首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A lack of diversity and durability of resistant soybean varieties complicates management of the soybean cyst nematode (SCN), Heterodera glycines, exemplified by the current overdependence on the PI 88788 source of resistance. Of interest is the effect of adaptation of a SCN population to a source of resistance on its subsequent ability to develop on others. Female indices (FI) from virulence assays (race, HG Type and SCN Type tests) for SCN field populations and inbred lines were analyzed. Female indices on PI 88788, PI 209332 and PI 548316 were highly correlated, as were those of PI 548402, PI 90763, PI 89772 and PI 438489B. Previous studies on resistant SCN-infected soybean roots indicated that the cellular resistance response was similar within these two groups of soybean genotypes. In field populations, highly significant correlations were also found between FI on PI 88788 and PI 548402 and those on PI 89772 and PI 437654. In inbred lines, FI on PI 437654 were correlated with PI 90763 and PI 438489B. To avoid further adaptation, rotation of cultivars with resistance from these groups should be carefully monitored, including those from the most promising source of resistance, PI 437654, such as CystX. In a separate test, 10 soybean varieties developed from CystX were tested against HG Type 0, HG Type 2.5.7 and HG Type 1–7. Female development occurred in all tests but one. Although identification and deployment of unique resistance is needed, management strategies to prevent and detect adaptation should be emphasized.  相似文献   

2.
Knowledge of the virulence phenotypes of soybean cyst nematode, Heterodera glycines populations is important in choosing appropriate sources for breeding resistant cultivars and managing the nematode. We investigated races of 59 H. glycines populations collected from 1997 to 1998 and races and HG Types of 94 populations collected in 2002 from soybean fields across southern and central Minnesota. In the 1997 to 1998 samples, race 3 was predominant and represented 78% of the populations. The remaining populations were 11.9% race 1, 1.7% race 4, 6.8% race 6, and 1.7% race 14. In the 2002 samples, the populations were classified as 15.3% race 1, 77.6% race 3, 2.4% race 5, 3.5% race 6 and 1.2% race 9. Percentage of 1997 to 1998 populations with female indices (FI) higher than 10 were 10.2% on Pickett 71, 3.4% on Peking, 13.6% on PI 88788, 3.4% on PI 90763, 1.7% on PI 209332, and 1.7% on PI 437654. Percentage of 2002 populations with FI >10 was 1.1% on Peking, 17.0% on PI88788, 14.9% on PI 209332, 33.0% on PI 548316, 11.7% on Pickett 71, and 0% on the other three indicators, PI 90763, PI 437654, and PI 89772. The line PI 548316 was relatively susceptible to the Minnesota H. glycines populations and may not be recommended for breeding resistant cultivars in the state. There was no noticeable change of frequencies of virulence phenotypes in response to the use of resistant cultivars during 1997 to 2002 in Minnesota except that FI increased on the PI 209332.  相似文献   

3.
Soybeans with genes for resistance select against Heterodera glycines with the corresponding genes for avirulence. There may be a differential effect of sex with some specific gene interactions, which would influence the magnitude of gene frequency changes. No effect on H. glycines males was detected with one selected nematode population and the resistant soybean line PI88788. The selective effect of PI89772 against male nematodes was greater with two inbred nematode populations than with one selected (on PI88788) population, presumably due to differences in H. glycines gene frequencies. ''Peking'' also had few males with the one inbred nematode population, whereas Forrest and ''Pickett 71'' had intermediate numbers. Apparently Forrest and Pickett 71 did not get all the Peking genes for resistance that affect male as well as female nematode development. Other H. glycines-soybean genes stop only females, since there were few or no cysts, except on the susceptible soybean Williams. The number of males'' phenotype will help identify specific genes in both organisms.  相似文献   

