首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retinoid X receptor (RXR) plays a central role in the regulation of intracellular receptor signaling pathways by acting as a ubiquitous heterodimerization partner of many nuclear receptors, including the orphan receptor Nur77 (also known as TR3 [corrected] or NGFI-B), which translocates from the nucleus to mitochondria, where it interacts with Bcl-2 to induce apoptosis. Here, we report that RXRalpha is required for nuclear export and mitochondrial targeting of Nur77 through their unique heterodimerization that is mediated by dimerization interfaces located in their DNA-binding domain. The effects of RXRalpha are attributed to a putative nuclear export sequence (NES) present in its carboxyl-terminal region. RXRalpha ligands suppress NES activity by inducing RXRalpha homodimerization or altering RXRalpha/Nur77 heterodimerization. The RXRalpha NES is also silenced by RXRalpha heterodimerization with retinoic acid receptor or vitamin D receptor. Consistently, we were able to show that the mitochondrial targeting of the RXRalpha/Nur77 heterodimer and its induction of apoptosis are potently inhibited by RXR ligands. Together, our results reveal a novel nongenotropic function of RXRalpha and its involvement in the regulation of the Nur77-dependent apoptotic pathway [corrected]  相似文献   

2.
3.
核孤儿受体TR3/nur77是一种立刻早期基因(immediate-early gene)的产物,与固醇类激素受体结构相似,是核受体超家族的重要成员之一,可被多种生长因子或凋亡诱导剂诱导表达,具有复杂的生物学功能,涉及细胞增殖、分化发育和凋亡过程.最近对其诱导凋亡机制的研究取得了重大进展,发现当细胞受到凋亡诱导剂刺激后,TR3基因表达升高,其产物从细胞核移位至线粒体膜,引起细胞色素c释放,从而导致细胞凋亡.即TR3的转录激活功能和诱导凋亡功能是由其不同的亚细胞定位结合所决定的,其诱导凋亡过程与其对基因的反式激活功能无关.核转录因子p53也具有类似情况.这种核转录因子由细胞核移位至细胞浆并发挥生物学功能的调控方式是一种新模式,可能具有重要的生物学意义.  相似文献   

4.
5.
Nuclear receptor TR3/Nur77/NR4A1 binds several antiapoptotic Bcl-2-family proteins (Bcl-B, Bcl-2, Bfl-1) in a non-BH3-dependent manner. A 9-amino-acid peptide derived from full-length TR3 with polyarginine tail (TR3-r8) recapitulates TR3's binding specificity, displaying high affinity for Bcl-B. TR3-r8 peptide was used to screen for small molecule Bcl-B inhibitors. A fluorescence polarization assay (FPA) employing fluorescein isothiocyanate (FITC)-labeled TR3-r8 peptide (FITC-TR3-r8) and Bcl-B protein was optimized, with nonfluorescent TR3-r8 serving to demonstrate reversible, competitive binding. Approximately 50,000 compounds were screened at 3.75 mg/L, yielding 145 reproducible hits with >/=50% FITC-TR3-r8 displacement (a confirmed hit rate of 0.29%). After dose-response analyses and counterscreening with an unrelated FITC-based FPA, 6 candidate compounds remained. Nuclear magnetic resonance (NMR) showed that 2 of these compounds bound Bcl-B, but not glutathione S-transferase (GST) control protein. One Bcl-B-binding compound was unable to displace FITClabeled BH3 peptides from Bcl-B, confirming a unique binding mechanism compared with traditional antagonists of antiapoptotic Bcl-2-family proteins. This compound bound Bcl-B with K(d) 1.94 +/- 0.38 microM, as determined by isothermal titration calorimetry. Experiments using Bcl-B overexpressing HeLa cells demonstrated that this compound induced Bcl-B-dependent cell death. The current FPA represents a screen that can identify noncanonical inhibitors of Bcl-2-family proteins.  相似文献   

6.
Liang B  Song X  Liu G  Li R  Xie J  Xiao L  Du M  Zhang Q  Xu X  Gan X  Huang D 《Experimental cell research》2007,313(13):2833-2844
Nuclear orphan receptor TR3/Nur77/NGFI-B is a novel apoptotic effector protein that initiates apoptosis largely by translocating from the nucleus to the mitochondria, causing the release of cytochrome c. However, it is possible that TR3 translocates to other organelles. The present study was designed to determine the intracellular localization of TR3 following CD437-induced nucleocytoplasmic translocation and the mechanisms involved in TR3-induced apoptosis. In human neuroblastoma SK-N-SH cells and human esophageal squamous carcinoma EC109 and EC9706 cells, 5 microM CD437 induced translocation of TR3 to the endoplasmic reticulum (ER). This distribution was confirmed by immunofluorescence analysis, subcellular fractionation analysis and coimmunoprecipitation analysis. The translocated TR3 interacted with ER-targeting Bcl-2; initiated an early release of Ca(2+) from ER; resulted in ER stress and induced apoptosis through ER-specific caspase-4 activation, together with induction of mitochondrial stress and subsequent activation of caspase-9. Our results identified a novel distribution of TR3 in the ER and defined two parallel mitochondrial- and ER-based pathways that ultimately result in apoptotic cell death.  相似文献   

