首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 638 毫秒
1.
Intracellular Ca2+ response of rabbit oocytes to electrical stimulation.   总被引:5,自引:0,他引:5  
Electrical stimulation is known to cause activation in mammalian oocytes, possibly by eliciting an elevation in intracellular calcium (Ca2+). This study reports intracellular Ca2+ concentrations in mature rabbit oocytes using the Ca2+ indicator fura-2. Calcium levels were determined prior to, during, and after the administration of an electrical pulse (3.6 kV/cm for 60 microseconds). Baseline Ca2+ levels ranged from 30 to 90 nM. The intracellular Ca2+ transient evoked by a pulse, peaked at 11 sec, was highly variable in amplitude (40-300 nM) and returned to prepulse levels within 300 sec. Electrically stimulated oocytes did not exhibit repetitive Ca2+ transients. The size of the cytoplasmic Ca2+ rise was influenced by the duration of the pulse, the field strength and the concentrations of external Ca2+ rise was influenced by the duration of the pulse, the field strength and the concentrations of external Ca2+ (P less than 0.05). Oocytes electrically stimulated in the presence of 100 microM CaCl2, which evoked Ca2+ transients with a mean magnitude of 120 nM, activated at a higher rate (P less than 0.05) than oocytes stimulated in the presence of either higher or lower levels of external Ca2+. Although oocytes electrically shocked at 16-18 hr after administration of human chorionic gonadotropin (hphCG) activated at a lower rate than oocytes stimulated at 22-24 hphCG (P less than 0.05), their intracellular Ca2+ response to the pulse was similar (P less than 0.05). These results indicate that electrical pulse parameters and extracellular Ca2+ concentrations can be used to modulate intracellular Ca2+ levels and optimize oocyte activation rates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The calcium requirement for agonist-dependent breakdown of phosphatidylinositol and polyphosphoinositides has been examined in rat cerebral cortex. The omission of added Ca2+ from the incubation medium abolished [3H]inositol phosphate accumulation from prelabelled phospholipid induced by histamine, reduced that due to noradrenaline and 5-hydroxytryptamine, but did not affect carbachol-stimulated breakdown. EC50 values for agonists were unaltered in the absence of Ca2+. Removal of Ca2+ by preincubation with EGTA (0.5 mM) abolished all responses, but complete restoration was achieved by replacement of Ca2+. The EC50 for Ca2+ for histamine-stimulated [3H]inositol phosphate accumulation was 80 microM. Noradrenaline-stimulated breakdown was antagonised by manganese (IC50 1.7 mM), but not by the calcium channel blockers nitrendipine or nimodipine (30 microM). The calcium ionophore A23187 stimulated phosphatidylinositol/polyphosphoinositide hydrolysis with an EC50 of 2 microM, and this response was blocked by EGTA. Omission of Ca2+ or preincubation with EGTA or Mn2+ (EC50 = 230 microM) greatly enhanced the incorporation of [3H]inositol into phospholipids. The IC50 for Ca2+ in inhibiting incorporation was 25 microM. The results show that different receptors mediating phosphatidylinositol/polyphosphoinositide breakdown in rat cortex have quantitatively different Ca2+ requirements, and it is suggested that rigid opinions regarding phosphatidylinositol/polyphosphoinositide breakdown as either cause or effect of calcium mobilisation in rat cortex are inappropriate.  相似文献   

