首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In our studies with the penicillin V acylase of Bovista plumbea strains NRRL 3501 and NRRL 3824, we wanted to receive spores of these fungi. Surprisingly the fruiting bodies obtained in our work were not identical with those characteristic for Bovista plumbea. We identified them as Pleurotus ostreatus. For this reason we have to correct the name of the fungi known as Bovista plumbea NRRL 3501 and NRRL 3824.  相似文献   

2.
Paralytic shellfish poisoning (PSP) is a syndrome caused by the consumption of shellfish contaminated with neurotoxins produced by organisms of the marine dinoflagellate genus Alexandrium. A. minutum is the most widespread species responsible for PSP in the Western Mediterranean basin. The standard monitoring of shellfish farms for the presence of harmful algae and related toxins usually requires the microscopic examination of phytoplankton populations, bioassays and toxin determination by HPLC. These procedures are time-consuming and require remarkable experience, thus limiting the number of specimens that can be analyzed by a single laboratory unit. Molecular biology techniques may be helpful in the detection of target microorganisms in field samples. In this study, we developed a qualitative PCR assay for the rapid detection of all potentially toxic species belonging to the Alexandrium genus and specifically A. minutum, in contaminated mussels. Alexandrium genus-specific primers were designed to target the 5.8S rDNA region, while an A. minutum species-specific primer was designed to bind in the ITS1 region. The assay was validated using several fixed seawater samples from the Mediterranean basin, which were analyzed using PCR along with standard microscopy procedures. The assay provided a rapid method for monitoring the presence of Alexandrium spp. in mussel tissues, as well as in seawater samples. The results showed that PCR is a valid, rapid alternative procedure for the detection of target phytoplankton species either in seawater or directly in mussels, where microalgae can accumulate.  相似文献   

3.
The nematode, Caenorhabditis elegans, possesses the most extensive known superfamily of cys-loop ligand-gated ion channels (cys-loop LGICs) consisting of 102 subunit-encoding genes. Less than half of these genes have been functionally characterised which include cation-permeable channels gated by acetylcholine (ACh) and γ-aminobutyric acid (GABA) as well as anion-selective channels gated by ACh, GABA, glutamate and serotonin. Following the guidelines set for genetic nomenclature for C. elegans, we have designated unnamed subunits as lgc genes (ligand-gated ion channels of the cys-loop superfamily). Phylogenetic analysis shows that several of these lgc subunits form distinct groups which may represent novel cys-loop LGIC subtypes.  相似文献   

4.
We developed an efficient gene transfer method mediated by Agrobacterium tumefaciens for introgression of new rice for Africa (NERICA) cultivars, which are derivatives of interspecific hybrids between Oryza glaberrima Steud. and O. sativa L. Freshly isolated immature embryos were inoculated with A. tumefaciens LBA4404 that harbored binary vector pBIG-ubi::GUS or pIG121Hm, which each carried a hygromycin-resistance gene and a GUS gene. Growth medium supplemented with 500 mg/l cefotaxime and 20 mg/l hygromycin was suitable for elimination of bacteria and selection of transformed cells. Shoots regenerated from the selected cells on MS medium containing 20 g/l sucrose, 30 g/l sorbitol, 2 g/l casamino acids, 0.25 mg/l naphthaleneacetic acid, 2.5 mg/l kinetin, 250 mg/l cefotaxime, and 20 mg/l hygromycin. The shoots developed roots on hormone-free MS medium containing 30 mg/l hygromycin. Integration and expression of the transgenes were confirmed by PCR, Southern blot analysis, and histochemical GUS assay. Stable integration, expression, inheritance, and segregation of the transgenes were demonstrated by molecular and genetic analyses in the T0 and T1 generations. Most plants were normal in morphology and fertile. The transformation protocol produced stable transformants from 16 NERICA cultivars. We also obtained transformed plants by inoculation of calluses derived from mature seeds, but the frequency of transformation was lower and sterility was more frequent.  相似文献   

