首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bundle sheath cells were enzymatically isolated from representatives of three groups of C4 plants: Zea mays (NADP malic enzyme type), Panicum miliaceum (NAD malic enzyme type), and Panicum maximum (phosphoenolpyruvate (PEP) carboxykinase type). Cellular organelles from bundle sheath homogenates were partially resolved by differential centrifugation and on isopycnic sucrose density gradients in order to study compartmentation of photosynthetic enzymes. A 48-h-dark pretreatment of the leaves allowed the isolation of relatively intact chloroplasts. Enzymes that decarboxylate C4 acids and furnish CO2 to the Calvin cycle are localized as follows: NADP malic enzyme, chloroplastic in Z. mays; NAD malic enzyme, mitochondrial in all three species; PEP carboxykinase, chloroplastic in P. maximum. The activity of NAD malic enzyme in the three species was in the order of P. miliaceum > P. maximum > Z. mays. There were high levels of aspartate and alanine aminotransferases in bundle sheath extracts of P. miliaceum and P. maximum and substantial activity in Z. mays. In all three species, aspartate aminotransferase was mitochondrial whereas alanine aminotransferase was cytoplasmic. Based on the activity and localization of certain enzymes, the concept for aspartate and malate as transport metabolites from mesophyll to bundle sheath cells in C4 species of the three C4 groups is discussed.  相似文献   

2.
The maximum extractable activities of twenty-one photosynthetic and glycolytic enzymes were measured in mature leaves of Mesembryanthemum crystallinum plants, grown under a 12 h light 12 h dark photoperiod, exhibiting photosynthetic characteristics of either a C3 or a Crassulacean acid metabolism (CAM) plant. Following the change from C3 photosynthesis to CAM in response to an increase in the salinity of in the rooting medium from 100 mM to 400 mM NaCl, the activity of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) increased about 45-fold and the activities of NADP malic enzyme (EC 1.1.1.40) and NAD malic enzyme (EC 1.1.1.38) increased about 4- to 10-fold. Pyruvate, Pi dikinase (EC 2.7.9.1) was not detected in the non-CAM tissue but was present in the CAM tissue; PEP carboxykinase (EC 4.1.1.32) was detected in neither tissue. The induction of CAM was also accompanied by large increases in the activities of the glycolytic enzymes enolase (EC 4.2.1.11), phosphoglyceromutase (EC 2.7.5.3), phosphoglycerate kinase (EC 2.7.2.3), NAD glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), and glucosephosphate isomerase (EC 2.6.1.2). There were 1.5- to 2-fold increases in the activities of NAD malate dehydrogenase (EC 1.1.1.37), alanine and aspartate aminotransferases (EC 2.6.1.2 and 2.6.1.1 respectively) and NADP glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13). The activities of ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphatase (EC 3.1.3.11), phosphofructokinase (EC 2.7.1.11), hexokinase (EC 2.7.1.2) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) remained relatively constant. NADP malate dehydrogenase (EC 1.1.1.82) activity exhibited two pH optima in the non-CAM tissue, one at pH 6.0 and a second at pH 8.0. The activity at pH 8.0 increased as CAM was induced. With the exceptions of hexokinase and glucose-6-phosphate dehydrogenase, the activities of all enzymes examined in extracts from M. crystallinum exhibiting CAM were equal to, or greater than, those required to sustain the maximum rates of carbon flow during acidification and deacidification observed in vivo. There was no day-night variation in the maximum extractable activities of phosphoenolpyruvate carboxylase, NADP malic enzyme, NAD malic enzyme, fructose-1,6-bisphosphatase and NADP malate dehydrogenase in leaves of M. crystallinum undergoing CAM.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