3.
In cultured human 1321N1 astrocytoma cells, muscarinic receptor stimulation leads to phosphoinositide hydrolysis, formation of inositol phosphates, and mobilization of intracellular Ca2+. Treatment of these cells with 1 microM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) completely blocks the carbachol-stimulated formation of [3H]inositol mono-, bis-, and trisphosphate ( [3H]InsP, [3H]InsP2, and [3H]InsP3). The concentrations of PMA that give half-maximal and 100% inhibition of carbachol-induced [3H]InsP formation are 3 nM and 0.5 microM, respectively. Inactive phorbol esters (4 alpha-phorbol 12,13-didecanoate and 4 beta-phorbol), at 1 microM, do not inhibit carbachol-stimulated [3H]InsP formation. The KD of the muscarinic receptor for [3H]N-methyl scopolamine is unchanged by PMA treatment, while the IC50 for carbachol is modestly increased. PMA treatment also abolishes carbachol-induced 45Ca2+ efflux from 1321N1 cells. The concomitant loss of InsP3 formation and Ca2+ mobilization is strong evidence in support of a causal relationship between these two responses. In addition, our finding that PMA blocks hormone-stimulated phosphoinositide turnover suggests that there may be feedback regulation of phosphoinositide metabolism through the Ca2+- and phospholipid-dependent protein kinase.  相似文献   

4.
In fura-2-loaded bovine adrenal chromaffin cells, 0.5 microM angiotensin II (AII) stimulated a 185 +/- 19 nM increase of intracellular-free calcium [( Ca2+]i) approximately 3 s after addition. The time from the onset of the response until achieving 50% recovery (t 1/2) was 67 +/- 10 s. Concomitantly, AII stimulated both the release of 45Ca2+ from prelabeled cells, and a 4-5-fold increase of [3H]inositol 1,4,5-trisphosphate [( 3H]Ins(1,4,5)P3) levels. In the presence of 50 microM LaCl3, or when extracellular-free Ca2+ [( Ca2+]o) was less than 100 nM, AII still rapidly increased [Ca2+]i by 95-135 nM, but the t 1/2 for recovery was then only 23-27 s. In medium with 1 mM MnCl2 present, AII also stimulated a small amount of Mn2+ influx, as judged by quenching of the fura-2 signal. When [Ca2+]o was normal (1.1 mM) or low (less than 60 nM), 1-2 microM ionomycin caused [Ca2+]i to increase 204 +/- 26 nM, while also releasing 45-55% of bound 45Ca2+. With low [Ca2+]o, ionomycin pretreatment abolished both the [Ca2+]i increase and 45Ca2+ release stimulated by AII. However, after ionomycin pretreatment in normal medium, AII produced a La3+-inhibitable increase of [Ca2+]i (103 +/- 13 nM) with a t 1/2 of 89 +/- 8 s, but no 45Ca2+ release. No pretreatment condition altered AII-induced formation of [3H]Ins(1,4,5)P3. We conclude that AII increased [Ca2+]i via rapid and transient Ca2+ mobilization from Ins(1,4,5)P3- and ionomycin-sensitive stores, accompanied (and/or followed) by Ca2+ entry through a La3+-inhibitable divalent cation pathway. Furthermore, the ability of AII to activate Ca2+ entry in the absence of Ca2+ mobilization (i.e. after ionomycin pretreatment) suggests a receptor-linked stimulus other than Ca2+ mobilization initiates Ca2+ entry.  相似文献   

5.
We have used a digitonin-permeabilized cell system to study the signal transduction pathways responsible for stimulus-secretion coupling in the rat peritoneal mast cell. Conditions were established for permeabilizing the mast cell plasma membrane without disrupting secretory vesicles. Exocytotic release of histamine from digitonin-permeabilized cells required a combination of micromolar concentrations of Ca2+ and the stable guanine nucleotide analogue guanosine 5'-[gamma-thio]triphosphate (GTP[S]), but was independent of exogenous ATP. In the presence of 40 microM-GTP[S], exocytosis was half-maximal at 1.3 microM-Ca2+ and maximal at 10 microM-Ca2+; GTP[S] alone (100 microM) had no effect on histamine release in the absence of added Ca2+. In the presence of 10 microM free Ca2+, 5 microM-GTP[S] was required for half-maximal exocytosis. To examine the possible role of protein kinase C (PKC) in exocytosis, we utilized 12-O-tetradecanoylphorbol 13-acetate (TPA) to activate PKC and studied its effect on histamine release from permeabilized mast cells. Cells that had been incubated with TPA (25 nM for 5 min) exhibited increased sensitivity to both GTP[S] and Ca2+. The PKC inhibitor staurosporine blocked the effect of TPA without inhibiting normal exocytosis in response to the combination of GTP[S] and Ca2+. In addition, down-regulation of mast-cell PKC by long-term TPA treatment (25 nM for 20 h) blocked the ability of the cells to respond to TPA and inhibited exocytosis in response to Ca2+ and GTP[S] by 40-50%. These results suggest that the sensitivity of the exocytotic machinery of the mast cell can be altered by PKC-catalysed phosphorylation events, but that activation of PKC is not required for exocytosis to occur.  相似文献   

