首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present here a detailed study of the genetic contributions to adult body size and adiposity in the LG,SM advanced intercross line (AIL), an obesity model. This study represents a first step in fine-mapping obesity quantitative trait loci (QTLs) in an AIL. QTLs for adiposity in this model were previously isolated to chromosomes 1, 6, 7, 8, 9, 12, 13, and 18. This study focuses on heritable contributions and the genetic architecture of fatpad and organ weights. We analyzed both the F(2) and F(3) generations of the LG,SM AIL population single-nucleotide polymorphism (SNP) genotyped with a marker density of approximately 4 cM. We replicate 88% of the previously identified obesity QTLs and identify 13 new obesity QTLs. Nearly half of the single-trait QTLs were sex-specific. Several broad QTL regions were resolved into multiple, narrower peaks. The 113 single-trait QTLs for organs and body weight clustered into 27 pleiotropic loci. A large number of epistatic interactions are described which begin to elucidate potential interacting molecular networks. We present a relatively rapid means to obtain fine-mapping details from AILs using dense marker maps and consecutive generations. Analysis of the complex genetic architecture underlying fatpad and organ weights in this model may eventually help to elucidate not only heritable contributions to obesity but also common gene sets for obesity and its comorbidities.  相似文献   

2.
Multiple-trait analyses have been shown to improve the detection of quantitative trait loci (QTLs) with multiple effects. Here we applied a multiple-trait approach on obesity- and growth-related traits that were surveyed in 275 F2 mice generated from an intercross between the high body weight selected line NMRI8 and DBA/2 as lean control. The parental lines differed 2.5-fold in body weight at the age of 6 weeks. Within the F2 population, the correlations between body weight and weights of abdominal fat weight, muscle, liver and kidney at the age of 6 weeks were about 0.8. A least squares multiple-trait QTL analysis was performed on these data to understand more precisely the cause of the genetic correlation between body weight, body composition traits and weights of inner organs. Regions on Chr 1, 2, 7 and 14 for body weights at different early ages and regions on Chr 1, 2, 4, 7, 14, 17 and 19 for organ weights at 6 weeks were found to have significant multiple effects at the genome-wide level.  相似文献   

3.
Genetic architecture of adiposity in the cross of LG/J and SM/J inbred mice   总被引:6,自引:6,他引:0  
The genetic basis of variation in obesity in human populations is thought to be owing to many genes of relatively small effect and their interactions. The LG/J by SM/J intercross of mouse inbred strains provides an excellent model system in which to investigate multigenic obesity. We previously mapped a large number of quantitative trait loci (QTLs) affecting adult body weight in this cross. We map body composition traits, adiposity, and skeletal size, in a replicate F2 intercross of the same two strains containing 510 individuals. Using interval-mapping methods, we located eight QTLs affecting adiposity (Adip1–8). Two of these adiposity loci also affected tail length (Adip4 and Adip6) along with seven additional tail length QTLs (Skl1–7). A further four QTLs (Wt1–4) affect adult weight but not body composition. These QTLs have relatively small effects, typically about 0.2–0.4 standard deviation units, and account for between 3% and 10% of the variance in individual characters. All QTLs participated in epistatic interactions with other QTLs. Most of these interactions were due to additive-by-additive epistasis, which can nullify the apparent effects of single loci in our population. Adip8 interacts with all the other adiposity QTLs and seems to play a central role in the genetic system affecting obesity in this cross. Only two adiposity QTLs, Adip4 and Adip6, also affect tail length, indicating largely separate genetic control of variation in adiposity and skeletal size. Body size and obesity QTLs in the same locations as those discovered here are commonly found in mapping experiments with other mouse strains. Received: 11 January 2000 / Accepted: 17 August 2000  相似文献   

4.
Objective: To assess the impact of differences in basal energy expenditure on adiposity. Research Methods and Procedures: Statistical analysis was performed on a published database giving anthropometric and energy expenditure measurements for 433 women and 335 men. Published equations derived by multiple regression analysis were used to predict basal metabolic rates in women and in men as a function of age, weight, and height. The differences between the observed and predicted rates (i.e., the residuals) were computed and expressed in terms of percentage deviation from the predicted rates of basal energy expenditure (BEE). In addition, individual body fat contents were computed using equations based on National Health and Nutrition Examination Study 3 data relating to body fat content determined by bioimpedance to BMI. Results: There is no correlation between percentage body fat content and deviations from predicted (which one would refer to as normal) BEE. Discussion: It can be concluded that relatively high or relatively low rates of BEE do not influence body weights and adiposity in a statistically identifiable manner. This contradicts and challenges the widely held view that low resting metabolic rates promote the development of obesity.  相似文献   

