首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of non-random mating on genetic response was compared for populations with discrete generations. Mating followed a selection step where the average coancestry of selected animals was constrained, while genetic response was maximised. Minimum coancestry (MC), Minimum coancestry with a maximum of one offspring per mating pair (MC1) and Minimum variance of the relationships of offspring (MVRO) mating schemes resulted in a delay in inbreeding of about two generations compared with Random, Random factorial and Compensatory mating. In these breeding schemes where selection constrains the rate of inbreeding, ΔF, the improved family structure due to non-random mating increased genetic response. For schemes with ΔF constrained to 1.0% and 100 selection candidates, genetic response was 22% higher for the MC1 and MVRO schemes compared with Random mating schemes. For schemes with a less stringent constraint on ΔF or more selection candidates, the superiority of the MC1 and MVRO schemes was smaller (5–6%). In general, MC1 seemed to be the preferred mating method, since it almost always yielded the highest genetic response. MC1 mainly achieved these high genetic responses by avoiding extreme relationships among the offspring, i.e. fullsib offspring are avoided, and by making the contributions of ancestors to offspring more equal by mating least related animals.  相似文献   

2.
As populations decline to levels where reproduction among close genetic relatives becomes more probable, subsequent increases in homozygous recessive deleterious expression and/or loss of heterozygote advantage can lead to inbreeding depression. Here, we measure how inbreeding across replicate lines of the flour beetle Tribolium castaneum impacts on male reproductive fitness in the absence or presence of male–male competition. Effects on male evolution from mating pattern were removed by enforcing monogamous mating throughout. After inbreeding across eight generations, we found that male fertility in the absence of competition was unaffected. However, we found significant inbreeding depression of sperm competitiveness: non-inbred males won 57 per cent of fertilizations in competition, while inbred equivalents only sired 42 per cent. We also found that the P2 ‘offence’ role in sperm competition was significantly more depressed under inbreeding than sperm ‘defence’ (P1). Mating behaviour did not explain these differences, and there was no difference in the viability of offspring sired by inbred or non-inbred males. Sperm length variation was significantly greater in the ejaculates of inbred males. Our results show that male ability to achieve normal fertilization success was not depressed under strong inbreeding, but that inbreeding depression in these traits occurred when conditions of sperm competition were generated.  相似文献   

3.
Optimum breeding schemes for maximising the rate of genetic progress with a restriction on the rate of inbreeding (per year or per generation) are investigated for populations with overlapping generations undergoing mass selection. The optimisation is for the numbers of males and females to be selected and for their distribution over age classes. Expected rates of genetic progress (ΔG) are combined with expected rates of inbreeding (ΔF) in a linear objective function (Φ = ΔG - λΔF) which is maximised. A simulated annealing algorithm is used to obtain the solutions. The restriction on inbreeding is achieved by increasing the number of parents and, in small schemes with severe restrictions, by increasing the generation interval. In the latter case the optimum strategy for obtaining the maximum genetic gain is far from truncation selection across age classes. In most situations, the optimum mating ratio is one but the differences in genetic gain obtained with different mating ratios are small. Optimisation of schemes when restricting the rate of inbreeding per generation leads to shorter generation intervals than optimisation when restricting the rate of inbreeding per year.  相似文献   

4.
F C Ceballos  G álvarez 《Heredity》2013,111(2):114-121
The European royal dynasties of the Early Modern Age provide a useful framework for human inbreeding research. In this article, consanguineous marriage, inbreeding depression and the purging of deleterious alleles within a consanguineous population are investigated in the Habsburgs, a royal dynasty with a long history of consanguinity over generations. Genealogical information from a number of historical sources was used to compute kinship and inbreeding coefficients for the Habsburgs. The marriages contracted by the Habsburgs from 1450 to 1750 presented an extremely high mean kinship (0.0628±0.009), which was the result of the matrimonial policy conducted by the dynasty to establish political alliances through marriage. A strong inbreeding depression for both infant and child survival was detected in the progeny of 71 Habsburg marriages in the period 1450–1800. The inbreeding load for child survival experienced a pronounced decrease from 3.98±0.87 in the period 1450–1600 to 0.93±0.62 in the period 1600–1800, but temporal changes in the inbreeding depression for infant survival were not detected. Such a reduction of inbreeding depression for child survival in a relatively small number of generations could be caused by elimination of deleterious alleles of a large effect according with predictions from purging models. The differential purging of the infant and child inbreeding loads suggest that the genetic basis of inbreeding depression was probably very different for infant and child survival in the Habsburg lineage. Our findings provide empirical support that human inbreeding depression for some fitness components might be purged by selection within consanguineous populations.  相似文献   