4.
Few soybean cyst nematodes (SCN), Heterodera glycines, of a diverse gene pool developed into females on soybeans PI 89772 or PI 209332. Nematodes surviving the selection pressure were then inbred for nine generations by single cyst transfers on the same selecting soybean line. These nematodes appeared to tolerate concurrent selection and inbreeding. Effects of selection-inbreeding, selection only, and secondary selection were evaluated by relative ability to produce cysts on 11 soybean lines. The genetic differences of PI 89772 (also Peking and Pickett 71) and PI 209332 were reaffirmed. The random effects of inbreeding indicated that Ilsoy and Williams may have genes for resistance different from those in PI 89772 or PI 209332. Egg inoculum obtained from soil resulted in very few cysts in some tests. Fresh egg inoculum (from cysts on 27-30-day-old plants) generally resulted in more cysts and more consistent results. Concurrent with the change in inoculum, there was a large increase in relative numbers of cysts on several soybean lines but no change on other lines; the true cause of this large interaction is unknown. Secondary selection of two inbreds was effective and suppressed cyst numbers on the line on which one inbred was selected initially. These results are consistent with the allelism linkage of some SCN genes reported previously.  相似文献   

5.
The white soybean cyst nematode Heterodera sojae, isolated from the roots of soybean in Korea, is widespread in most provinces of the country and has the potential to be as harmful to soybean as H. glycines. Determining the virulence phenotypes of H. sojae is essential to devising management strategies that use resistant cultivars. Consequently, virulence phenotypes of 15 H. sojae populations from Korea were determined on seven soybean lines and one susceptible check variety. Two different HS types were found to be present in Korea; the more common HS type 2.5.7, comprising 73.3% of the H. sojae populations and the less common HS type 0, constituting only 26.7% of the tested populations. Considering the high frequency of H. sojae adaptation to soybean indicator lines, the PI 88788 group may not be a possible source of resistance while PI 548402, PI 90763, PI 437654, and PI 89772 can be used as resistance sources for soybean breeding programs aimed at developing H. sojae-resistant soybean cultivars in Korea.  相似文献   

6.
Selection for ability of soybean cyst nematode (SCN), Heterodera glycines, to reproduce on soybeans with different sources of resistance divides some SCN race 4 field populations into two distinct subpopulations. These subpopulations reproduce well on ''Bedford'' and plant introduction (PI) 88788 or PI 89772 and PI 90763 but not on both pairs of soybean lines. The ability of these subpopulations to reproduce on the four soybean lines was reversed by changing the soybean line used as a host during a second cycle of selection. When SCN populations previously selected for reproduction on Bedford and PI 88788 were selected for their ability to reproduce on D72-8927 and J74-88, the ability of these populations to reproduce on Bedford and PI 88788 decreased significantly and their ability to reproduce on PI 89772 and PI 90763 increased significantly. Conversely, when SCN populations, previously selected for reproduction on P189772 and P190763, were selected for their ability to reproduce on Bedford, the reproduction of these populations on Bedford increased significantly and reproduction on PI 89772 and PI 90763 decreased significantly. Selection for ability of a SCN race 4 field population to reproduce on soybean lines derived from SCN race 4 resistant PIs resulted in the same division of the field population into two distinct subpopulations. These data substantiate earlier proposals to rotate cultivars with different genes for SCN resistance as a means of managing SCN populations.  相似文献   

7.
Inbred nematodes propagated on a selecting host are likely to have homozygous genes of interest for investigating the genetics of host-parasite associations. A technique is presented to inbreed soybean cyst nematodes, by sibling matings at each generation, and to cross inbred lines. Soybean seedlings with severely trimmed cotyledons survive well on 0.8% agar. Eggs from a single female are incubated in water in a microtiter well. Virgin as well as mated females result from inoculation of two juveniles per root. Sibling males from the same source are produced by mass inoculations of eggs. Males are added individually to unmated females. Overall success for fertile females was 14% in 1,368 isolations. Three generations of inbreeding by siblings were achieved using nematodes from two populations that differ in their ability to reproduce on differential soybeans. Hybrids from crosses of the two inbred lines tested on differential hosts showed that the influence of Population 1 (selected and inbred on PI 209332) is greater than that of Population 2 (selected and inbred on PI 89772). Reciprocal crosses suggest that the influence of males is stronger than that of females in determining host specificity of F₁ offspring in these crosses. Our technique is simple and effective for inbreeding and crossing soybean cyst nematodes.  相似文献   