7.
8.
9.
Lin B  Kolluri SK  Lin F  Liu W  Han YH  Cao X  Dawson MI  Reed JC  Zhang XK 《Cell》2004,116(4):527-540
The Bcl-2 family proteins are key regulators of apoptosis in human diseases and cancers. Though known to block apoptosis, Bcl-2 promotes cell death through an undefined mechanism. Here, we show that Bcl-2 interacts with orphan nuclear receptor Nur77 (also known as TR3), which is required for cancer cell apoptosis induced by many antineoplastic agents. The interaction is mediated by the N-terminal loop region of Bcl-2 and is required for Nur77 mitochondrial localization and apoptosis. Nur77 binding induces a Bcl-2 conformational change that exposes its BH3 domain, resulting in conversion of Bcl-2 from a protector to a killer. These findings establish the coupling of Nur77 nuclear receptor with the Bcl-2 apoptotic machinery and demonstrate that Bcl-2 can manifest opposing phenotypes, induced by interactions with proteins such as Nur77, suggesting novel strategies for regulating apoptosis in cancer and other diseases.  相似文献   

10.
11.
12.
目的:研究孤儿核受体Nur77对缺/复氧损伤中心肌细胞自噬的调节作用。方法:差速贴壁法分离乳鼠心肌细胞,经免疫荧光染色鉴定纯度。缺氧(1%O_2、5%CO_2和94%N_2)培养12 h后,常氧培养2 h构建心肌细胞缺/复氧损伤。实时定量PCR和western blot的方法检测Nur77的表达变化。通过siRNA转染抑制心肌细胞nur77表达,通过自噬标志蛋白表达改变作为细胞自噬水平的变化。结果:原代分离的心肌细胞纯度95%以上。缺氧12 h和缺/复氧(12 h/2 h)刺激后,心肌细胞中Nur77表达都明显升高(P0.01)。与缺氧组相比,缺/复氧组细胞质中的水平明显增加(P0.01),细胞核中Nur77水平无明显变化。抑制Nur77后,缺/复氧组自噬水平明显降低,缺氧组心肌细胞自噬水平无明显变化。结论:Nur77参与缺/复氧损伤中心肌细胞自噬水平的调节。  相似文献   

13.
核转录因子TR3的转位与细胞凋亡   总被引:1,自引:0,他引:1  
在诸多凋亡路径中 ,线粒体膜的渗透性改变是导致多种凋亡关键分子从线粒体膜内腔释放出来的主要原因。这些分子包括胱天蛋白酶原 (pro caspase)、细胞色素c(胱天蛋白酶的激活剂 )、Smac/Diablo(胱天蛋白酶的协同激活剂 ) [1] 等。Li等[2 ] 新近发现了一种凋亡前期转录因子TR3,又称作Nur77或NG FIB ,通常它存在于细胞核中 ,某种情况下也能转移到线粒体中 ,并引起线粒体膜的渗透性变化 ,最终导致细胞凋亡。TR3是一种类固醇 甲状腺激素 类维生素A类转录因子 ,它有一个中央锌指状DNA结合结构域 ,在其两…  相似文献   

14.
Proapoptotic receptor agonists cause cellular demise through the activation of the extrinsic and intrinsic apoptotic pathways. Inhibitor of apoptosis (IAP) proteins block apoptosis induced by diverse stimuli. Here, we demonstrate that IAP antagonists in combination with Fas ligand (FasL) or the death receptor 5 (DR5) agonist antibody synergistically stimulate death in cancer cells and inhibit tumor growth. Single-agent activity of IAP antagonists relies on tumor necrosis factor-α signaling. By contrast, blockade of tumor necrosis factor-α does not affect the synergistic activity of IAP antagonists with FasL or DR5 agonist antibody. In most cancer cells, proapoptotic receptor agonist-induced cell death depends on amplifying the apoptotic signal via caspase-8-mediated activation of Bid and subsequent activation of the caspase-9-dependent mitochondrial apoptotic pathway. In the investigated cancer cell lines, induction of apoptosis by FasL or DR5 agonist antibody can be inhibited by knockdown of Bid. However, knockdown of X chromosome-linked IAP (XIAP) or antagonism of XIAP allows FasL or DR5 agonist antibody to induce activation of effector caspases efficiently without the need for mitochondrial amplification of the apoptotic signal and thus rescues the effect of Bid knockdown in these cells.  相似文献   