5.
Minimum coancestry mating with a maximum of one offspring per mating pair (MC1) is compared with random mating schemes for populations with overlapping generations. Optimum contribution selection is used, whereby ΔF is restricted. For schemes with ΔF restricted to 0.25% per year, 256 animals born per year and heritability of 0.25, genetic gain increased with 18% compared with random mating. The effect of MC1 on genetic gain decreased for larger schemes and schemes with a less stringent restriction on inbreeding. Breeding schemes hardly changed when omitting the iteration on the generation interval to find an optimum distribution of parents over age-classes, which saves computer time, but inbreeding and genetic merit fluctuated more before the schemes had reached a steady-state. When bulls were progeny tested, these progeny tested bulls were selected instead of the young bulls, which led to increased generation intervals, increased selection intensity of bulls and increased genetic gain (35% compared to a scheme without progeny testing for random mating). The effect of MC1 decreased for schemes with progeny testing. MC1 mating increased genetic gain from 11–18% for overlapping and 1–4% for discrete generations, when comparing schemes with similar genetic gain and size.  相似文献   

6.
Inbreeding under a cyclical mating system   总被引:1,自引:0,他引:1  
Summary General recursion formulae for the coefficient of inbreeding under a cyclical mating system were derived in which one male and one female are selected from each of the n families per generation (population size N = 2 n). Each male is given the family number of his sire in each generation, while his mate comes from another family, varying systematically in different generations. Males of the r-th family in generations 1, 2, 3,..., t = n–1 within each cycle mate with females from families r+1, r+2, r+3,..., r+t to produce generations 2, 3, 4,..., t+1=1, respectively. The change in heterozygosity shows a cyclical pattern of rises and falls, repeating in cycles of n–1 generations. The rate of inbreeding oscillates between <-3% to >6% in different generations within each cycle, irrespective of the population size. The average rate of inbreeding per generation is approximately 1/[4 N-(Log2N+1)], which is the rate for the maximum avoidance of inbreeding. The average inbreeding effective population size is approximately 2 N–2.  相似文献   

7.
Aerobic capacity is a strong predictor of all-cause mortality and can influence many complex traits. To explore the biological basis underlying this connection, we developed via artificial selection two rat lines that diverge for intrinsic (i.e. inborn) aerobic capacity and differ in risk for complex disease traits. Here we conduct the first in-depth pedigree and molecular genetic analysis of these lines, the high capacity runners (HCR) and low capacity runners (LCR). Our results show that both HCR and LCR lines maintain considerable narrow-sense heritability (h2) for the running capacity phenotype over 28 generations (h2 = 0.47 ± 0.02 and 0.43 ± 0.02, respectively). To minimize inbreeding, the lines were maintained by rotational mating. Pedigree records predict that the inbreeding coefficient increases at a rate of <1% per generation, ~37-38% slower than expected for random mating. Genome-wide 10K SNP genotype data for generations 5, 14, and 26 demonstrate substantial genomic evolution: between-line differentiation increased progressively, while within-line diversity deceased. Genome-wide average heterozygosity decreased at a rate of <1% per generation, consistent with pedigree-based predictions and confirming the effectiveness of rotational breeding. Linkage disequilibrium index r2 decreases to 0.3 at ~3 Mb, suggesting that the resolution for mapping quantitative trait loci (QTL) can be as high as 2-3 cM. To establish a test population for QTL mapping, we conducted an HCR-LCR intercross. Running capacity of the F1 population (n=176) was intermediate of the HCR and LCR parentals (28 pairs); and the F2 population (n=645) showed a wider range of phenotypic distribution. Importantly, heritability in the F0-F2 pedigree remained high (h2~0.6). These results suggest that the HCR-LCR lines can serve as a valuable system for studying genomic evolution, and a powerful resource for mapping QTL for a host of characters relevant to human health.  相似文献   

