首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The growth, cell wall regeneration, and the reversion of the protoplasts ofNadsonia elongata andSchizosaccbaromyces pombe cultivated in nutrient media containing snail enzyme was studied by light and electron microscopy. The protoplasts grew in the presence of snail enzyme and an incomplete cell wall composed of fibrils was formed on their surface. Thus, the presence of snail enzyme inhibited the completion of cell wall structure and, consequently, the reversion of the protoplasts to normal cells. The transfer of these protoplasts to medium free from snail enzyme led first to the completion of the cell wall and then to the reversion of the protoplasts to normal cells. The reported experiments confirmed that the regeneration of the complete cell wall preceded the protoplast reversion.  相似文献   

2.
Division of nuclei without cytokinesis proceeds in growing protoplasts ofSchizosaccharomyces pombe. Prior to regeneration of the complete cell wall and reversion the protoplasts contain 1–7 nuclei, protoplasts with 1–2 nuclei are most frequent. When regeneration of the wall is postponed by adding snail enzymes to the growth medium, protoplasts with a higher number of nuclei (2–4) occur. Multinuclear protoplasts can revert to cells. During the first cytokinesis the protoplast with the regenerated cell wall is divided into two cells by a septum, distribution of nuclei between the two cells being probably incidental. More than only a single nucleus can pass to the revertants even during the second cytokinesis. Septation of protoplasts occurs also during a partial blockage of the wall formation by the snail enzyme preparation, however, reversion to cells can never be observed here (it occurs only after transfer of protoplasts to the medium without the enzyme preparation). The growing and reverting protoplasts represent a very good model system for studying relations among individual processes of the cell cycle, primarily growth of the cell, nuclear cycle and cytokinesis. Yeast protoplasts are often utilized as models for studying morphogenic processes, relations among regeneration of the cell wall, including division of the nucleus (karyokinesis) and cytokinesis.  相似文献   

3.
Summary Yeast cells of Nadsonia elongata were cultivated in such a way that simultaneously with enzymatic lysis of the cell wall a partial synthesis of cell wall components was taking place. After the initial period of cultivation, which lasted about 10 h and during which the morphology of cells remained unchanged when compared to controls, the cells were transformed into prospheroplasts. The prospheroplasts were larger than the control cells and, though they enlarged in volume in distilled water, they still retained the shape of the original cells. However, some changes were found in the ultrastructure of the cell walls of prospheroplasts in comparison with that of the cell walls of intact cells: while in yeast cells the surface was smooth, in prospheroplasts the fibrillar network was revealed as a result of the removal of the amorphous component; the gradual disappearance of the outer cell wall layer and a swelling of the remaining cell wall fragment were seen in ultrathin sections. After about 20-h cultivation the prospheroplasts were transformed into spheroplasts. The spheroplasts were osmotically fragile, and did not retain the shape of the yeast cell, even in isoosmotic environment. On the surface of spheroplasts only the fibrillar network composed of separate fibrils was seen. The spheroplasts were the final stage of yeast cell transformation under the conditions employed in the present study. Under the mentioned conditions true protoplasts are never formed. However, if the synthesis of cell wall components could not take place simultaneously with the lysis of the cell wall, the cells were transformed to protoplasts.  相似文献   

4.
Regeneration of the cell wall and reversion of protoplasts with a completely regenerated cell wall to cells were studied by light and electron microscopy in protoplasts of the fission yeastsSchizosaccharomyces versatilis. On their surface the protoplasts regenerated a complete new wall even m liquid media The wall regeneration began with the formation of a thin irregular net of flat bundles of long microfibrils and the net was gradually filled with aggregates of short straight microfibrils and small piles of amorphous material. Osmotically resistant organisms with regenerated walls were detected after a 4–6 h cultivation Depending on the nutrient medium used 10–80 % of protoplasts with the regenerated wall were obtained that reverted subsequently to cells. The high percentage of the wall regeneration and reversion to cells was reached by combining cultivation in a poor medium with that in a rich medium Reversion to cells could only occur after the protoplasts had regenerated rigid cell walls These walled protoplasts underwent septation, and, by polar growth, produced cylindrical cells, further dividing by fission.  相似文献   