8.
A technique was developed to evaluate Heterodera glycines development in susceptible and resistant soybean. Roots of 3-day-old soybean were exposed to infective juveniles of H. glyci.nes in sand for 8 hours followed by washing and transfer to hydroponic culture. The cotyledons and apical meristem were removed and plants were maintained under constant light, which resulted in a dwarfed plant system. After 15 or 20 days at 27 C, nematodes were rated for development. Emerged males were sieved from the culture water and females were counted directly from the roots. Nematodes remaining in the roots were rated for development after staining and clearing the tissues. The proportion of nematodes at each stage of development and the frequency of completed molts for each stage were calculated from these data. This technique showed that resistance to H. glycines was stage related and did not affect males and females equally in all resistant hosts. The resistance of plant introduction PI 209332 primarily affected development of third and fourth-stage juveniles; ''Pickett'' mainly affected second and third-stage juveniles, whereas PI 89772 affected all stages. Male development was markedly affected in PI 89772 and ''Pickett'' but not in PI 209332.  相似文献   

9.
The objective of this experiment was to measure the change in female index (FI) of Heterodera glycines from bioassays on Bedford, Peking, PI 89772, and PI 90763 soybean (Glycine max) for 12 cropping sequence treatments over a 10-year period. Cropping sequences included continuous plantings of Forrest, Peking, and D72-8927 soybean (all resistant to race 3); Bedford, Nathan, and D75-10710 soybean (all resistant to races 3 and 14); a Bedford-corn (Zea mays) rotation; a rotation of Bedford, Essex (susceptible), and Forrest; and a 70:30 blend of Bedford and Forrest. The FI from bioassays with PI 89772 and PI 90763 decreased over time from 24.3 to 1.6 with treatments involving continuous Bedford, Nathan, and D75-10710 and the Bedford-corn rotation. The FI increased in bioassays using Bedford with treatments involving Bedford, Nathan, D75-10710, the Bedford-Forrest blend, and the two rotations. Results of this field experiment confirm greenhouse experiments in which reciprocal changes occur in FI on PI 89772 and PI 90673 compared with FI on Bedford.  相似文献   

10.
Survival of biotypes of Heterodera glycines was studied in microplots and in the field. The field population was subjected to various cropping sequences. Viability of eggs overwintered in microplots was determined each spring by percentage hatch, percentage of hatched eggs penetrating roots, and numbers of females developing on Peking and PI 88788 soybeans. Eggs from the field were collected in the spring and fall and assayed for ability to develop on Peking and PI 88788. Hatch of isolates overwintered in the microplots averaged 13% in May 1989 and 19% in 1990. No differences in hatch were detected among the isolates in 1989. Numbers of juveniles penetrating susceptible roots averaged less than 20% of the hatched eggs each year. An isolate of a biotype parasitic on susceptible soybeans and the resistant soybean PI 88788 penetrated roots more successfully than other biotypes. A second isolate from North Carolina, parasitic on susceptible soybeans, PI 88788, and the resistant soybean Peking experienced selection against development on Peking during two winters. Only 17 % of the expected numbers of females developed on Peking from this isolate. In the microplot experiment, parasitism of PI 88788 and Peking had a selective disadvantage (selection coefficient) of s = 0.29 and 0.62 over all isolates, respectively. In the field experiment, the relative numbers of cysts on Peking and PI 88788 increased between the spring and fall on soybean, then decreased over the winter and under corn. Selection coefficients against parasitism of PI 88788 and Peking averaged 0,19 and 0.3 in the field population. In neither experiment did juveniles lose their ability to parasitize susceptible soybeans.  相似文献   