5.
In Arabidopsis thaliana and Oryza sativa, two types of PI 4-kinase (PI4Ks) have been isolated and functionally characterized. The α-type PI4Ks (~220 kDa) contain a PH domain, which is lacking in β-type PI4Ks (~120 kDa). β-Type PI4Ks, exemplified by Arabidopsis AtPI4Kβ and rice OsPI4K2, contain a highly charged repetitive segment designated PPC (Plant PI4K Charged) region, which is an unique domain only found in plant β-type PI4Ks at present. The PPC region has a length of ~300 amino acids and harboring 11 (AtPI4Kβ) and 14 (OsPI4K2) repeats, respectively, of a 20-aa motif. Studies employing a modified yeast-based “Sequence of Membrane-Targeting Detection” system demonstrate that the PPC(OsPI4K2) region, as well as the former 8 and latter 6 repetitive motifs within the PPC region, are able to target fusion proteins to the plasma membrane. Further detection on the transiently expressed GFP fusion proteins in onion epidermal cells showed that the PPC(OsPI4K2) region alone, as well as the region containing repetitive motifs 1–8, was able to direct GFP to the plasma membrane, while the regions containing less repetitive motifs, i.e. 6, 4, 2 or single motif(s) led to predominantly intracellular localization. Agrobacterium-mediated transient expression of PPC-GFP fusion protein further confirms the membrane-targeting capacities of PPC region. In addition, the predominant plasma membrane localization of AtPI4Kβ was mediated by the PPC region. Recombinant PPC peptide, expressed in E. coli, strongly binds phosphatidic acid, PI and PI4P, but not phosphatidylcholine, PI5P, or PI(4,5)P2 in vitro, providing insights into potential mechanisms for regulating sub-cellular localization and lipid binding for the plant β-type PI4Ks. The nucleotide sequences reported in this paper have been submitted to the GenBankTM/EMBL Data Bank under accession number AY536061 (highly charged region of OsPI4K2) and AJ277791 (partial cDNA of OsPI4K2). Ying Lou and Hui Ma: These authors contributed equally  相似文献   

6.
Summary Lentil (Lens culinaris Medik.) shoot apex, epicotyl, and root expiants were capable of expressing an intron-containing beta-glucuronidase (GUS) gene after inoculation with the disarmed Agrobacterium strain GV2260:p35SGUSINT. Expression occurred at all wound sites on these expiants except at the end of the root expiants proximal to the cotyledonary node. GUS expression was detected using both histochemical and fluorescence assays and was stable for at least nine days after inoculation for epicotyl and root expiants, and for at least seventeen days for shoot apices. Non-inoculated controls, or controls inoculated with an Agrobacterium strain lacking the GUS gene, did not produce any background blue staining in the histochemical assay. Expression levels for all lentil expiants were substantially lower than for comparable flax (Linum usitatissimum L.) expiants which served as a positive control.  相似文献   

7.
Gene knockouts and knock-ins have emerged as powerful tools to study gene function in model organisms. The construction of such engineered alleles requires that homologous recombination between a transgenic fragment carrying the modifications desired in the genome and the locus to engineer occurs at high frequencies. Homologous recombination frequency is significantly increased in the vicinity of a DNA double-strand break. Based on this observation, a new generation of transgene-instructed genome engineering protocols was developed. Here, we present MosTIC (for “Mos1 excision-induced transgene-instructed gene conversion”), a new technique that provides a means to engineer the Caenorhabditis elegans genome. MosTIC is initiated by the mobilization of Mos1, a Drosophila transposon experimentally introduced in C. elegans. During MosTIC, a Mos1 insertion localized in the genomic region to engineer is mobilized after germline expression of the Mos transposase. Mos1 excision generates a DNA double-strand break, which is repaired by homologous recombination using a transgenic repair template. This results in the transfer of information from the transgene into the genome. Depending on the method used to trigger Mos1 excision, two alternative MosTIC protocols are available, which are presented here in detail. This technique can be used for a wide range of applications, such as structure-function analysis, protein localization and purification, genetic screens or generation of single copy transgenes at a defined locus in the genome.  相似文献   