5.
The action of the lysoamidase bacteriolytic complex on Staphylococcus aureus VKM B-209P cells has been studied to obtain protoplasts. The cells in the midlogarithmic phase were the most sensitive to lysoamidase action. It led to local destruction of cell wall due to hydrolysis of the peptidoglycan. Protoplast formation occurred in two steps in the presence of 1 M sucrose. First, osmotically fragile spheroplasts were formed. Then, the protoplasts were released from the destructed cell wall. The protoplast yield was about 80%. The protoplasts preserved the intact ultrastructure and were able to synthesize peptidoglycan fibrillae. Mainly the spheroplasts that maintained the cell-wall residues reversed into bacterial forms. The protoplasts had respiratory activity similar to cells. Respiration of cells and protoplasts was stimulated by various substrates. High rates of oxygen consumption were observed with -glycerophosphate and ethanol as substrates.  相似文献   

6.
Protoplasts of Aureobasidium pullulans, formed by treating normal blastospores with polysaccharide-hydrolyzing enzymes, synthesized glycans when incubated in shallow culture. The polysaccharides formed a loose, thick coating on the cells. The glycans that were formed are similar to the glycans in normal cell walls; however, they lack the branching that is normally found. This result is consistent with the findings of others who have studied the cell wall composition of reverting yeast protoplasts.  相似文献   

7.
The regeneration of the yeast cell-wall was studied using 5-fluorouracil and yeast protoplasts. Protein synthesis in yeast cells (Saccharomyces cerevisiae) was kept reduced in the presence of this inhibitor at a rate corresponding to that before inhibition and was independent on the concentration of the inhibitor (10 or 100 μg/ml). The inhibition of the RNA synthesis was incomplete and dependent on the concentration of the inhibitor. Synthesis of thymidine and DNA was not inhibited as indicated by the growth tests. On the basis of the obtained data it may be concluded that fluorouracil inhibits only thede novo and the induced protein synthesis while permitting protein synthesis that has already been started before inhibition. Fluorouracil was then applied during the regeneration of yeast protoplasts. The results obtained have shown that fluorouracil does not inhibit the synthesis of the yeast cell wall but that the normal course of cell division is impaired by fluorouracil. The low efficiency of the fluorouracil inhibition of the cell wall synthesis indicates that processes leading to the regeneration of the cell wall are in fact only a continuation of those taking place under normal growth conditions.  相似文献   

8.
Preparation and regeneration of protoplasts is essential for somatic hybridization and transformation of yeasts. We present conditions that were found to be optimal for preparing and regeneratingSchizosaccharomyces pombe protoplasts for cell fusion. In contrast to these conditions, genetic transformation ofS. pombe requires spheroplasts that are osmotically sensitive, but still have some wall material attached to the cell. The main finding were as follows: (a) For protoplast formation with Novozym SP234, 0.9M sorbitol was found to be the optimal osmotic milieu and -mercaptoethanol is not necessary. (b) Embedding in soft agar yields considerably better regeneration frequencies than direct plating. (c) Cell fusion is optimal when both fusion partners are fully protoplasted, although considerable fusion occurs between spheroplasted cells as well. (d)Schizosaccharomyces pombe transformation frequencies are much higher with spheroplasts than with protoplasts. Inclusion of -mercaptoethanol did not enhance transformation frequency.  相似文献   