15.
16.
17.
Both vitamin D (VD) signaling and Nur77 are implicated in dopaminergic neurotransmission and dopamine-related neuropsychiatric disorders, such as schizophrenia and Parkinson’s disease. Developmental vitamin D (DVD) deficiency rats exhibit schizophrenia-like behaviors and disturbance of dopamine system, which could be partly normalized by haloperidol treatment. By blocking dopamine D2 receptor, haloperidol induces Nur77 expression, suggesting a modulatory role of Nur77 in brain dopamine system. Rxr is the heterodimeric partner of both Nur77 and vitamin D receptor and also participates in homeostatic regulation of central dopamine neurotransmission. Although D2 antagonist-induced Nur77 expression has been reported by several studies, the change of its active partner Rxr remains elusive. Here, we studied the impact of 2 weeks administration of haloperidol on VD signaling and Nur77/Rxr expression in rat prefrontal cortex. It was found that haloperidol has no effect on local VD signaling, but could significantly increase Nur77, Rxrβ, and Rxrγ expression, which indicated that Nur77/Rxr, but not vdr/Rxr, was implicated in dopamine-related neuroadaptation. Given that VD deficiency is commonly observed in schizophrenia patients, the renal metabolism of VD was also examined.  相似文献   

18.
We have generated F9 murine embryonal carcinoma cells in which either the retinoid X receptor (RXR)α and retinoic acid receptor (RAR)α genes or the RXRα and RARγ genes are knocked out, and compared their phenotypes with those of wild-type (WT), RXRα−/−, RARα−/−, and RARγ−/− cells. RXRα−/−/ RARα−/− cells were resistant to retinoic acid treatment for the induction of primitive and parietal endodermal differentiation, as well as for antiproliferative and apoptotic responses, whereas they could differentiate into visceral endodermlike cells, as previously observed for RXRα−/− cells. In contrast, RXRα−/−/RARγ−/− cells were defective for all three types of differentiation, as well as antiproliferative and apoptotic responses, indicating that RXRα and RARγ represent an essential receptor pair for these responses. Taken together with results obtained by treatment of WT and mutant F9 cells with RAR isotype– and panRXR-selective retinoids, our observations support the conclusion that RXR/ RAR heterodimers are the functional units mediating the retinoid signal in vivo. Our results also indicate that the various heterodimers can exert both specific and redundant functions in differentiation, proliferation, and apoptosis. We also show that the functional redundancy exhibited between RXR isotypes and between RAR isotypes in cellular processes can be artifactually generated by gene knockouts. The present approach for multiple gene targeting should allow inactivation of any set of genes in a given cell.  相似文献   

19.
目的:观察Nur77通过线粒体转位对缺氧/复氧(H/R)诱导的心肌细胞凋亡的影响。方法:原代培养l-2天SD大鼠心肌细胞,建立H/R模型。随机分为正常对照组、H/R组、Nur77组,采用免疫荧光检测横纹肌肌动蛋白(α-actin)鉴定心肌细胞;采用TUNEL染色法及Caspase-3酶活性检测心肌细胞凋亡情况;采用Western blot检测细胞核及线粒体Nur77蛋白表达、线粒体及胞浆Omi/HtrA2蛋白表达。结果:H/R组细胞核中Nur77蛋白表达明显低于正常对照组;而在线粒体中则相反。Nur77组线粒体中的Omi/HtrA2蛋白表达明显低于正常对照组;而在胞浆中则相反。结论:在心肌细胞H/R损伤时,Nur77线粒体转位促使Omi/HtrA2蛋白从线粒体释放入胞浆,从而导致心肌细胞凋亡。  相似文献   

20.
Nrf2 plays a role in protection of cells against oxidative stress and xenobiotic damage by regulating cytoprotective genes. In this study, we investigated the effect of Nrf2 on melanogenesis in normal human melanocytes (NHMCs). When NHMCs were transduced with a recombinant adenovirus expressing Nrf2, melanin synthesis was significantly decreased. Consistent with this result, overexpression of Nrf2 decreased the expression of tyrosinase and tyrosinase-related protein 1. The inhibitory effect of Nrf2 was reversed by overexpression of Keap1, an intracellular regulator of Nrf2. Interestingly, Nrf2 overexpression resulted in marked activation of PI3K/Akt signaling. Conversely, inhibition of PI3K activity by treatment with wortmannin reversed the depigmentary effects of Nrf2. Taken together, these results strongly suggest that Nrf2 negatively regulates melanogenesis by modulating the PI3K/Akt signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号