8.
Inbreeding and extinction: Effects of rate of inbreeding   总被引:5,自引:0,他引:5  
Deleterious alleles may be removed (purged) bynatural selection in populations undergoinginbreeding. However, there is controversyregarding the effectiveness of selection inreducing the risk of extinction due toinbreeding, especially in relation to the rateof inbreeding. We evaluated the effect of therate of inbreeding on reducing extinction risk,in populations of Drosophila melanogastermaintained using full-sib mating (160replicates), or at effective population sizes(N e) of 10 (80) or 20 (80).Extinction rates in the populations maintainedusing full-sib mating occurred at lower levelsof inbreeding than in the larger populations,whereas the two larger populations did notdiffer significantly from each other.Inbreeding coefficients at 50% extinction were0.62, 0.79 and 0.77 for the full-sib (N e = 2.6), N e = 10 and N e = 20 treatments, respectively. Populations of N e = 20 that remained extant after 60 generations, showed inbreeding depression, with the mean fitness of these populations being only 45% of the outbredcontrols. There was considerable variationamong the 31 inbred populations in fitness, butnone of the N e = 20 populations hadfitness that was higher than the outbredcontrol. We conclude that purging may slow therate of extinction slightly, but it cannot berelied on to eliminate the deleterious effectsof inbreeding.  相似文献   

9.
Investigating whether mating patterns are biased in relation to kinship in isolated populations can provide a better understanding of the occurrence of inbreeding avoidance mechanisms in wild populations. Here, we report on the genetic relatedness (r) among breeding pairs in a relict population of Thorn‐tailed Rayadito (Aphrastura spinicauda) in north‐central Chile that has experienced a long‐term history of isolation. We used simulations based on 8 years of data to assess whether mating is random with respect to relatedness. We found that mean and median population values of pair relatedness tended to be lower than randomly generated values, suggesting that mating is not random with respect to kinship. We hypothesize that female‐biased dispersal is the main mechanism reducing the likelihood of mating among kin, and that the proportion of related pairs (i.e., r > 0.125) in the study population (25%) would presumably be higher in the absence of sex‐biased dispersal. The occurrence of other mechanisms such as extra‐pair copulations, delayed breeding, and active inbreeding avoidance through kin discrimination cannot be dismissed and require further study.  相似文献   

10.
Genome duplication resulting in polyploidy can have significant consequences for the evolution of mating systems. Most theory predicts that self‐fertilization will be selectively favored in polyploids; however, many autopolyploids are outcrossing or mixed‐mating. Here, we examine the hypothesis that the evolution of selfing is restricted in autopolyploids because the genetic cost of selfing (i.e., inbreeding depression) increases monotonically with successive generations of inbreeding. Using the herbaceous, autotetraploid plant Chamerion angustifolium, we generated populations with different inbreeding coefficients (F= 0, 0.17 and 0.36) through three consecutive generations of selfing and compared their magnitudes of inbreeding depression in a common environment. Mating system estimates for four natural populations confirmed that tetraploid selfing rates (sm= 0.25, SE = 0.02) are similar to those of diploids (sm= 0.12, SE = 0.12; F1,2= 1.34, P= 0.37) indicating that both cytotypes are predominantly outcrossing. Compared to an outbred control line, mean inbreeding depression for seed production, survival, and height (vegetative and total) in the inbred line differed among generations (inbreeding coefficients). Across all stages, inbreeding depression (relative to control) was positively related to generation (inbreeding coefficient). Although the initial costs of inbreeding in extant and newly synthesized polyploids may be low compared to diploids, the monotonic increase in inbreeding depression with repeated inbreeding may limit the extent to which selfing variants are favored.  相似文献   

11.
Following an inbreeding approach and assuming discrete generations and autosomal inheritance involving genes that do not affect viability or reproductive ability, I have derived expressions for the inbreeding effective size, NeI, for a finite diploid population with variable census sizes for three cases: monoecious populations with partial selfing; dioecious populations of equal numbers of males and females with partial sib mating; and unequal numbers of males and females with random mating. For the first two cases, recurrence equations for the inbreeding coefficient are also obtained, which allow inbreeding coefficients to be predicted exactly in both early and late generations. Following the variance of change in gene frequency approach, a general expression for variance effective size, NeV, is obtained for a population with unequal numbers of male and female individuals, arbitrary family size distribution, and nonrandom mating. All the parameters involved are allowed to change over generations. For some special cases, the equation reduces to the simple expressions approximately as derived by previous authors. Comparisons are made between equations derived by the present study and those obtained by previous authors. Some of the published equations for NeI and NeV are shown to be incomplete or incorrect. Stochastic simulations are run to check the results where disagreements with others are involved.  相似文献   