6.
Exposure of A431 human epidermoid carcinoma cells to epidermal growth factor (EGF), bradykinin, and histamine resulted in a time- and concentration-dependent accumulation of the inositol phosphates (InsP) inositol monophosphate, inositol bisphosphate, and inositol trisphosphate (InsP3). Maximal concentrations of EGF (316 ng/ml; approximately 50 nM), bradykinin (1 microM), and histamine (1 mM) resulted in 3-, 6-, and 3-fold increases, respectively, in the amounts of inositol phosphates formed over a 10-min period. The K0.5 values for stimulation were approximately 10 nM, 3 nM, and 10 microM for EGF, bradykinin, and histamine, respectively. EGF and bradykinin stimulated the rapid accumulation of the two isomers of InsP3, Ins(1,3,4)P3, and Ins(1,4,5)P3 as determined by high performance liquid chromatography analysis; maximal accumulation of Ins(1,4,5)P3 occurred within 15 s. EGF and bradykinin also stimulated a rapid (maximal levels attained within 30 s after addition of hormone) and a sustained 4- and 6-fold rise, respectively, in cytosolic free Ca2+ levels as measured by Fura-2 fluorescence. EGF and bradykinin also produced a rapid, although transient, 3- and 5-fold increase, respectively, in cytosolic free Ca2+ after chelation of extracellular Ca2+ with 3 mM EGTA. These data are consistent with the idea that EGF elevates intracellular Ca2+ levels in A431 cells, at least in part, as a result of the rapid formation of Ins(1,4,5)P3 and the consequential release of Ca2+ from intracellular stores.  相似文献   

7.
The effect of histamine on intracellular free Ca2+ levels ([Ca2+]i) in HA22/VGH human hepatoma cells were evaluated using fura-2 as a fluorescent Ca2+ dye. Histamine (0.2-5 microM) increased [Ca2+]i in a concentration-dependent manner with an EC50 value of about 1 microM. The [Ca2+]i response comprised an initial rise, a slow decay, and a sustained phase. Extracellular Ca2+ removal inhibited 50% of the [Ca2+]i signal. In Ca2+-free medium, after cells were treated with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), 5 microM histamine failed to increase [Ca2+]i. After pretreatment with 5 microM histamine in Ca2+-free medium for 4 min, addition of 3 mM Ca2+ induced a [Ca2+]i increase of a magnitude 7-fold greater than control. Histamine (5 microM)-induced intracellular Ca2+ release was abolished by inhibiting phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), and by 5 microM pyrilamine but was not altered by 50 microM cimetidine. Together, this study shows that histamine induced [Ca2+]i increases in human hepatoma cells by stimulating H1, but not H2, histamine receptors. The [Ca2+]i signal was caused by Ca2+ release from thapsigargin-sensitive endoplasmic reticulum in an inositol 1,4,5-trisphosphate-dependent manner, accompanied by Ca2+ entry.  相似文献   