11.
Selected populations of soybean cyst nematodes were inoculated to roots of compatible and incompatible soybeans. Rates of penetration of infective juveniles of nematode populations selected on PI 209332, PI 89772, and Pickett 71 were equivalent on compatible and incompatible soybean roots. The first two populations averaged about 10% and the last about 5% penetration in 24-hour inoculations of young seedlings. About 14% of those juveniles that entered roots in compatible combinations developed into maturing females, compared with only about 1% in incompatible combinations. Several aberrations from the pattern of syncytial development associated with mature females in compatible hosts were apparent. A rapid necrotic response occurred in both kinds of hosts but was more frequent in incompatible associations. Delayed necrosis and small syncytia were present in some combinations. Those few females that developed in incompatible soybeans were associated with a characteristic syncytium different from the kind seen in roots of compatible hosts.  相似文献   

12.
A method of selecting soybean cyst nematode (Heterodera glycines Ichinohe) on segregating soybean progeny was evaluated for developing a population capable of reproducing on PI 437654. Direct selection on PI 437654 was not possible, since no cysts developed on it. Cysts were selected for 12 nematode generations on F₃ and F₄ plants of Forrest x PI 437654. No cysts of the selected population were produced on PI 437654, but more males were produced on it by the selected population than by the base population. The number of cysts on Forrest and other soybean lines considered to have some of the same genes for resistance increased with selection as expected. The increase in number of males on these other lines with some of the same genes for resistance as Forrest was greater than anticipated, indicating that these lines may have some of the same genes as PI 437654.  相似文献   

13.
The soybean cyst nematode (SCN) (Heterodera glycines Inchinoe) is the most economically significant soybean pest. The principal strategy to reduce or eliminate damage from this pest is the use of resistant cultivars. Identifying resistant segregants in a breeding program is a difficult and expensive process which is complicated by the oligogenic nature of the resistance and genetic variability in the pathogen. Fortunately, resistance at one SCN-resistance locus, rhg1, is generally accepted as a necessity for the development of resistant genotypes using any source of resistance and when challenged by any SCN race. Thus, the development of SCN resistant cultivars would be expedited if an effective and rapid system were available to identify breeding lines carrying a resistance allele at the rhg1 locus. In this study we report two simple sequence repeat (SSR) or microsatellite loci that cosegregate and map 0.4 cM from rhg1. Allelic variation at the first of these loci, BARC-Satt309, distinguished most, if not all, SCN-susceptible genotypes from those carrying resistance at rhg1 derived from the important SCN-resistance sources ’Peking’, PI 437654, and PI 90763. BARC-Satt309 was also effective in distinguishing SCN resistance sources PI 88788 and PI 209332 from many, but not all, susceptible genotypes. BARC-Satt309 cannot be used in marker-assisted selection in populations developed from typical southern US cultivars crossed with the important resistance sources PI 88788 or PI 209332 because these genotypes all carry the identical allele at the BARC-Satt309 locus. A second SSR locus, BARC-Sat_168, was developed from a bacterial artificial chromosome (BAC) clone that was identified using the primers to BARC-Satt309. BARC-Sat_168 distinguished PI 88788 and PI 209332 from southern US cultivars such as ’Lee’, ’Bragg’ and ’Essex’. Both BARC-Satt309 and BARC-Sat_168 were used to assay lines from SCN-susceptible×SCN-resistant crosses and proved to be highly effective in identifying lines carrying rhg1 resistance from those carrying the allele for SCN susceptibility at the rhg1 locus. Received: 5 November 1998 / Accepted: 3 February 1999  相似文献   