12.
To determine if meconium fatty acid ethyl esters (FAEE) in rat pups is a good biomarker of prenatal exposure and effect to alcohol, three groups of pregnant rats were studied: one control (pair fed) and two treatment groups given 25% alcohol at 2.2 or 5.5 g−1 kg−1 d−1. The pups were delivered on day 20 and, for each dam, were separated into a male and female group. The body, brain, intestines, and placenta of the pups were obtained, weighed, and stored at −20°C. The pups’ intestines (as surrogate of meconium) from each group were pooled, and meconium was analyzed by gas chromatography/mass spectroscopy for FAEE. The meconium showed the following FAEE: ethyl palmitate, ethyl stearate, and ethyl linolenate and were only found in the alcohol-treated group and with high specificity but low sensitivity. Mean body weight of the pups was lower in the treatment groups compared to the control groups. Ethyl palmitate concentration correlated negatively to the pups’ mean body and brain weights. Therefore, ethyl palmitate, stearate, and linolenate, in meconium of rat pups prenatally exposed to alcohol, are useful biomarkers of prenatal alcohol exposure, with ethyl palmitate a good biomarker of adverse effect on the pups’ body and brain weight.  相似文献   

13.
Inbreeding has been associated with the impairment of reproductive performance in many cattle breeds. Although the usage of reproductive biotechnologies has been increasing in bovine populations, not much attention has been given to the impact of inbreeding over cow’s performance on artificial reproduction. The objective of this study was to estimate the impact of inbreeding on in vitro embryo production in a Guzerá breed population. The inbreeding coefficient (F), calculated as half of the co-ancestry of the individual’s parents, was used as an estimate of inbreeding. The inbreeding coefficients of the donor, sire (used on in vitro fertilization) and of the embryos were included, separately, in the proposed models either as classificatory or continuous variables (linear and quadratic effects). The percentage of non-inbred individuals (or embryos) and mean F of donors, embryos and sires were 29.38%; 35.76%; 42.86% and 1.98±2.68; 1.32±3.13; 2.08±2.79, respectively. Two different models were considered, one for oocyte production traits and other for embryo production traits. The increase of F of the donor significantly (P<0.05) impaired the number of viable oocytes (NOV), number of grade I oocytes (NGI) and number of cleaved embryos (NCLV). Moreover, the donor’s F influenced the percentage of grade I oocytes (PGI), percentage of viable embryos (PEMB) and percentage of cleaved embryos that turned into embryos (PCXE). No significant (P>0.05) effects were observed for the sire (father of the embryos) inbreeding coefficient over the traits analysed. Embryo’s F influenced (P<0.05) the number of viable embryos (NEMB), percentage of viable embryos (PEMB) and percentage of cleaved embryos that turn into embryos (PCXE). Results suggested that an increase in the inbreeding coefficient might impair the embryos ability to survive through challenges imposed by the in vitro environment. Submitting highly inbred Guzerá female donors to in vitro embryo production may, in the long-term, have negative implications on the number of embryos obtained per cow and increase the relative costs of the improvement programmes based on this technology. High levels of inbreeding should be avoided when selecting Guzerá female donors and planning in vitro fertilization mating.  相似文献   

14.
Tilia cordata Mill. is a valuable tree species enriching the ecological values of the coniferous‐dominated boreal forests in Europe. Following the historical decline, spreading of Tilia sp. is challenged by the elevated inbreeding and habitat fragmentation. We studied the geographical distribution of genetic diversity of Tilia cordata populations in Lithuania. We used 14 genomic microsatellite markers to genotype 543 individuals from 23 wild‐growing populations. We found that Tilia cordata retained high levels of genetic diversity (population F IS = 0–0.15, H o = 0.53–0.69, H e = 0.56–0.75). AMOVA, Bayesian clustering, and Monmonier''s barrier detection indicate weak but significant differentiation among the populations (F ST = 0.037***) into geographically interpretable clusters of (a) western Lithuania with high genetic heterogeneity but low genetic diversity, bottleneck effects, (b) relatively higher genetic diversity of Tilia cordata on rich and most soils of midland lowland, and (c) the most differentiated populations on poor soils of the coolest northeastern highland possessing the highest rare allele frequency but elevated inbreeding and bottleneck effects. Weak genetic differentiation among the Tilia cordata populations in Lithuania implies common ancestry, absence of strong adaptive gradients, and effective genetic exchange possible mediated via the riparian networks. A hypothesis on riparian networks as gene flow mediators in Tilia cordata was raised based on results of this study.  相似文献   