3.
Photosynthetic activities of bundle sheath cell strands isolated from several C4 pathway species were examined. These included species that decarboxylate C4 acids via either NADP-malic enzyme (Zea mays, NADP-malic enzyme-type), NAD-malic enzyme (Atriplex spongiosa and Panicum miliaceum, NAD-malic enzyme-type) or phosphoenolpyruvate carboxykinase (Chloris gayana and Panicum maximum, phosphoenolpyruvate carboxykinase-type). Preparations from each of these species fixed 14CO2 at rates ranging between 1.2 and 3.5 μmol min?1 mg?1 of chlorophyll, with more than 90% of the 14C being assimilated into Calvin cycle intermediates. With added HCO3? the rate of light-dependent O2 evolution ranged between 2 and 4 μmol min?1 mg?1 of chlorophyll for cells from NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type species but with Z. mays cells there was no O2 evolution detectable. Most of the 14CO2 fixed by Z. mays cells provided with H14CO3? plus ribose 5-phosphate accumulated in the C-1 of 3-phosphoglycerate. However, 3-phosphoglycerate reduction was increased several fold when malate was also provided. Cells from all species rapidly decarboxylated C4 acids under appropriate conditions, and the CO2 released from the C-4 carboxyl was reassimilated via the Calvin cycle. Malate decarboxylation by Z. mays cells was dependent upon light and an endogenous or exogenous source of 3-phosphoglycerate. Bundle sheath cells of NAD-malic enzyme-type species rapidly decarboxylated [14C]malate when aspartate and 2-oxoglutarate were also provided, and [14C]aspartate was decarboxylated at similar rates when 2-oxoglutarate was added. Cells from phosphoenolpyruvate carboxykinase-type species decarboxylated [14C]aspartate when 2-oxoglutarate was added and they also catalyzed a slower decarboxylation of malate. Cells from NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type species evolved O2 in the light when C4 acids were added. These results are discussed in relation to proposed mechanisms for photosynthetic metabolism in the bundle sheath cells of species utilizing C4 pathway photosynthesis.  相似文献   

4.
NAD malic enzyme (EC 1.1.1.39), which is involved in C4 photosynthesis, was purified to electrophoretic homogeneity from leaves of Eleusine coracana and to near homogeneity from leaves of Panicum dichotomiflorum. The enzyme from each C4 species was found to have only one type of subunit by SDS polyacrylamide gel electrophoresis. The Mr of subunits of the enzme from E. coracana and P. dichotommiflorum was 63 and 61 kilodaltons, respectively. The native Mr of the enzyme from each species was determined by gel filtration to be about 500 kilodaltons, indicating that the NAD malic enzyme from C4 species is an octamer of identical subunits. The purified NAD malic enzyme from each C4 species showed similar kinetic properties with respect to concentrations of malate and NAD; each had a requirement for Mn2+ and activation by fructose- 1,6-bisphosphate (FBP) or CoA. A cooperativity with respect to Mn2+ was apparent with both enzymes. The activator (FBP) did not change the Hill value but greatly decreased K0.5 (the concentration giving half-maximal activity) for Mn2+. The enzyme from E. coracana showed a very low level of activity when NADP was used as substrate, but this activity was also stimulated by FBP. Significant differences between the enzymes from E. coracana and P. dichotomiflorum were observed in their responses to the activators and their immunochemical properties. The enzyme from E. coracana was largely dependent on the activators FBP or CoA, regardless of concentration of Mn2+. In contrast, the enzyme from P. dichotomiflorum showed significant activity in the absence of the activator, especially at high concentrations of Mn2+. Both immunodiffusion and immunoprecipitation, using antiserum raised against the purified NAD malic enzyme from E. coracana, revealed partial antigenic differences between the enzymes from E. coracana and P. dichotomiflorum. The activity of the NAD malic enzyme from Amaranthus edulis, a typical NAD malic enzyme type C4 dicot, was not inhibited by the antiserum raised against the NAD malic enzyme from E. coracana.  相似文献   