9.
The optimal conditions for protoplast formation ofCandida apicola were by using an enzyme fromArthrobacter sp. in combination with 2-mercaptoethanol. The kinetic data support the two-layered structure model of cell wall for this yeast but the structure of the cell wall depended on the age of cells and culture conditions. To regenerate the protoplasts, the type of osmotic stabilizer was important: sorbitol gave 16 to 30% regeneration. Electron microscopy revealed the presence of vesicles in the sections of protoplasts and whole cells ofCandida apicola grown in production medium and producing glycolipids. In sections of whole cells, vesicle-like structures are located in the periplasmic space and in protoplasts they can either be attached to, or released from, the cell surface. These vesicles are thought to be involved in the transport of the surface-active glycolipids and in the protection of the cell against denaturing effects.  相似文献   

10.
Summary The cell wall regeneration on protoplasts derived from maize mesophyll cells was compared with wall regeneration on protoplasts derived from suspension cultured cells using light microscopy, transmission electron microscopy, and mass spectrometry. The time course of cell wall regeneration has shown that the mesophyll protoplasts regenerated walls much slower than the protoplasts derived from cultured cells. Moreover, cell wall materials on the mesophyll protoplasts were often unevenly distributed. Electron microscopy has further demonstrated that the mesophyll protoplasts have less organized and compact walls than the protoplasts from cultured cells. Chemical analysis revealed that the mesophyll protoplasts had a lower ratio ofβ-(1–3)-glucan toβ-(1–4)-glucan than protoplasts from cultured cells. The significance of these results for the viability and development of protoplasts in culture is discussed. National Research Council of Canada paper no. 32458.  相似文献   

11.
Yeast protoplasts may regenerate the cell wall and revert to cells if immobilized in a 2%–5% Ca-alginate gel and cultured in an osmotically stabilized medium. The method of protoplast immobilization and subsequent isolation from the gel is described in detail. The reversion yield is dependent of the actual gel concentration, gel shape (beads vs. sheets) and of a medium molarity, and it may be up to 90%. The morphology of the cell wall regeneration and morphology of reversion to the cell forms correspond to protoplast development in gelatin or agar gels.  相似文献   

12.
Protoplasts can be isolated from microbial cells by enzymatic digestion of the cell wall, in the presence of an osmotic stabilizer. Such protoplasts can be induced to fuse in the presence of agents such as the poly (ethylene glycols). When suitably selected auxotrophic strains are used, the fusion products can be recovered by selection on the basis of nutritional complementation. Cultivation of the protoplasts on a hypertonic growth medium induces regeneration of new cell wall material and their subsequent reversion to the normal cell form of the organism. The protoplast fusion technique has been applied sucessfully to both bacterial and fungal systems leading to the recovery of recombinant progeny. In the fungi, the recovery of non-parental segregants from inter-species crosses has also been demonstrated. In assessing the value of the fusion technique, caution may be necessary at this stage in its application to genetic mapping in bacteria. The behaviour of protoplasts, especially with respect to reversion, could be an additional factor that operates during selection, distorting recombination frequencies. However, the fusion technique, in providing a mechanism by which genetic recombination can be readily achieved, should be of great potential in empirical breeding and strain improvement. These aspects are reviewed.  相似文献   

13.
Protoplasts of Daucus carota L. cultured in a synthetic liquid medium resumed cell division after about 4 days of cultivation. During this lag period, nucleic acid and protein showed only slight increases but the protoplasts commenced cell-wall regeneration soon after the removal of lytic enzymes. The originally spherical protoplasts became ellipsoidal before they underwent division. Radioactive glucose and myo-inositol were readily utilized by the protoplasts. Most of the radioactivity, however, appeared in extracellular polysaccharides and only a small portion was deposited in the regenerated wall. The sugar composition of new cell wall, as studies by chemical analysis and incorporation of labelled precursors, was shown to be considerably different from that of normal cell wall.  相似文献   