15.
The ocean is undergoing warming and acidification. Thermal tolerance is affected both by evolutionary adaptation and developmental plasticity. Yet, thermal tolerance in animals adapted to simultaneous warming and acidification is unknown. We experimentally evolved the ubiquitous copepod Acartia tonsa to future combined ocean warming and acidification conditions (OWA approx. 22°C, 2000 µatm CO2) and then compared its thermal tolerance relative to ambient conditions (AM approx. 18°C, 400 µatm CO2). The OWA and AM treatments were reciprocally transplanted after 65 generations to assess effects of developmental conditions on thermal tolerance and potential costs of adaptation. Treatments transplanted from OWA to AM conditions were assessed at the F1 and F9 generations following transplant. Adaptation to warming and acidification, paradoxically, reduces both thermal tolerance and phenotypic plasticity. These costs of adaptation to combined warming and acidification may limit future population resilience.  相似文献   

16.
Inbreeding and extinction: Effects of purging   总被引:4,自引:0,他引:4  
Deleterious alleles may be removed (purged) bynatural selection in populations undergoinginbreeding. However, there is controversyregarding the effectiveness of purging inreducing the extinction risk due to inbreeding,particularly in conservation contexts. Weevaluated the effects of purging on theextinction risk due to inbreeding in Drosophila melanogaster using two basepopulations, an outbred population (non-purged)and four-way crosses between highly inbredlines derived from the same population(purged). The inbred lines used in the four-waycrosses were previously subjected to 20generations of full-sib mating. The impact offull-sib inbreeding over a further 12generations was compared in 200 populationsfrom each of the two base populations. Therewas a small and non-significant differencebetween the extinction rates at an inbreedingcoefficient of 0.93 in the non-purged (0.74± 0.03) and purged (0.69 ± 0.03)treatments. This is consistent with otherevidence indicating that the effects of purgingare often small. Purging using rapid inbreedingin very small populations cannot be relied uponto eliminate the deleterious effects ofinbreeding.  相似文献   

17.
This study investigated the effects of sub-lethal high temperatures on the development and reproduction of the brown plant hopper Nilaparvata lugens (Stål). When first instar nymphs were exposed at their ULT50 (41.8°C) mean development time to adult was increased in both males and females, from 15.2±0.3 and 18.2±0.3 days respectively in the control to 18.7±0.2 and 19±0.2 days in the treated insects. These differences in development arising from heat stress experienced in the first instar nymph did not persist into the adult stage (adult longevity of 23.5±1.1 and 24.4±1.1 days for treated males and females compared with 25.7±1.0 and 20.6±1.1 days in the control groups), although untreated males lived longer than untreated females. Total mean longevity was increased from 38.8±0.1 to 43.4±1.0 days in treated females, but male longevity was not affected (40.9±0.9 and 42.2±1.1 days respectively). When male and female first instar nymphs were exposed at their ULT50 of 41.8°C and allowed to mate on reaching adult, mean fecundity was reduced from 403.8±13.7 to 128.0±16.6 eggs per female in the treated insects. Following exposure of adult insects at their equivalent ULT50 (42.5°C), the three mating combinations of treated male x treated female, treated male x untreated female, and untreated male x treated female produced 169.3±14.7, 249.6±21.3 and 233.4±17.2 eggs per female respectively, all significantly lower than the control. Exposure of nymphs and adults at their respective ULT50 temperatures also significantly extended the time required for their progeny to complete egg development for all mating combinations compared with control. Overall, sub-lethal heat stress inhibited nymphal development, lowered fecundity and extended egg development time.  相似文献   