5.
Groups of lean or pre-obese LA/N-cp rats were subjected to a program of vigorous exercise (less than 4 hr/day) or remained sedentary from 6 weeks until 12 weeks of age. Sedentary pre-obese rats gained weight twice as rapidly as sedentary lean rats. Exercise treatment resulted in greater decrements in body wt in obese than in lean rats, but did not result in absolute weight loss in either group. At 12 weeks of age, fat pad weights in principle depots were 10-15 times greater in corpulent than in lean rats and were significantly smaller in the exercised groups of both phenotypes, and corresponded with lower relative adiposity compared to corresponding sedentary groups. Heart weights were greater in corpulent than lean, while gastrocnemius muscle weights were similar in both phenotypes. Exercise was without effect on the weight of either muscle tissue in either phenotype. Interscapular brown adipose tissue weights and the IBAT:BW ratio were greater in obese than in lean rats. IBAT weights were lower in exercised than sedentary rats of either phenotype, but the IBAT:BW ratio was lower only in the obese exercised rats. In sedentary rats, L-alpha-glycerophosphate dehydrogenase and malic enzyme activity were greater in obese than lean, and exercise treatment resulted in increased L-alpha-glycerophosphate dehydrogenase and malic enzyme only in lean rats. These results are consistent with a redistribution of energy expenditure from energy storing to energy dissipating pathways following vigorous exercise, resulting in slowed rates of weight gain and body fat accretion in both lean and obese animals, with the most significant decrements among pre-obese rats.  相似文献   

6.
The present study measured variation in body weight using a combined analysis in an F2 intercross and an F34 advanced intercross line (AIL). Both crosses were derived from inbred LG/J and SM/J mice, which were selected for large and small body size prior to inbreeding. Body weight was measured at 62 (±5) days of age. Using an integrated GWAS and forward model selection approach, we identified 11 significant QTLs that affected body weight on ten different chromosomes. With these results we developed a full model that explained over 18% of the phenotypic variance. The median 1.5-LOD support interval was 5.55 Mb, which is a significant improvement over most prior body weight QTLs. We identified nonsynonymous coding SNPs between LG/J and SM/J mice in order to further narrow the list of candidate genes. Three of the genes with nonsynonymous coding SNPs (Rad23b, Stk33, and Anks1b) have been associated with adiposity, waist circumference, and body mass index in human GWAS, thus providing evidence that these genes may underlie our QTLs. Our results demonstrate that a relatively small number of loci contribute significantly to the phenotypic variance in body weight, which is in marked contrast to the situation in humans. This difference is likely to be the result of strong selective pressure and the simplified genetic architecture, both of which are important advantages of our system.  相似文献   

7.
Summary Genetic and phenotypic parameters for three-, six- and eight-week body weight and for weight gain between three and six weeks of age were estimated from data collected over 14 generations in a randombred control population. Genetic parameters were also estimated for sexual dimorphism in body weight and gain. Heritability estimates were substantial for body weight at all ages and for body weight gain. Additive maternal variances were also large. Estimates of the covariance between direct and maternal genetic effects were negative and substantial for three- and six-week weights and gain. Also the covariance between maternal effects on weaning weight and direct genetic effects on six- and eight-week weights were negative. These results indicate a consistent antagonism between maternal and direct genetic effects in this population.The analysis of sexual dimorphism yielded estimates of 0.87±.09 and 0.71±.14 for the correlation between additive direct effects on males and females for six-week weight and body weight gain respectively. Corresponding heritability estimates were 0.07±.09 and 0.11±.09. Heritability estimates for sexual dimorphism in three- and eight-week weights were negative.Journal Paper No. 3687 of the North Carolina State University Agricultural Experiment Station. This investigation was supported in part by NIH Grant No. GM11546.  相似文献   

8.
Summary Additive genetic, dominance genetic and environmental correlations between pairs of agronomically important characters in five spring barley crosses were calculated from estimates of the components of variance and covariance, obtained by Triple Test Cross analysis. Phenotypic correlations were calculated from the Triple Test Cross family means and compared to the additive genetic correlations. Phenotypic correlations were generally lower than the additive genetic correlations and, occasionally, of different sign. The highest phenotypic correlations between single plant yield and its components were found with number of tillers whereas these were the lowest additive genetic correlations, thousand grain weight giving the highest. High dominance genetic correlations were found between single plant yield and both grain number and thousand grain weight thus indirect early generation selection for single plant yield using these two characters would be ineffective. Additive and dominance genetic correlations confirm association of the erectoides dwarfing gene with low thousand grain weight and plant yield.  相似文献   