8.
The thiol reagent, thimerosal, has been shown to cause an increase in intracellular Ca2+ concentration ([Ca2+]i) in several cell types, and to cause Ca2+ spikes in unfertilized hamster eggs. Using single cell video-imaging we have shown that thimerosal evokes repetitive Ca2+ spikes in intact Fura-2-loaded HeLa cells that were similar in shape to those stimulated by histamine. Both thimerosal- and histamine-stimulated Ca2+ spikes occurred in the absence of extracellular (Ca2+ o), suggesting that they result from mobilization of Ca2+ from intracellular stores. Whereas histamine stimulated formation of inositol phosphates, thimerosal, at concentrations that caused sustained Ca2+ spiking, inhibited basal and histamine-stimulated formation of inositol phosphates. Thimerosal-evoked Ca2+ spikes are therefore not due to the stimulated production of inositol 1,4,5-trisphosphate (InsP3). The effects of thimerosal on Ca2+ spiking were probably due to alkylation of thiol groups on intracellular proteins because the spiking was reversed by the thiol-reducing compound dithiothreitol, and the latency between addition of thimerosal and a rise in [Ca2+]i was greatly shortened in cells where the intracellular reduced glutathione concentration had been decreased by preincubation with DL-buthionine (S,R)-sulfoximine. In permeabilized cells, thimerosal caused a concentration-dependent inhibition of Ca2+ accumulation, which was entirely due to inhibition of Ca2+ uptake into stores because thimerosal did not affect unidirectional 45Ca2+ efflux from stores preloaded with 45Ca2+. Thimerosal also caused a concentration-dependent sensitization of InsP3-induced Ca2+ mobilization: half-maximal mobilization of Ca2+ stores occurred with 161 +/- 20 nM InsP3 in control cells and with 62 +/- 5 nM InsP3 after treatment with 10 microM thimerosal. We conclude that thimerosal can mimic the effects of histamine on intracellular Ca2+ spiking without stimulating the formation of InsP3 and, in light of our results with permeabilized cells, suggest that thimerosal stimulates spiking by sensitizing cells to basal InsP3 levels.  相似文献   

9.
Muscarinic receptor mediated membrane currents and contractions were studied in isolated canine colon circular smooth muscle cells. Carbachol (10(-5) M) evoked a slow transient inward current that was superimposed by a transient outward current at holding potentials greater than -50 mV. Carbachol contracted the cells by 70 +/- 2%. The effects of carbachol were blocked by atropine (10(-6) M), tetraethyl ammonium (20 mM), and BAPTA-AM (25 mM applied for 20 min). The inward current and contraction were not sensitive to diltiazem (10(-5) M), nitrendipine (3 x 10(-7) M), niflumic acid (10(-5) M), or N-phenylanthranilic acid (10(-4) M), but were gradually inhibited after repetitive stimulations in Ca2+ free solution. Ni2+ (2 mM) inhibited the inward current by 67 +/- 4%. The inward current reversed at +15 mV. The outward component could be selectively inhibited by iberiotoxin (20 nM) or by intracellular Cs+. Repeated stimulation in the presence of cyclopiazonic acid (CPA, 3 microM) inhibited the carbachol-induced outward current and partially inhibited contraction. CPA did not inhibit the inward current. In conclusion, muscarinic receptor stimulation evoked a CPA-sensitive calcium release that caused contraction and a CPA-insensitive transient inward current was activated that is primarily carried by Ca2+ ions and is sensitive to Ni2+.  相似文献   