8.
Bisphenol A (2,2-bis(4-hydroxyphenyl) propane, BPA), which is used as a synthetic resin material or a plasticizer, is a pollutant that␣possesses endocrine-disrupting activity. Bioremediation of BPA is used to decrease its polluting effects, and here we report a novel bacterial strain AO1, which is able to degrade BPA. This strain was isolated using enrichment cultivation from a soil sample from a vegetable-growing field; the sample was one of 500 soil samples collected across Japan. Strain AO1 degraded 100 mg/l BPA to an undetectable level within 6 h in MYPG medium (containing malt extract, yeast extract, peptone, and glucose) and within 48 h in minimum medium containing 1% glucose at 30°C. Strain AO1 can utilize BPA as a sole source of carbon and as an energy source under aerobic conditions. The estrogenic activity of BPA in MYPG medium was ultimately reduced by strain AO1, although the activity initially increased. Taxonomical analysis showed that strain␣AO1 is closely related to Sphingomonas chlorophenolicum and S. herbicidovorans, neither of which have a capacity for BPA degradation. DNA–DNA hybridization showed that strain AO1 is a novel species of the Sphingomonas genus, and we designated AO1 as S. bisphenolicum.  相似文献   

9.
In the attempt to discover new genes involved in the floral development in monocotyledonousin species, we have cloned and characterized the homologous PISTALLATA-like (PI-like) gene from Phalaenopsis hybrid cultivar named PhPI9 (Ph alaenopsis PI STILLATA # 9). The cDNA of PhPI9 has a fragment of 834 bp and has 60% identity with the PISTILATA from Arabidopsis. The deduced amino acid sequence of PhPI9 had the typical PI-motif. It also formed a subclade with other monocot PI-type genes in phylogenetic analysis. Southern analysis showed that PhPI9 was present in the Phalaenopsis orchid genome as a single copy. Furthermore, it was expressed only in the lip of the Phalaenopsis flower and no expression was detected in vegetative organs. Thus, as a B-function MADS-box gene, PhPI9 specifies floral organ identity in orchids. __________ Translated from Journal of Fudan University (Natural Science), 2006, 45(3): 277–282 [译自: 复旦学报(自然科学版)]  相似文献   

10.
Only few orthologs of animal apoptosis regulators have been found in plants. Recently, the ectopic expression of mammalian inhibitor of apoptosis proteins (IAPs) has been shown to affect plant programmed cell death. Here, we identified two novel proteins homologous to Arabidopsis thaliana IAP-like protein (AtILP) 1 and 2 by applying an improved motif searching method. Furthermore, homologs of AtILP1 were found to occur as a novel gene family in other organisms such as fungi and animals including Homo sapiens (HsILP1). Like baculovirus IAP repeats (BIRs) in IAPs, ILPs contain two highly conserved BIR-like domains (BLDs) with a putative C2HC-type zinc finger. Phylogenetic analyses indicated that ILPs are putative paralogs of IAPs. Homology modeling revealed that the three-dimensional structure of BLD in HsILP1 is similar to that of BIR. Transient expression of HsILP1 resulted in inhibition of etoposide-induced apoptosis in HEK293 and HeLaS3 cells. These findings suggest that ILPs are conserved in a wide range of eukaryotes including plants, and that their functions are closely related to those of IAPs.  相似文献   

11.
Summary Four diverse strains of Agrobacterium tumefaciens (C58, Ach5, GV3111, and A281) were capable of inducing tumors at a high frequency on inoculated stems of lentil (Lens culinaris Medik. cultivar Laird) in vivo, and on excised shoot apices in vitro. GV3111 and Ach5 produced the largest and heaviest tumors in vivo, while A281 produced the heaviest tumors in vitro. Tumor formation and opine production are indicative of plant cell transformation and tumors produced appropriate opines: nopaline (C58), octopine (Ach5 and GV3111), and agropine and mannopine (A281). Southern analysis of DNA from a tumor line produced by strain C58 showed that a T-DNA fragment had been transferred into the lentil genome.  相似文献   