5.
These studies demonstrated that CO2 rather than HCO3 is the inorganic carbon metabolite produced by the C4 acid decarboxylases involved in C4 photosynthesis (chloroplast located NADP malic enzyme, mitochondrial NAD malic enzyme, and cytosolic phosphoenolpyruvate [PEP] carboxykinase). The effect of varying CO2 or HCO3 as a substrate for the carboxylation reaction catalyzed by these enzymes or as inhibitors of the decarboxylation reaction was also determined. The KmCO2 was 1.1 millimolar for NADP malic enzyme and 2.5 millimolar for PEP carboxykinase. For these two enzymes the velocity in the carboxylating direction was substantially less than for the decarboxylating direction even with CO2 concentrations at the upper end of the range of expected cellular levels. Activity of NAD malic enzyme in the carboxylating direction was undetectable. The decarboxylation reaction of all three enzymes was inhibited by added HCO3. For NADP malic enzyme CO2 was shown to be the inhibitory species but PEP carboxykinase and NAD malic enzyme were apparently inhibited about equally by CO2 and HCO3.  相似文献   

6.
NADP:malic enzyme from corn (Zea mays L.) leaves was purified by conventional techniques to apparent homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Antibodies raised against this protein in rabbits were purified, coupled covalently to protein A-Sepharose CL-4B, and used as an immunoaffinity resin to purify the NADP:malic enzymes of the C3 plants spinach (Spinacia oleracea L.) and wheat (Triticum aestivum L.), of the Crassulacean acid metabolism (CAM) plant Bryophyllum daigremontianum R. Hamed et Perr. de la Bathie and the C4 plants corn, sugarcane (Saccharum officinarum L.), and Portulaca grandiflora L. Such procedures yielded homogeneous protein preparations with a single protein band, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, except for P. grandiflora L. with two bands. The specific activities of the purified proteins ranged between 56 and 91 units (milligrams per protein). NADP:malic enzyme represented up to 1% of the total soluble protein in C4 plants, 0.5% in the CAM plant, and less than 0.01% in C3 plants. In immunotitration tests involving immunoprecipitation and immunoinhibition of activity by an antiserum against the corn leaf enzyme, the NADP:malic enzymes of corn and sugarcane showed virtually full identity of epitopes, while the NADP:malic enzymes of the C3 and CAM plants exhibited a cross-reaction of one-twentieth and one-fourth by these tests, respectively. The NADP:malic enzyme of P. grandiflora exhibited characteristics more closely related to the enzymes of C3 and CAM plants than to those of C4 plants.  相似文献   

7.
Summary An albino seedling of Zea mays L. was investigated for its potential for CO2-assimilation. In the mesophyll the number, dimensions and fine structure of chloroplasts are drastically reduced but to a lesser extent in the bundle sheath. Chlorophyll concentration is zero and carotenoid concentration almost zero. Albinism also exerts a strong influence on the stroma of bundle sheath chloroplasts; ribulose-1.5-biphosphate carboxylase (EC 4.1.1.39) activity and glyceraldehyde-3-phosphate dehydrogenase (NADP) (EC 1.2.1.13) activity is not detectable. The C4-enzymes phosphoenolpyruvate carboxylase (EC 4.1.1.31) and malate dehydrogenase (decarboxylating) (EC 1.1.1.40) and the non-photosynthetic linked enzymes malate dehydrogenase (NAD) (EC 1.1.1.37), aspartate-2-oxoglutarate aminotransferase (EC 1.1.1.37), aspartate-2-oxoglutarate aminotransferase (EC 2.6.1.1.) and glyceraldehyde-3-phosphate dehydrogenase (NAD) (EC 1.2.1.1.) are present in the albino seedling with activities comparable to those in etiolated maize seedlings. The potential for CO2 fixation of the albino seedlings exceeds that of comparable dark seedlings considerably. The results are discussed with regard to enzyme localization of the C4 pathway of photosynthesis.Abbreviations Aspartate aminotransferase L-aspartate-2-oxoglutarate aminotransferase-EC 2.6.1.1. - GAPDH (NAD) glyceraldehyde-3-phosphate dehydrogenase (NAD dep.)-EC 1.2.1.12 - GAPDH (NADP) glyceraldehyde-3-phosphate dehydrogenase (NADP dep.)-EC 1.2.1.13 - malic enzyme malate dehydrogenase (NADP dep., decarboxylating)-EC 1.1.1.40 - MDH malate dehydrogenase (NAD dep.)-1.1.1.37 - PEP carboxylase phosphoenolpyruvate carboxylase-EC 4.1.1.31 - RuDP carboxylase ribulose-1.5-biphosphate carboxylase-EC 4.1.1.39  相似文献   