10.
Dissociated brain cells were isolated from newborn rat pups and loaded with fura-2. These cells were sensitive to low N-methyl-D-aspartate (NMDA) concentrations with EC50 values for NMDA-induced intracellular Ca2+ concentration ([Ca2+]i) increases of approximately 7-16 microM measured in the absence of Mg2+. NMDA-stimulated [Ca2+]i increases could be observed in buffer with Mg2+ when the cells were predepolarized with 15 mM KCl prior to NMDA addition. Under these predepolarized conditions, 100 mM ethanol inhibited 25 microM NMDA responses by approximately 50%, which was similar to the ethanol inhibition observed in buffer without added Mg2+. Ethanol did not alter [Ca2+]i prior to NMDA addition. In the absence of Mg2+, 50 and 100 mM ethanol did not significantly alter the EC50 value for NMDA, but did inhibit NMDA-induced increases in [Ca2+]i in a concentration-dependent manner at 4, 16, 64, and 256 microM NMDA. Whereas NMDA-induced increases in [Ca2+]i were dependent on extracellular Ca2+ and were inhibited by Mg2+, the ability of 100 mM ethanol to inhibit 25 microM NMDA responses was independent of the external Ca2+ or Mg2+ concentrations. Glycine (1, 10, and 100 microM) enhanced 25 microM NMDA-induced increases in [Ca2+]i by approximately 50%. Glycine (1-100 microM) prevented the 100 mM ethanol inhibition of NMDA-stimulated [Ca2+]i observed in the absence of exogenous glycine. MK-801 (25-400 nM) inhibited 25 microM NMDA-stimulated rises in [Ca2+]i in a concentration-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Phorbol 12-myristate 13-acetate, 1-20 nM, induced the synthesis in HeLa cells of a 65 200 Mr tissue-type plasminogen activator, and of prostaglandin E2. Omission of Ca2+ from the incubation medium inhibited the induction of plasminogen activator synthesis by 40-60% and abolished the induction of prostaglandin E2 synthesis. Maximal plasminogen activator synthesis could be maintained at extracellular Ca2+ concentrations of approx. 0.1 mM, while maximal prostaglandin synthesis required at least 0.45-0.9 mM Ca2+. The induction of each factor was inhibited by 10-100 microM 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), an inhibitor of intracellular C2+ mobilization. Prostaglandin synthesis, but not plasminogen activator synthesis, was also inhibited by 10-100 microM verapamil and nifedipine, which inhibit intracellular Ca2+ uptake via the so-called 'slow-channels' and by 0.5-10 microM trifluoperazine, an inhibitor of calmodulin. Neither plasminogen activator synthesis nor prostaglandin synthesis were stimulated by 5-50 microM 1-oleoyl-2-acetylglycerol or 1-250 microM 1,2-dioctanoylglycerol, alone and in combination with 50 nM-1 microM ionophore A23187. These results indicate that the synthesis of plasminogen activator and prostaglandins in HeLa cells is Ca2+-dependent, and that the Ca2+ requirements for each process are not identical. Thus, Ca2+ regulation of the production of tissue plasminogen activator and prostaglandin E2 occurs at multiple points in their biosynthetic pathways.  相似文献   

12.
The modulation of 3,4-dihydroxyphenylethylamine (dopamine, DA) synthesis and release in rabbit retina in vitro by high K+; adenylate cyclase activators such as forskolin, 2-chloroadenosine, vasoactive intestinal polypeptide (VIP); and the putative DA autoreceptor agonist N-n-propyl-3-(3-hydroxyphenyl) piperidine (3-PPP) has been investigated. Incubation of retinas in 50 mM K+ resulted in the activation of tyrosine hydroxylase (TH). Activation did not require the presence of extracellular Ca2+. K+ 50 mM also induced a Ca2+-dependent release of DA. Forskolin 50 microM stimulated TH but 100 microM 2-chloroadenosine and 650 nM VIP did not. Individually, (+)-3-PPP, (-)-3-PPP, and (+/-)-3-PPP reduced DA synthesis and increased its release. The effects of (+/-)-3-PPP were dose-dependent and did not require the presence of extracellular Ca2+. The activation of TH induced by 50 mM K+, but not that induced by 50 microM forskolin, was abolished by 100 microM (+/-)-3-PPP.  相似文献   