12.
To provide a framework for studies to understand the contribution of SALT OVERLY SENSITIVE1 (SOS1) to salt tolerance in Thellungiella halophila, we sequenced and annotated a 193-kb T. halophila BAC containing a putative SOS1 locus (ThSOS1) and compared the sequence to the orthologous 146-kb region of the genome of its salt-sensitive relative, Arabidopsis thaliana. Overall, the two sequences were colinear, but three major expansion/contraction regions in T. halophila were found to contain five Long Terminal Repeat retrotransposons, MuDR DNA transposons and intergenic sequences that contribute to the 47.8-kb size variation in this region of the genome. Twenty-seven genes were annotated in the T. halophila BAC including the putative ThSOS1 locus. ThSOS1 shares gene structure and sequence with A. thaliana SOS1 including 11 predicted transmembrane domains and a cyclic nucleotide-binding domain; however, different patterns of Simple Sequence Repeats were found within a 540-bp region upstream of SOS1 in the two species.  相似文献   

13.
在发掘和鉴定调控植物表皮毛发育的新因子过程中,获得了一个表皮毛发育异常的拟南芥隐性突变体abt3-1(aberrantly branched trichome 3-1)。与野生型拟南芥(Col-0)相比,其表皮毛分支数目明显增加。另外,abt3-1还表现出植株小、叶形宽、叶色发灰、主根短等发育缺陷。利用图位克隆技术将该突变基因ABT3定位在1号染色体上,分子标记在F28G11#3与F4N21#1之间,物理距离为134kb。该研究将为进一步克隆ABT3基因及研究其在调控植物生长发育过程中的作用奠定基础。  相似文献   

14.
T-DNA-tagged rice plants were screened under cold- or salt-stress conditions to determine the genes involved in the molecular mechanism for their abiotic-stress response. Line 0-165-65 was identified as a salt-responsive line. The gene responsible for this GUS-positive phenotype was revealed by inverse PCR as OsGSK1 (O ryza s ativa g lycogen s ynthase k inase3-like gene 1), a member of the plant GSK3/SHAGGY-like protein kinase genes and an orthologue of the Arabidopsis b rassinosteroid in sensitive 2 (BIN2), AtSK21. Northern blot analysis showed that OsGSK1 was most highly detected in the developing panicles, suggesting that its expression is developmental stage specific. Knockout (KO) mutants of OsGSK1 showed enhanced tolerance to cold, heat, salt, and drought stresses when compared with non-transgenic segregants (NT). Overexpression of the full-length OsGSK1 led to a stunted growth phenotype similar to the one observed with the gain-of-function BIN/AtSK21 mutant. This suggests that OsGSK1 might be a functional rice orthologue that serves as a negative regulator of brassinosteroid (BR)-signaling. Therefore, we propose that stress-responsive OsGSK1 may have physiological roles in stress signal-transduction pathways and floral developmental processes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Serry Koh and Sang-Choon Lee are co-first authors.  相似文献   

15.
Data for disruption of C. utilis, S. cerevisiae and B. subtilis cells by impingement of a high velocity jet of suspended cells against a stationary surface are compared. Differences between organisms were observed, but there were no general differences found between yeast and bacteria. In addition, growth conditions were found to have an effect on disruption with cells grown at a high specific growth rate easier to disrupt than cells grown at a low rate.Nomenclature a exponent of pressure (dimensionless) - D dilution rate (h\s-1) - K dimensional rate constant (Pa \s-) - N number of passes (dimensionless) - P operating pressure (Pa) - R fraction of cells disrupted (dimensionless) - um maximum specific growth rate (h\s-1)  相似文献   

16.
In vitro culture ofBrassica alba anthers on a growth medium containing inorganics of KB5 and organics, iron, sucrose and hormones of B5 resulted in a very high response of anthers (93.75%) towards callus induction. All the calli transferred to regeneration media responded favourably even after six months of callus induction. Numerous torpedo-shaped embryoids developed in clusters at many sites from each callus mass. Secondary embryogenesis and multiple shoot formation was also observed in many cases. The number of embryoids and plantlets produced by one embryogenic anther were as high as 169.8 and 17 respectively. 87% of the regenerated plants were haploids.  相似文献   