8.
To better understand the coordination between dark and light reactions during the transition from C3 to C4 photosynthesis, we optimized a method for separating thylakoids from mesophyll (MC) and bundle sheath cells (BSCs) across different plant species. We grew six Paniceae grasses including representatives from the C3, C3–C4 and C4 photosynthetic types and all three C4 biochemical subtypes [nicotinamide adenine dinucleotide phosphate‐dependent malic enzyme (NADP‐ME), nicotinamide adenine dinucleotide‐dependent malic enzyme (NAD‐ME) and phosphoenolpyruvate carboxykinase (PEPCK)] in addition to Zea mays under control conditions (1000 μmol quanta m?2 s?1 and 400 ppm of CO2). Proteomics analysis of thylakoids under native conditions, using blue native polyacrylamide gel electrophoresis followed by liquid chromatography‐mass spectrometry (LC‐MS), demonstrated the presence of subunits of all light‐reaction‐related complexes in all species and cell types. C4 NADP‐ME species showed a higher photosystems I/II ratio and a clear accumulation of the NADH dehydrogenase‐like complexes in BSCs, while Cytb6f was more abundant in BSCs of C4 NAD‐ME species. The C4 PEPCK species showed no clear differences between cell types. Our study presents, for the first time, a good separation between BSC and MC for a C3–C4 intermediate grass which did not show noticeable differences in the distribution of the thylakoid complexes. For the NADP‐ME species Panicum antidotale, growth at glacial CO2 (180 ppm of CO2) had no effect on the distribution of the light‐reaction complexes, while growth at low light (200 μmol quanta m?2 s?1) promoted the accumulation of light‐harvesting proteins in both cell types. These results add to our understanding of thylakoid distribution across photosynthetic types and subtypes, and introduce thylakoid distribution between the MC and BSC of a C3–C4 intermediate species.  相似文献   

9.
Vu JC  Allen LH  Bowes G 《Plant physiology》1984,76(3):843-845
Ribulose bisphosphate carboxylase/oxygenase (RuBPCase) from several plants had substantially greater activity in extracts from lightexposed leaves than dark leaves, even when the extracts were incubated in vitro with saturating HCO3 and Mg2+ concentrations. This occurred in Glycine max, Lycopersicon esculentum, Nicotiana tabacum, Panicum bisulcatum, and P. hylaeicum (C3); P. maximum (C4 phosphoenolpyruvate carboxykinase); P. milioides (C3/C4); and Bromelia pinguin and Ananas comosus (Crassulacean acid metabolism). Little or no difference between light and dark leaf extracts of RuBPCase was observed in Triticum aestivum (C3); P. miliaceum (C4 NAD malic enzyme); Zea mays and Sorghum bicolor (C4 NADP malic enzyme); Moricandia arvensis (C3/C4); and Hydrilla verticillata (submersed aquatic macrophyte). It is concluded that, in many plants, especially Crassulacean acid metabolism and C3 species, a large fraction of ribulose-1,5-bisphosphate carboxylase/oxygenase in the dark is in an inactivatable state that cannot respond to CO2 and Mg2+ activation, but which can be converted to an activatable state upon exposure of the leaf to light.  相似文献   