14.
A field population of Heterodera glycines was inbred by a combination of controlled male-female matings and inoculation of soybean with second-stage juveniles (J2) from single cysts. The initial and four F₆ inbred populations were subjected to random amplified polymorphic DNA analysis and were also tested for their ability to reproduce on race differentials. The RAPD patterns of the inbred populations had a lower number of total bands and a lower percentage of polymorphic bands among individual cysts than the initial population. The estimated number of polymorphic loci detected by RAPD analysis was about 25% for the initial population and 4% to 7% for the inbred lines. Reproduction of H. glycines decreased for 6 of 24 inbred-soybean combinations. In particular, reproduction of three inbred populations on PI 90763 was greatly reduced. Inbreeding did not decrease variance of cyst number on soybean genotypes. The inbreeding coefficient calculated from RAPD data was greater than that derived from the known inbreeding pedigree.  相似文献   

15.
16.
K. Dong  C. H. Opperman 《Genetics》1997,146(4):1311-1318
A genetic analysis of parasitic ability in the soybean cyst nematode Heterodera glycines was performed. To identify and characterize genes involved in parasitism, we developed three highly inbred H. glycines lines, OP20, OP25 and OP50, for use as parents for controlled crosses. Through these crosses, we have identified genes in the inbred parents that control reproduction of the nematode on hosts that carry resistance genes. These genes, designated as ror-* for reproduction on a resistant host, segregate in a normal Mendelian fashion as independent loci. Host range tests of F(1) generation progeny indicated that at least one parasitism gene in both the OP20 and OP50 lines for host PI 88788 was dominant. Parasitism genes in OP50 for hosts ``Peking' and PI 90763 are recessive. Two types of single female descent populations, a single backcrossed BC(1)F(2)-derived and a double backcrossed BC(2)F(1)-derived, were established on the susceptible soybean cultivar ``Lee 68.' Host range tests for parasitism in these lines demonstrated the presence of two independent genes in OP50, one for host PI 88788 designated ror-1 and one for host PI 90763 designated ror-2. OP20 carries two independent genes for parasitism on PI 88788, designated as alleles kr3 and kr4.  相似文献   

17.
The production of resistant soybean [Glycine max (L.) Merr.] cultivars is the most effective means for controlling losses from soybean cyst nematode (SCN) (Heterodera glycines Ichinohe). The major resistance gene in most SCN resistance sources is rhg1, which has been mapped as a quantitative trait locus onto linkage group G. Our objective was to determine whether the SCN resistance sources PI 437654 and PI 88788 have different functional alleles at rhg1 based on resistance phenotypes. Populations segregating for resistance alleles at rhg1 from both PI 88788 and PI 437654 and at Rhg4, a second SCN resistance gene from PI 437654, were developed. These populations were screened for resistance to the H. glycines inbred isolates PA3 (HG type 7) and TN14 (HG type 1.2.5.7) in the greenhouse and evaluated with molecular markers linked to both rhg1 and Rhg4. Each isolate test was repeated, and the evaluations were done on a single-plant and a line-mean basis in Test 1, and solely on a single-plant basis in Test 2. Across two tests with the TN14 isolate, plants with the PI 437654 allele for a marker linked to rhg1 had significantly (P<0.0001) less SCN reproduction than plants carrying the PI 88788 allele. A marker linked to Rhg4, however, was not significantly associated with resistance to TN14. Across two tests with the PA3 isolate, alleles of rhg1 from both sources gave a resistant reaction, although plants homozygous for the PI 88788 allele had significantly (P<0.05) greater resistance than plants with the PI 437654 allele. The marker allele from PI 437654 linked to Rhg4 was significantly (P<0.0005) associated with greater resistance than the PI 88788 allele in both PA3 tests, and resistance was dominant. There was a significant interaction between alleles at rhg1 and Rhg4 in both PA3 tests. These results suggest that PI 437654 and PI 88788 each have a different functional SCN resistance allele at or close to rhg1. These allelic differences have implications that breeders should consider before incorporation into cultivars.  相似文献   

