositions in meat.  相似文献   

20.
Rabbits are particularly sensitive to heat stress which can affect productive performance, with rabbit breed/line possibly playing a role on the response to this condition. The study aimed at evaluating the effect of different ambient temperatures on the live performance and carcass traits of growing rabbits divergently selected for total body fat content. The two genetic lines (Lean and Fat) were selected based on the total body fat content estimated by computer tomography during five generations. From birth to slaughter (13 weeks of age), the rabbits were housed in two rooms where the temperature was controlled with air conditioners: in the control room the average ambient temperature was 20 °C and in the high temperature room it was 28 °C. After weaning (35 d), 60 Lean and 60 Fat rabbits/room were housed by two in wire-mesh cages and fed ad libitum with commercial pellets. The BW and feed intake (FI) were measured at 5, 7, 9, 11 and 13 weeks of age to calculate the daily weight gain (DWG) and feed conversion ratio (FCR). Mortality was recorded daily. At the end of the experiment, rabbits were slaughtered and carcass traits were measured. Mortality was independent of temperature and line. The temperature significantly influenced the FI, DWG, BW and the fat deposits: they were lower at higher ambient temperature. The effect of temperature differed according to the rabbits' total body fat content. At control temperature, the FI (165 vs 155 g/day; P < 0.05) and FCR (4.67 vs 4.31; P < 0.05) were higher in Fat rabbits, which also had more perirenal (36.2 vs 23.1 g; P < 0.05) and scapular fat (10.8 vs 7.1 g; P < 0.05). At high temperature, no differences in fat depots (14.5 vs 9.8 g; 5.3 vs 3.5 g) were found between the two lines. It can be concluded that temperature × genetic line interaction had an important role in productive and carcass traits, as the effect of temperature differs between Lean and Fat rabbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号