10.
Ecotypic differences in the photosynthetic carbon metabolism of Mollugo verticillata were studied. Variations in C3 and C4 cycle activity are apparently due to differences in the activities of enzymes associated with each pathway. Compared to C4 plants, the activities of C4 pathway enzymes were generally lower in M. verticillata, with the exception of the decarboxylase enzyme, NAD malic enzyme. The combined total carboxylase enzyme activity of M. verticillata was greater than that of C3 plants, possibly accounting for the high photosynthetic rates of this species. Unlike either C3 or C4 plants, ribulose bisphosphate carboxylase was present in both mesophyll and bundle sheath cell chloroplasts in M. verticillata. The localization of this enzyme in both cells in this plant, in conjunction with an efficient C4 acid decarboxylation mechanism most likely localized in bundle sheath cell mitochondria, may account for intermediate photorespiration levels previously observed in this species.  相似文献   

11.
12.
C4 photosynthesis evolved multiple times in diverse lineages. Most physiological studies comparing C4 plants were not conducted at the low atmospheric CO2 prevailing during their evolution. Here, 24 C4 grasses belonging to three biochemical subtypes [nicotinamide adenine dinucleotide malic enzyme (NAD‐ME), phosphoenolpyruvate carboxykinase (PCK) and nicotinamide adenine dinucleotide phosphate malic enzyme (NADP‐ME)] and six major evolutionary lineages were grown under ambient (400 μL L?1) and inter‐glacial (280 μL L?1) CO2. We hypothesized that nitrogen‐related and water‐related physiological traits are associated with subtypes and lineages, respectively. Photosynthetic rate and stomatal conductance were constrained by the shared lineage, while variation in leaf mass per area (LMA), leaf N per area, plant dry mass and plant water use efficiency were influenced by the subtype. Subtype and lineage were equally important for explaining variations in photosynthetic nitrogen use efficiency (PNUE) and photosynthetic water use efficiency (PWUE). CO2 treatment impacted most parameters. Overall, higher LMA and leaf N distinguished the Chloridoideae/NAD‐ME group, while NADP‐ME and PCK grasses were distinguished by higher PNUE regardless of lineage. Plants were characterized by high photosynthesis and PWUE when grown at ambient CO2 and by high conductance at inter‐glacial CO2. In conclusion, the evolutionary and biochemical diversity among C4 grasses was aligned with discernible leaf physiology, but it remains unknown whether these traits represent ecophysiological adaptation.  相似文献   

13.
Two naturally occurring species of the genus Alternanthera, namely A. ficoides and A. tenella, were identified as C3-C4 intermediates based on leaf anatomy, photosynthetic CO2 compensation point (Γ), O2 response of г, light intensity response of г, and the activities of key enzymes of photosynthesis. A. ficoides and A. tenella exhibited a less distinct Kranz-like leaf anatomy with substantial accumulation of starch both in mesophyll and bundle sheath cells. Photosynthetic CO2 compensation points of these two intermediate species at 29°C were much lower than in C3 plants and ranged from 18 to 22 microliters per liter. Although A. ficoides and A. tenella exhibited similar intermediacy in г, the apparent photorespiratory component of O2 inhibition in A. ficoides is lower than in A. tenella. The г progressively decreases from 35 microliters per liter at lowest light intensity to 18 microliters per liter at highest light intensity in A. tenella. It was, however, constant in A. ficoides at 20 to 25 microliters per liter between light intensities measured. The rates of net photosynthesis at 21% O2 and 29°C by A. ficoides and A. tenella were 25 to 28 milligrams CO2 per square decimeter per hour which are intermediate between values obtained for Tridax procumbens and A. pungens, C3 and C4 species, respectively. The activities of key enzymes of C4 photosynthesis, phosphoenolpyruvate carboxylase, pyruvate Pi dikinase, NAD malic enzyme, NADP malic enzyme and phosphoenolpyruvate carboxykinase in the two intermediates, A. ficoides and A. tenella are very low or insignificant. Results indicated that the relatively low apparent photorespiratory component in these two species is presumably the basis for the C3-C4 intermediate photosynthesis.  相似文献   