9.
Perturbations in the functional integrity of the leptin axis are obvious candidates for mediation of altered adiposity. In a large number of genetic association studies in humans, the nonconservative LEPR Q223R allele has been inconsistently associated with adiposity. Subtle, long-term effects of such genetic variants can be obscured by effects of the environment and other confounders that render definitive inferences difficult to reach. We directly assessed the biological effects of this variant in 129P3/J mice segregating for the humanized Lepr allele at codon 223. No effects of this allele were detected on body weight, composition, or energy expenditure in animals fed diets of varying fat content over periods as long as 235 days. In vitro, Q223R did not affect leptin signaling as reflected by activation of STAT3. We conclude that Q223R is unlikely to play a significant role in regulation of human adiposity. This approach to vetting of human allelic variation might be more widely used.  相似文献   

10.
Objective: Increased leptin transgene expression locally in hypothalamic sites suppresses weight and energy intake, enhances thermogenic energy expenditure, and differentially modulates metabolic hormones for an extended period. We evaluated whether a similar localized expression of leptin transgene in the dorsal vagal complex (DVC) in the caudal brain stem that also displays the biologically relevant leptin receptor would reproduce these varied responses and thus demonstrate functional connectivity between the hypothalamus and DVC. Research Methods and Procedures: Adult female rats were microinjected with a recombinant adeno‐associated virus encoding either rat leptin or green fluorescent protein gene (control) in the DVC. Food intake and body weight were monitored weekly, and metabolic variables were analyzed at the end of 10 weeks. Results and Discussion: Increased leptin transgene expression in the DVC suppressed the time‐related increase in body weight accompanied by a transient decrease in food intake at week 1 post‐injection and little effect on thermogenic energy expenditure. That suppression of weight was due to decreased adiposity is shown by the markedly suppressed white adipose tissue‐derived hormones, leptin and adiponectin. Circulating concentrations of pancreatic insulin, gastric ghrelin, and glucose levels were unchanged. This segregation of the varied effects of leptin expression in hypothalamic sites vs. DVC endorses the view that among the various endocrine organs under sympathetic nervous system control, only those leptin‐activated neural circuits in the hypothalamus that suppress weight and adiposity on a long‐term basis transverse through DVC en route to white adipose tissue.  相似文献   

11.
Neuronal PTP1B regulates body weight, adiposity and leptin action   总被引:10,自引:0,他引:10  
Obesity is a major health problem and a risk factor for type 2 diabetes. Leptin, an adipocyte-secreted hormone, acts on the hypothalamus to inhibit food intake and increase energy expenditure. Most obese individuals develop hyperleptinemia and leptin resistance, limiting the therapeutic efficacy of exogenously administered leptin. Mice lacking the tyrosine phosphatase PTP1B are protected from diet-induced obesity and are hypersensitive to leptin, but the site and mechanism for these effects remain controversial. We generated tissue-specific PTP1B knockout (Ptpn1(-/-)) mice. Neuronal Ptpn1(-/-) mice have reduced weight and adiposity, and increased activity and energy expenditure. In contrast, adipose PTP1B deficiency increases body weight, whereas PTP1B deletion in muscle or liver does not affect weight. Neuronal Ptpn1(-/-) mice are hypersensitive to leptin, despite paradoxically elevated leptin levels, and show improved glucose homeostasis. Thus, PTP1B regulates body mass and adiposity primarily through actions in the brain. Furthermore, neuronal PTP1B regulates adipocyte leptin production and probably is essential for the development of leptin resistance.  相似文献   

12.
The inheritance of obesity has been analyzed in an intercross between the lean 129/Sv mouse strain and the obesity-prone EL/Suz mouse strain. The weights of three major fat pads were determined on 4-month-old mice, and the sum of these weights, divided by body weight, was used as an adiposity index. The strategy of selective DNA pooling was used as a primary screen to identify putative quantitative trait loci (QTLs) affecting adiposity index. DNA pools representing the leanest 15% and fattest 15% of the F2 progeny were compared for differential allelic enrichment using widely dispersed microsatellite variants. To evaluate putative QTLs, individual genotyping and interval mapping were employed to estimate QTL effects and assess statistical significance. One QTL affecting adiposity index, which accounted for 12.3% of phenotypic variance in gender-merged data, was mapped to the central region of Chromosome (Chr) 7. The QTL allele inherited from EL conferred increased adiposity. A second QTL that accounts for 6.3% of phenotypic variance was identified on Chr 1 nearD1Mit211.At both QTLs, the data are consistent with dominant inheritance of the allele contributing to obesity. The possible relationships between these QTLs and previously described obesity QTLs, major obesity mutations, and candidate genes are discussed.  相似文献   