18.
Heterodera glycines is a serious pest of soybean in the United States. Plant introductions 90763 and 424595 are reported to be resistant to H. glycines race 5; however their genetic relationship for resistance is unknown. Crosses between these two lines and the susceptible cultivar Essex were studied in the F₁, F₂, and F₃ generations to determine the number of genes involved in inheritance of resistance. The plants were screened using conventional techniques based on the index of parasitism. The data were subjected to analyses using chi-square test to determine goodness of fit between observed and expected genetic ratios. The cross PI 424595 x Essex segregated 1 resistant:63 susceptible in the F₂ generation, which indicated the presence of three recessive genes controlling resistance to race 5. In the cross PI 90763 x Essex, resistance was conditioned by one dominant and two recessive genes. The cross between PI 424595 and PI 90763 segregated into 13 resistant:3 susceptible. The data fit a four-gene model with two recessive and two dominant genes with epistasis. PI 90763 has a dominant gene, whereas PI 424595 has a recessive gene; both share two additional recessive genes for resistance to race 5. This information is important to geneticists and soybean breeders for the development of cultivars resistant to H. glycines.  相似文献   

19.
The soybean cyst nematode Heterodera glycines is the most destructive pathogen of soybean in the Unites States. Diversity in the parasitic ability of the nematode allows it to reproduce on nematode-resistant soybean. H. glycines chorismate mutase-1 (Hg-CM-1) is a nematode enzyme with the potential to suppress host plant defense compounds; therefore, it has the potential to enhance the parasitic ability of nematodes expressing the gene. Hg-cm-1 is a member of a gene family where two alleles, Hg-cm-1A and Hg-cm-1B, have been identified. Analysis of the Hg-cm-1 gene copy number revealed that there are multiple copies of Hg-cm-1 alleles in the H. glycines genome. H. glycines inbred lines were crossed to ultimately generate three F2 populations of second-stage juveniles (J2s) segregating for Hg-cm-1A and Hg-cm-1B. Segregation of Hg-cm-1A and 1B approximated a 1:2:1 ratio, which suggested that Hg-cm-1 is organized in a cluster of genes that segregate roughly as a single locus. The F2 H. glycines J2 populations were used to infect nematode-resistant (Hartwig, PI88788, and PI90763) and susceptible (Lee 74) soybean plants. H. glycines grown on Hartwig, Lee 74, and PI90763 showed allelic frequencies similar to Hg-cm-1A/B, but nematodes grown on PI88788 contained predominately Hg-cm-1A allele as a result of a statistically significant drop of Hg-cm-1B in the population. This result suggests that specific Hg-cm-1 alleles, or a closely linked gene, may aid H. glycines in adapting to particular soybean hosts.  相似文献   

20.
Soybean cyst nematode (SCN), Heterodera glycines Ichinohe, is a major pest of soybean, Glycine max L. Merr. Soybean cultivars resistant to SCN are commonly grown in nematode-infested fields. The objective of this study was to examine the stability of SCN resistance in soybean genotypes at different soil temperatures and pH levels. Reactions of five SCN-resistant genotypes, Peking, Plant Introduction (PI) 88788, Custer, Bedford, and Forrest, to SCN races 3, 5, and 14 were studied at 20, 26, and 32 C, and at soil pH''s 5.5, 6.5, and 7.5. Soybean cultivar Essex was included as a susceptible check. Temperature, SCN race, soybean genotype, and their interactions significantly affected SCN reproduction. The effect of temperature on reproduction was quadratic with the three races producing significantly greater numbers of cysts at 26 C; however, reproduction on resistant genotypes remained at a low level. Higher numbers of females matured at the soil pH levels of 6.5 and 7.5 than at pH 5.5. Across the ranges of temperature and soil pH studied, resistance to SCN in the soybean genotypes remained stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号