13.
Stimulation of suspensions of fura-2-loaded human neutrophils with ATP resulted in an elevation in cytosolic free calcium concentration ([Ca2+]i) from a basal value of 0.1 microM to a transient peak of 1 microM. The response is due to Ca2+ release from intracellular stores and influx of extracellular Ca2+. Release from intracellular stores is shown by the response in the absence of extracellular Ca2+. The greater and more maintained response in the presence of extracellular Ca2+ is indicative of stimulated Ca2+ entry and a stimulated influx pathway was confirmed by using Mn2+ as a surrogate for Ca2+. A variety of purinergic agonists were used to characterize the pharmacology of this [Ca2+]i response. Their rank order of potency was ATP greater than adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) greater than ADP much greater than 2-methylthioadenosine 5'-triphosphate (2Me-SATP), where ATP had an EC50 value of 3 microM and 2MeSATP had an EC50 value of 1000 microM. Adenosine 5'-O-(2-thiodiphosphate) (ADP beta S), adenylyl (alpha,beta-methylene)- diphosphonate (AMPCPP) and adenosine were inactive at 1 mM. These results suggest that neutrophils have a novel type of purinergic P2 receptor that is neither P2x nor P2y.  相似文献   

14.
Ca2+ transport in red blood cell ghosts was monitored with fura2 or quin2 incorporated as the free acid during resealing. This is the first report of active transport monitored by the fluorescent intensity of the chelator dyes fura2 (5-50 microM) or quin2 (250 microM) in hemoglobin-depleted ghosts. Since there are no intracellular compartments in ghosts and the intracellular concentrations of all assay chelator substances including calmodulin (CaM), the dyes, and ATP could be set, the intracellular concentrations of free and total Ca [( Cafree]i and [Catotal]i) could be calculated during the transport. Ghosts prepared with or without CaM rapidly extruded Ca2+ to a steady-state concentration of 60-100 nM. A 10(4)-fold gradient for Ca2+ was routinely produced in medium containing 1 mM Ca2+. During active Ca2+ extrusion, d[Cafree]i/dt was a second order function of [Cafree]i and was independent of the dye concentration, whereas d[Catotal]i/dt increased as a first order function of both the [Cafree]i and the concentration of the Ca:dye complex. CaM (5 microM) increased d[Catotal]i/dt by 400% at 1 microM [Cafree]i, while d[Cafree]i/dt increased by only 25%. From a series of experiments we conclude that chelated forms of Ca2+ serve as substrates for the pump under permissive control of the [Cafree]i, and this dual effect may explain cooperativity. Free Ca2+ is extruded, and probably also Ca2+ bound to CaM or other chelators, while CaM and the chelators are retained in the cell.  相似文献   

15.
The effect of lead ions on the release of acetylcholine (ACh) was investigated in intact and digitonin-permeabilized rat cerebrocortical synaptosomes that had been prelabeled with [3H]choline. Release of ACh was inferred from the release of total 3H label or by determination of [3H]ACh. Application of 1 microM Pb2+ to intact synaptosomes in Ca2(+)-deficient medium induced 3H release, which was enhanced by K+ depolarization. This suggests that entry of Pb2+ into synaptosomes and Pb2(+)-induced ACh release can be augmented by activation of the voltage-gated Ca2+ channels in nerve terminals. The lead-induced release of [3H]ACh was blocked by treatment of synaptosomes with vesamicol, which prevents uptake of ACh into synaptic vesicles without affecting its synthesis in the synaptoplasm. This indicates that Pb2+ selectively activates the release of a vesicular fraction of the transmitter with little or no effect on the leakage of cytoplasmic ACh. Application of 1-50 nM (EC50 congruent to 4 nM) free Pb2+ to digitonin-permeabilized synaptosomes elicited release of 3H label that was comparable with the release induced by 0.2-5 microM (EC50 congruent to 0.5 microM) free Ca2+. This suggests that Pb2+ triggers transmitter exocytosis directly and that it is a some 100 times more effective activator of exocytosis than is the natural agonist Ca2+.  相似文献   