13.
Summary Correlated responses to selection for increased 3–6 week postweaning gain in male mice were estimated for seven internal organs (testes, spleen, liver, kidneys, heart, small intestine (S intest) and stomach) weighed at specific degrees of maturity in body weight (37.5, 50.0, 62.5, 75.0, 87.5 and 100%). Correlated responses in organ weights were generally large, but the magnitude and direction of response depended upon whether 1) comparisons were made at the same age, degree of maturity or body weight and 2) absolute or proportional organ weights were used. The selected line (M16) weighed more and had larger organ weights than controls (ICR) when compared at either the same degree of maturity or the same age, indicating positive genetic correlations between body weight and the respective organ weights. Positive correlated responses were found in spleen weight/body weight at all degrees of maturity and in liver and S intest weights as a proportion of body weight at some degrees of maturity. Testes, kidneys, heart and stomach weights as a proportion of body weight had negative correlated responses, though this was consistent only for kidneys across all degrees of maturity. Correlated responses in organ weights adjusted for body weight by covariance analysis were positive for spleen, S intest and stomach and negative for testes and kidneys. Based on the constrained quadratic model, degree of maturity in organ weight relative to degree of maturity in body weight responded positively for testes, kidneys and S intest and negatively for spleen and liver. Selection for increased growth caused negative correlated responses in allometric growth of testes, kidneys, S intest and stomach.Paper No. 10,545 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, 27695-7601. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the products named, nor criticism of similar ones not mentioned  相似文献   

14.
Quantitative genetic theory indicates that genetic covariance patterns among life history characters should have played an important role as genetic constraint in life history evolution. Highly positve (and negative) genetic correlations between larval development time (or larval growth rate) and adult size characters were detected by means of sib analysis for the small white butterfly Pieris rapae crucivora. The genetic associations suggested that evolution of developmental characteristics and adult phenotypic traits were constrained by pleiotropy. The positive genetic correlations between development time and adult body size may be compatible with the trade-off between them, but the negative genetic correlations between larval growth rate and adult body size are not predicted from theories of optimal energy allocation. That phenotypic correlations drastically differed from the genetic correlations indicates limitations of evolutionary inferences based only on phenotypic variation.  相似文献   

15.
Quantitative Trait Loci for Murine Growth   总被引:24,自引:6,他引:18       下载免费PDF全文
Body size is an archetypal quantitative trait with variation due to the segregation of many gene loci, each of relatively minor effect, and the environment. We examine the effects of quantitative trait loci (QTLs) on age-specific body weights and growth in the F(2) intercross of the LG/J and SM/J strains of inbred mice. Weekly weights (1-10 wk) and 75 microsatellite genotypes were obtained for 535 mice. Interval mapping was used to locate and measure the genotypic effects of QTLs on body weight and growth. QTL effects were detected on 16 of the 19 autosomes with several chromosomes carrying more than one QTL. The number of QTLs for age-specific weights varied from seven at 1 week to 17 at 10 wk. The QTLs were each of relatively minor, subequal effect. QTLs affecting early and late growth were generally distinct, mapping to different chromosomal locations indicating separate genetic and physiological systems for early and later murine growth.  相似文献   

16.
The close correspondence between energy intake and expenditure over prolonged time periods, coupled with an apparent protection of the level of body adiposity in the face of perturbations of energy balance, has led to the idea that body fatness is regulated via mechanisms that control intake and energy expenditure. Two models have dominated the discussion of how this regulation might take place. The set point model is rooted in physiology, genetics and molecular biology, and suggests that there is an active feedback mechanism linking adipose tissue (stored energy) to intake and expenditure via a set point, presumably encoded in the brain. This model is consistent with many of the biological aspects of energy balance, but struggles to explain the many significant environmental and social influences on obesity, food intake and physical activity. More importantly, the set point model does not effectively explain the ‘obesity epidemic’ – the large increase in body weight and adiposity of a large proportion of individuals in many countries since the 1980s. An alternative model, called the settling point model, is based on the idea that there is passive feedback between the size of the body stores and aspects of expenditure. This model accommodates many of the social and environmental characteristics of energy balance, but struggles to explain some of the biological and genetic aspects. The shortcomings of these two models reflect their failure to address the gene-by-environment interactions that dominate the regulation of body weight. We discuss two additional models – the general intake model and the dual intervention point model – that address this issue and might offer better ways to understand how body fatness is controlled.  相似文献   