14.
During cultivation in a nutrient medium with snail gastric juice the protoplasts ofRhizopus nigricans produce an incomplete cell wall and grow. A true growth, associated with nuclear division, is involved. Morphology of growth of the formations is determined by the structure of the incomplete cell wall. When the incomplete wall is formed by a thin fibrillar net the growing formation assumes the physically optimal shape—i.e. a sphere; when the net is dense polar growth predominates. The degree of construction of the new wall depends on the activity of snail gastric juice enzymes which decreases during the cultivation. When fresh snail enzymes were added at certain intervals, only a fine fibrillar net was formed on the surface of growing protoplasts. The formations grew for up to 8 d under these conditions, reached several hundred μm in size and the number of nuclei increased up to 80-fold. When the blocking of the wall synthesis was interrupted, a complete cell wall regenerated on the surface of these giant formations and a reversion to hyphae was observed. The incomplete cell wall functions as a passive morphogenetic factor: It can influence the morphology of the growing protoplasts but it cannot induce reversion to hyphase and secure the permanent existence of these structures.  相似文献   

15.
During the process of degradation of the cell wall of the yeast form of Pullularia pullulans by the lytic system of Micromonospora chalcea samples were withdrawn at different times and observed under phase contrast and electron microscope. The progressive lysis of the walls reveals a fibrillar component inside the apparently amorphous wall. Freeze etched preparations of cells during the formation and regeneration of protoplasts show that the cellular membrane is split and this method allows the smooth external face of the membrane and other internal face covered by particles to be seen. The fact that the smooth face of the membrane is only visible during the preparation or the regeneration of protoplasts and very rarely when intact cells are fractured, suggests a strong adherence between cell wall and this external layer of the membrane. During the regeneration which takes place as in most of the yeasts and moulds, a special study of the extension of the cell wall is made and a possible mechanism for this extension of the regenerated cell wall is proposed.  相似文献   

16.
Cells of the osmotolerant yeast Saccharomyces rouxii were transformed to protoplasts in good yield (85%) by digesting cell walls with snail-gut enzyme in the presence of 10 mM dithioerythritol, 0.1 M sodium phosphate buffer (pH 6.8), and 2.0 M KCl. The requirement for 2.0 M KCl compares with that for S. bisporus var. mellis (another osmotolerant species) and contrasts with the 0.3 to 0.8 M KCl concentrations used in the preparation of most yeast protoplasts. Short digestions (60 min or less) produced mostly spheroplasts; longer incubations (90 min or more) yielded mostly protoplasts as judged by electron micrographs. These protoplasts could be transferred to 1.0 M KCl or 2.0 M sorbitol without lysing, but lysis was pronounced in 0.5 M KCl or 1.0 M mannitol and complete in 0.02 M KCl. Protoplasts were separated from isolated cell wall remnants and debris by centrifugation on a linear gradient of Ficoll 400 (35 to 17.5%, wt/vol) containing 2.0 M KCl. Both crude and fractionated protoplast preparations contained vesicles which were identified with the periplasmic bodies of whole cells. Some of the periplasmic bodies were connected to protoplasts by fine pedicels; others appeared free. Independent degeneracy of periplasmic bodies was occasionally observed. beta-Fructofuranosidase (EC 3.2.1.26) activity is cryptic (physically) in cells of S. rouxii in contrast to the expressed enzyme (periplasmic space) of other Saccharomyces species. This enzyme remains cryptic in protoplast preparations of S. rouxii but is expressed upon lysis. The same specific activities were found per unit cell or protoplast. The possible association of the cryptic enzyme with periplasmic bodies is discussed.  相似文献   

17.
A general procedure for manipulating protoplasts of three Streptomyces rimosus strains was developed. More than 50% regeneration efficiency was obtained by optimizing the osmotic stabilizer concentrations and modifying the plating procedure. Preparation and regeneration of protoplasts were studied by both phase-contrast and electron microscopy. After cell wall degradation with lysozyme, protoplasts about 1,000 to 1,500 nm in diameter appeared. The reversion process exhibited normal and aberrant regeneration of protoplasts to hyphae and to spherical cells, respectively. Spherical cells contained no alpha, epsilon-ll-diaminopimelic acid and were colorless or red after Gram staining. They showed consistent stability during at least five subsequent subcultivations. However, the omission of glycine from the precultivation medium reduced the unusual process of regeneration almost completely. After normal protoplast regeneration, the production of oxytetracycline by single isolates was not affected.  相似文献   