14.
Intercellular distribution of enzymes involved in amino nitrogen synthesis was studied in leaves of species representing three C4 groups, i.e. Sorghum bicolor, Zea mays, Digitaria sanguinalis (NADP malic enzyme type); Panicum miliaceum (NAD malic enzyme type); and Panicum maximum (phosphoenolpyruvate carboxykinase type). Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase were predominantly localized in mesophyll cells of all the species, except in P. maximum where nitrite reductase had similar activity on a chlorophyll basis, in both mesophyll and bundle sheath cells. NADH-glutamate dehydrogenase was concentrated in the bundle sheath cells, while NADPH-glutamate dehydrogenase was localized in both mesophyll and bundle sheath cells. The activities of nitrate-assimilating enzymes, except for nitrate reductase, were high enough to account for the proposed in vivo rates of nitrate assimilation.  相似文献   

15.
The photosynthetic efficiency of the CO2‐concentrating mechanism in two forms of single‐cell C4 photosynthesis in the family Chenopodiaceae was characterized. The Bienertioid‐type single‐cell C4 uses peripheral and central cytoplasmic compartments (Bienertia sinuspersici), while the Borszczowioid single‐cell C4 uses distal and proximal compartments of the cell (Suaeda aralocaspica). C4 photosynthesis within a single‐cell raises questions about the efficiency of this type of CO2‐concentrating mechanism compared with the Kranz‐type. We used measurements of leaf CO2 isotope exchange (Δ13C) to compare the efficiency of the single‐cell and Kranz‐type forms of C4 photosynthesis under various temperature and light conditions. Comparisons were made between the single‐cell C4 and a sister Kranz form, S. eltonica[NAD malic enzyme (NAD ME) type], and with Flaveria bidentis[NADP malic enzyme (NADP‐ME) type with Kranz Atriplicoid anatomy]. There were similar levels of Δ13C discrimination and CO2 leakiness (?) in the single‐cell species compared with the Kranz‐type. Increasing leaf temperature (25 to 30 °C) and light intensity caused a decrease in Δ13C and ? across all C4 types. Notably, B. sinuspersici had higher Δ13C and ? than S. aralocaspica under lower light. These results demonstrate that rates of photosynthesis and efficiency of the CO2‐concentrating mechanisms in single‐cell C4 plants are similar to those in Kranz‐type.  相似文献   

16.
After a 5-second exposure of illuminated bermudagrass (Cynodon dactylon L. var. `Coastal') leaves to 14CO2, 84% of the incorporated 14C was recovered as aspartate and malate. After transfer from 14CO2-air to 12CO2-air under continuous illumination, total radioactivity decreased in aspartate, increased in 3-phosphoglyceric acid and alanine, and remained relatively constant in malate. Carbon atom 1 of alanine was labeled predominantly, which was interpreted to indicate that alanine was derived from 3-phosphoglyceric acid. The activity of phosphoenolpyruvate carboxylase, alkaline pyrophosphatase, adenylate kinase, pyruvate-phosphate dikinase, and malic enzyme in bermudagrass leaf extracts was distinctly higher than those in fescue (Festuca arundinacea Schreb.), a reductive pentose phosphate cycle plant. Assays of malic enzyme activity indicated that the decarboxylation of malate was favored. Both malic enzyme and NADP+-specific malic dehydrogenase activity were low in bermudagrass compared to sugarcane (Saccharum officinarum L.). The activities of NAD+-specific malic dehydrogenase and acidic pyrophosphatase in leaf extracts were similar among the plant species examined, irrespective of the predominant cycle of photosynthesis. Ribulose-1, 5-diphosphate carboxylase in C4-dicarboxylic acid cycle plant leaf extracts was about 60%, on a chlorophyll basis, of that in reductive pentose phosphate cycle plants.  相似文献   