17.
Levels of human obesity have increased over the past 20 years worldwide, primarily due to changes in diet and activity levels. Although environmental changes are clearly responsible for the increasing prevalence of obesity, individuals may show genetic variation in their response to an obesogenic environment. Here, we measure genetic variation in response to a high-fat diet in a mouse model, an F16 Advanced Intercross Line derived from the cross of SM/J and LG/J inbred mouse strains. The experimental population was separated by sex and fed either a high-fat (42% of energy from fat) or low-fat (15% of energy from fat) diet. A number of phenotypic traits related to obesity and diabetes such as growth rate, glucose tolerance traits, organ weights and fat pad weights were collected and analysed in addition to serum levels of insulin, free fatty acids, cholesterol and triglycerides. Most traits are different between the sexes and between dietary treatments and for a few traits, including adult growth, fat pad weights, insulin and glucose tolerance, the dietary effect is stronger in one sex than the other. We find that fat pad weights, liver weight, serum insulin levels and adult growth rates are all phenotypically and genetically correlated with one another in both dietary treatments. Critically, these traits have relatively low genetic correlations across environments (average r =0.38). Dietary responses are also genetically correlated across these traits. We found substantial genetic variation in dietary response and low cross environment genetic correlations for traits aligned with adiposity. Therefore, genetic effects for these traits are different depending on the environment an animal is exposed to.  相似文献   

18.
Over 20 years ago, D. S. Falconer and others launched an important avenue of research into the quantitative of body size growth in mice. This study continues in that tradition by locating quantitative trait loci (QTLs) responsible for murine growth, such as age-specific weights and growth periods, and examining the genetic architecture for body weight. We identified a large number of potential QTLs in an earlier F2 intercross (Intercross I) of the SM/J and LG/J inbred mouse strains. Many of these QTLs are replicated in a second F2 intercross (Intercross II) between the same two strains. These replicated regions provide candidate regions for future fine-mapping studies. We also examined body size and growth QTLs using the combined data set from these two intercrosses, resulting in 96 microsatellite markers being scored for 1045 individuals. An examination of the genetic architecture for age-specific weight and growth periods resulted in locating 20 separate QTLs, which were mainly additive in nature, although dominance was found to affect early growth and body size. QTLs affecting early and late growth were generally distinct, mapping to separate chromosome locations. This QTL pattern indicates largely separate genetic and physiological systems for early and later murine growth, as Falconer suggested. We also found sex-specific QTLs for body size with implications for the evolution of sexual dimorphism.  相似文献   

19.
To study the role of nutritional factors in the genesis of diabetes, estimations of blood sugar concentration, food intake, and adiposity (as body mass index; BMI) were carried out on three normal population samples--namely, 961 employees of Beecham Ltd, 1005 employees of the Greater London Council, and 1488 middle-aged male civil servants (Whitehall study). Blood sugar concentrations and indices of glucose tolerance correlated positively with the degree of adiposity but tended to be negatively correlated with total food energy intake and its component nutrients (total carbohydrate, sucrose, and fat). This inverse trend was largely accounted for by highly significant inverse correlations between food energy intake and adiposity, a relation found in both sexes and in all three population samples and which extended across the whole range of nutrient intake and BMI. These findings suggest that greater degrees of adiposity are associated with lower than average food energy intakes and hence lower total energy expenditures. The association of increased adiposity with low food energy consumption may indicate an underlying "low energy throughput" state, and it may be the mechanisms of this, as well as the obesity, that are responsible for disease.  相似文献   

20.
A. M. Saxton  E. J. Eisen 《Genetics》1984,106(4):705-718
The hypothesis developed from single-gene mutant obese rodents that brown adipose tissue (BAT), through its thermogenic ability, is an important factor in the development of obesity, was tested in a randombred population of mice in which degree of adiposity is polygenically determined. Additive direct genetic parameters for measures of body size, lean, fatness and BAT at 6 wk of age were estimated under control and high-fat postweaning dietary regimens. Heritabilities were generally similar for the two diets. However, the lipid-free dry (LFD) component of BAT had a heritability estimate of 0.70 ± 0.26 on the control diet, but only 0.09 ± 0.20 on the high-fat diet. For all traits, genotype by diet interactions indicated that additive direct genetic rankings were not significantly different for the two diets. Based on estimates of genetic parameters in the control diet, selection for 6-wk body weight or 3- to 6-wk gain is expected to increase body size and adiposity. Selection for BAT weight is predicted to result in large, lean individuals. However, selection for the LFD content of BAT, generally believed to be a better indicator of thermogenic ability, is predicted to increase fatness as well as body size. Selection for LFD as a proportion of 6-wk body weight reduced the expected correlated response in fatness. It was concluded that BAT does not play a major role in determining the correlated response in obesity that is often found in populations selected for large body size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号