18.
Protoplasts of Bacillus subtilis plated on SD medium form L colonies in quantitative yield and propagate in the L form indefinitely. L bodies or protoplasts placed in 25% gelatin medium form bacillary colonies. Details of the reversion of naked bodies to the walled form are reported. In 25% gelatin medium, reversion begins earlier (about 50% reversion in 4 hr) than the multiplication of bacilli. Thus, virtually all the observed bacillary forms are themselves revertants and not the offspring of a few growing clones. The optimal temperature for reversion is 26 C in 25% gelatin. When cells reverting at 26 C are warmed to 40 C for 3 min, reversion is delayed markedly, whereas viability is unaffected. For electron microscopy, a dense protoplast inoculum was placed on a gelatin surface, incubated, and then fixed in situ. There was no multiplication, but crowding delayed reversion markedly. Successive events of reversion are as follows. The loose nucleoid of the protoplasts condenses in response to the gelatin medium and condenses further and further as reversion proceeds. A thin coat of wall develops around the bodies of various sizes and shapes and then increases uniformly in thickness until a wall of normal aspect is formed. Rod-shaped cells grow out from these bodies-sometimes in several directions at once. A few mesosomes begin to appear only after a thin coat of wall has been formed. These are dense, atypical structures compartmented by membranes. They are located at the cell periphery and do not seem to be in contact with the nucleoids. Quantitative estimates showed that only 20 to 25% of revertant cells or cells grown on gelatin contain even a single mesosome. The others have no mesosome at all. Mesosomes thus do not appear to play a significant role in reversion, and normal mesosome functions must presumably be performed elsewhere in the cell in gelatin-grown bacilli. The role of cell wall, its synthesis, and its chemical nature in successive steps in reversion are discussed.  相似文献   

19.
The ultrastructure of the cyanobionts of the greenhouse-grown cycads Cycas circinalis, Ceratozamia mexicana, and Encephalartos villosus was studied. The cyanobiont microcolonies grown in the intercellular space of the cyanobacterial zone of cortical parenchyma in the cycad coralloid roots contained two specific forms of vegetative cells with a reduced cell wall, namely, protoplasts and spheroplasts. The protoplasts and spheroplasts exhibited ultrastructural properties indicating the overproduction of two extracellular substances, one of which resembled the mucilage polysaccharides and the other was protein-like. The substances were likely to be synthesized intracellularly and then be excreted with the aid of surface vesicles or by ruptures in the cytoplasmic membrane to form, respectively, a mucilagious extracellular matrix and an additional electron-opaque envelope around the cell. At the late developmental stages, the excretion of these substances was accompanied by degradative changes in the cells, leading eventually to cell death. The physiological role of these specific cell forms and the factors that induce their development and death in the cell populations of cyanobionts are discussed.  相似文献   

20.
The prasinophyte genera Scherffelia and Tetraselmis are the only genera that form a cell wall by an extracellular fusion of scales called a theca. We established a protocol for the production of protoplasts from Scherffelia dubia Pascher emend. Melkonian et Preisig using 3 mM Ellman's reagent (5,5′‐dithio‐bis‐2‐nitrobenozoic acid [DTNB]). Protoplasts analyzed by EM lacked flagella and thecae but were otherwise similar to control cells. In response to treatment with DTNB, many protoplasts synthesized new thecal scales in the Golgi apparatus, indicating that cells attempted to regenerate new cell walls. However, complete regeneration of the thecae only occurred once DTNB was washed out from the medium. At higher DTNB concentrations (5 mM), two protoplasts were found within the parental cell wall and scales accumulated between the plasma membrane of the protoplasts and the original theca but failed to form a new theca.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号