17.
Properties of leaf NAD malic enzyme from plants with C4 pathway photosynthesis   总被引:11,自引:0,他引:11  
C4 acid decarboxylation in one group of C4-pathway species is mediated by an NAD malic enzyme. This paper reports on the partial purification and properties of this enzyme from three species of this group, Atriplex spongiosa, Amaranthus edulis, and Panicum miliaceum. Depending upon the conditions, the Atriplex spongiosa enzyme was 5–30% as active with NADP compared with NAD but the enzyme from the other species was specific for NAD. The enzyme from each species had an absolute requirement for Mn2+ that could not be replaced by Mg2+, and activity was increased several fold by low concentrations of either CoA or acetyl CoA. For the enzyme from Atriplex spongiosa and Amaranthus edulis, there was cooperativity for malate binding and the activators CoA and acetyl CoA functioned to increase the affinity of malate for the enzyme. The Hill coefficients for malate binding were approximately 2 and 4, respectively. However, with the enzyme from Panicum miliaceum, cooperative binding of malate was not apparent and activators operated by increasing V rather than the affinity for malate. Bicarbonate inhibited the enzyme from Atriplex spongiosa and Amaranthus edulis and its effect was inversely related to the concentrations of malate, NAD, and activators. The possible significance of these various allosteric effects on the regulation of the enzyme in vivo is discussed. Reactant concentrations and other conditions required for maximum activity are reported.  相似文献   

18.
For one group of C4 species we have proposed that the C4 acid decarboxylation phase of C4 photosynthesis proceeds via a NAD ‘malic’ enzyme located in bundle sheath mitochondria. The present studies with Atriplex spongiosa demonstrate the capacity of isolated mitochondria and bundle sheath cell strands to decarboxylate malate at rates commensurate with an integral role in photosynthesis. With bundle sheath cells, rates of H14CO3? fixation into Calvin cycle intermediates and evolution of O2 when HCO3? was added, were above 2 μmoles/min/mg chlorophyll. Similar rates of O2 evolution resulted from the addition of C4 acids, and the C-4 carboxyl of malate was rapidly assimilated into photosynthetic intermediates and products.  相似文献   

19.
The activities of certain enzymes related to the carbon assimilation pathway in whole leaves, mesophyll cell extracts, and bundle sheath extracts of the C4 plant Panicum miliaceum have been measured and compared on a chlorophyll basis. Enzymes of the C4 dicarboxylic acid pathway—phosphoenolpyruvate carboxylase and NADP-malic dehydrogenase—were localized in mesophyll cells. Carbonic anhydrase was also localized in mesophyll cell extracts. Ribose 5-phosphate isomerase, ribulose 5-phosphate kinase, and ribulose diphosphate carboxylase—enzymes of the reductive pentose phosphate pathway—were predominantly localized in bundle sheath extracts. High activities of aspartate and alanine transaminases and glyceraldehyde-3-P dehydrogenase were found about equally distributed between the photosynthetic cell types. P. miliaceum had low malic enzyme activity in both mesophyll and bundle sheath extracts.  相似文献   

20.
Abstract The influences of shading during growth upon the activities of several photosynthetic enzymes were examined in NADP-ME type C4 grasses from open (Zea mays L.) and shaded (Paspalum conjugation Berg.) habitats. The substantial species-difference in maximum photosynthetic rate observed under a high light regime was correlated with large differences in both enzyme activities and leaf protein contents. With the exception of RuBP carboxylase activity, other photosynthetic enzyme activities in Z. mays were reduced by shading to a similar extent as maximum photosynthetic rate. In contrast, only PEP carboxylase and pyruvate, Pi dikinase activities were decreased by shading in P. conjugatum. As with maximum photosynthetic rate, other photosynthetic enzyme activities in P. conjugatum were relatively insensitive to irradiance during growth. Under a low photon flux density of photosynthetically active radiation (50 μmol m?2 s?1), the flow of [14C] label through photosynthetic intermediates in intact, shade-grown leaves of P. conjugatum was typical of C4 metabolism. This provides incontrovertible proof for the occurrence of C4 photosynthesis in shaded habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号