18.
Inbreeding adversely affects life history traits as well as various other fitness‐related traits, but its effect on cognitive traits remains largely unexplored, despite their importance to fitness of many animals under natural conditions. We studied the effects of inbreeding on aversive learning (avoidance of an odour previously associated with mechanical shock) in multiple inbred lines of Drosophila melanogaster derived from a natural population through up to 12 generations of sib mating. Whereas the strongly inbred lines after 12 generations of inbreeding (0.75 < F < 0.93) consistently showed reduced egg‐to‐adult viability (on average by 28%), the reduction in learning performance varied among assays (average = 18% reduction), being most pronounced for intermediate conditioning intensity. Furthermore, moderately inbred lines (F = 0.38) showed no detectable decline in learning performance, but still had reduced egg‐to‐adult viability, which indicates that overall inbreeding effects on learning are mild. Learning performance varied among strongly inbred lines, indicating the presence of segregating variance for learning in the base population. However, the learning performance of some inbred lines matched that of outbred flies, supporting the dominance rather than the overdominance model of inbreeding depression for this trait. Across the inbred lines, learning performance was positively correlated with the egg‐to‐adult viability. This positive genetic correlation contradicts a trade‐off observed in previous selection experiments and suggests that much of the genetic variation for learning is owing to pleiotropic effects of genes affecting functions related to survival. These results suggest that genetic variation that affects learning specifically (rather than pleiotropically through general physiological condition) is either low or mostly due to alleles with additive (semi‐dominant) effects.  相似文献   

19.
The deleterious effects of inbreeding have been of extreme importance to evolutionary biology, but it has been difficult to characterize the complex interactions between genetic constraints and selection that lead to fitness loss and recovery after inbreeding. Haploid organisms and selfing organisms like the nematode Caenorhabditis elegans are capable of rapid recovery from the fixation of novel deleterious mutation; however, the potential for recovery and genomic consequences of inbreeding in diploid, outcrossing organisms are not well understood. We sought to answer two questions: 1) Can a diploid, outcrossing population recover from inbreeding via standing genetic variation and new mutation? and 2) How does allelic diversity change during recovery? We inbred C. remanei, an outcrossing relative of C. elegans, through brother-sister mating for 30 generations followed by recovery at large population size. Inbreeding reduced fitness but, surprisingly, recovery from inbreeding at large populations sizes generated only very moderate fitness recovery after 300 generations. We found that 65% of ancestral single nucleotide polymorphisms (SNPs) were fixed in the inbred population, far fewer than the theoretical expectation of ∼99%. Under recovery, 36 SNPs across 30 genes involved in alimentary, muscular, nervous, and reproductive systems changed reproducibly across replicates, indicating that strong selection for fitness recovery does exist. Our results indicate that recovery from inbreeding depression via standing genetic variation and mutation is likely to be constrained by the large number of segregating deleterious variants present in natural populations, limiting the capacity for recovery of small populations.  相似文献   

20.
Over the past century, the Brazilian Atlantic forest has been reduced to small, isolated fragments of forest. Reproductive isolation theories predict a loss of genetic diversity and increases in inbreeding and spatial genetic structure (SGS) in such populations. We analysed eight microsatellite loci to investigate the pollen and seed dispersal patterns, genetic diversity, inbreeding and SGS of the tropical tree Copaifera langsdorffii in a small (4.8 ha), isolated population. All 112 adult trees and 128 seedlings found in the stand were sampled, mapped and genotyped. Seedlings had significantly lower levels of genetic diversity (A=16.5±0.45, mean±95% s.e.; He=0.838±0.006) than did adult trees (A=23.2±0.81; He=0.893±0.030). Parentage analysis did not indicate any seed immigration (mseeds=0) and the pollen immigration rate was very low (mpollen=0.047). The average distance of realized pollen dispersal within the stand was 94 m, with 81% of the pollen travelling <150 m. A significant negative correlation was found between the frequency and distance of pollen dispersal (r=−0.79, P<0.01), indicating that short-distance pollinations were more frequent. A significant SGS for both adults (∼50 m) and seedlings (∼20 m) was also found, indicating that most of the seeds were dispersed over short distances. The results suggested that the spatial isolation of populations by habitat fragmentation can restrict seed and pollen gene flow, increase SGS and affect the genetic diversity of future generations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号