17.
Summary Somatic hybrid plants have been regenerated from fused protoplasts of a chlorophyll deficient mutant of H. muticus (2n=28) with wild type protoplasts of H. albus (2n=68). The inability of protoplasts of H. albus to regenerate was utilized in complementation with achlorophyllous, but regenerating, protoplasts of H. muticus for the selection of green somatic hybrid colonies and plants. The somatic hybrid plants showed intermediate morphological characters, and possessed 82–120 chromosomes, with a modal number of 96 which is also the amphidiploid complement of the two species. The isozyme patterns indicated the presence and expression of genes from both parents. The hybrid plants produced 33–78% viable pollen and set viable seeds upon selfing and backcrossing in a directional manner.  相似文献   

18.
The simple nematode, Caenorhabditis elegans, possesses the most extensive known gene family of nicotinic acetylcholine receptor (nAChR)-like subunits. Whilst all show greatest similarity with nAChR subunits of both invertebrates and vertebrates, phylogenetic analysis suggests that just over half of these (32) may represent other members of the cys-loop ligand-gated ion channel superfamily. We have introduced a novel nomenclature system for these “Orphan” subunits, designating them as lgc genes (ligand-gated ion channels of the cys-loop superfamily), which can also be applied in future to unnamed and uncharacterised members of the cys-loop ligand-gated ion channel superfamily. We present here the resulting updated version of the C. elegans nAChR gene family and related ligand-gated ion channel genes.  相似文献   

19.
Summary Kanamycin resistant plants of Solarium melongena L. (eggplant) cv. Picentia were obtained following the cocultivation of leaf explants with Agrobacterium tumefaciens. A disarmed binary vector system containing the neomycin phosphotransferase (NPTII) gene as the selectable marker and chloramphenicol acetyltransferase (CAT) as a reporter gene was utilized. In vitro grown plants were used as sources of explants to produce transgenic plants on selective medium containing 100 mg/l kanamycin. The transformation and expression of the foreign genes was confirmed by DNA hybridizations, leaf disc assays, and by measuring NPTII and CAT enzyme activities. This technique is simple, rapid, efficient, and transgenic eggplants of this commercial cultivar have been transferred to soil where they have flowered and set seed.Abbreviations CAT chloramphenicol acetyltransferase - MS Murashige and Skoog - NPTII neomycin phosphotransferase - NOS nopaline synthase - ZEA zeatin  相似文献   

20.
Acinetobacter calcoaceticus is known to contain soluble and membrane-bound quinoprotein D-glucose dehydrogenases while other oxidative bacteria such asPseudomonas orGluconobacter contain only membrane-bound enzyme. The two different forms were believed to be the same enzyme or interconvertible. Present results show that the two different forms of glucose dehydrogenase are distinct from each other in their enzymatic and immunological properties as well as in their molecular size.The soluble and membrane-bound glucose dehydrogenases were separated after French press-disruption by repeated ultracentrifugation, and then purified to nearly homogeneous state. The soluble enzyme was a polypeptide of 55 Kdaltons, while the membrane-bound enzyme was a polypeptide of 83 Kdaltons which is mainly monomeric in detergent solution. Both enzymes showed different enzymatic properties including substrate specificity, optimum pH, kinetics for glucose, and reactivity for ubiquinone-homologues. Furthermore, the two enzymes could be distinguished immunochemically: the membrane-bound enzyme is cross-reactive with an antibody raised against membrane-bound enzyme purified fromPseudomonas but not with antibody elicited against the soluble enzyme, while the soluble enzyme is not cross-reactive with the antibody of membrane-bound enzyme.Data also suggest that the membrane-bound enzyme functions by linking to the respiratory chain via ubiquinone though the function of the soluble enzyme remains unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号