16.
Potentiation of muscarinic-agonist-stimulated polyphosphoinositide (PPI) hydrolysis was demonstrated in a rat cerebral-cortical membrane preparation prelabelled with myo-[3H]inositol. Accumulation of myo-[3H]inositol 1,4-bisphosphate ([3H]IP2) was used to assess brain [3H]phosphatidylinositol 4,5-bisphosphate hydrolysis as its immediate metabolite, myo-[3H]inositol 1,4,5-trisphosphate, was rapidly hydrolysed to [3H]IP2. Inclusion of ATP (100 microM) and Mg2+ (5 mM) in the assay medium was necessary to demonstrate the effect of GTP analogues on carbachol-stimulated brain [3H]PPI turnover. Carbachol (100 microM) induced only a small increment in [3H]IP2 accumulation (142% of control) in 1 min. However, its effect was markedly enhanced, to 800% and 300% of control, by 100 microM-guanosine 5'-[gamma-thio]triphosphate (GTP[S]) and guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) respectively. GTP[S] and p[NH]ppG also stimulated [3H]IP2 accumulation by over 500% and 200% of control, respectively. The GTP-analogue-potentiated carbachol effect was antagonized by 10 microM-atropine, whereas the GTP-analogue stimulation was unaffected. This report confirms the involvement of a G (GTP-binding) protein(s) in brain PPI metabolism and provides new evidence for the role of G protein(s) in the coupling of stimulated muscarinic receptors to PPI hydrolysis in the central nervous system.  相似文献   

17.
Using whole-cell recording in Drosophila S2 cells, we characterized a Ca(2+)-selective current that is activated by depletion of intracellular Ca2+ stores. Passive store depletion with a Ca(2+)-free pipette solution containing 12 mM BAPTA activated an inwardly rectifying Ca2+ current with a reversal potential >60 mV. Inward currents developed with a delay and reached a maximum of 20-50 pA at -110 mV. This current doubled in amplitude upon increasing external Ca2+ from 2 to 20 mM and was not affected by substitution of choline for Na+. A pipette solution containing approximately 300 nM free Ca2+ and 10 mM EGTA prevented spontaneous activation, but Ca2+ current activated promptly upon application of ionomycin or thapsigargin, or during dialysis with IP3. Isotonic substitution of 20 mM Ca2+ by test divalent cations revealed a selectivity sequence of Ba2+ > Sr2+ > Ca2+ > Mg2+. Ba2+ and Sr2+ currents inactivated within seconds of exposure to zero-Ca2+ solution at a holding potential of 10 mV. Inactivation of Ba2+ and Sr2+ currents showed recovery during strong hyperpolarizing pulses. Noise analysis provided an estimate of unitary conductance values in 20 mM Ca2+ and Ba2+ of 36 and 420 fS, respectively. Upon removal of all external divalent ions, a transient monovalent current exhibited strong selectivity for Na+ over Cs+. The Ca2+ current was completely and reversibly blocked by Gd3+, with an IC50 value of approximately 50 nM, and was also blocked by 20 microM SKF 96365 and by 20 microM 2-APB. At concentrations between 5 and 14 microM, application of 2-APB increased the magnitude of Ca2+ currents. We conclude that S2 cells express store-operated Ca2+ channels with many of the same biophysical characteristics as CRAC channels in mammalian cells.  相似文献   

18.
Autoclaved Escherichia coli labelled with [1-14C]oleate in the 2-acyl position have been used extensively to measure phospholipase A2 activity in vitro. The present study demonstrates that this membranous substrate is also useful for the measurement of in vitro phospholipase D activity. Phospholipase D from Streptomyces chromofuscus catalyzed the hydrolysis of [1-14C]oleate labelled, autoclaved E. coli optimally at pH 7.0-8.0 to generate [14C]phosphatidic acid in the presence of 5 mM added Ca2+. Other divalent cations would not substitute for Ca2+. Activity was linear with time and protein up to 30% of the hydrolysis of substrate. Phospholipase D activity was stimulated in a dose-dependent manner by the addition of Triton X-100. The activity was increased 5.5-fold with 0.05% Triton, a concentration that totally inhibited hydrolysis of E. coli by human synovial fluid phospholipase A2. Accumulation of [14C]diglyceride was observed after 10 min of incubation. This accumulation was inhibited by NaF (IC50 = 18 microM) or propanolol (IC50 = 180 microM) suggesting the S. chromofuscus phospholipase D was contaminated with phosphatidate phosphohydrolase. Phosphatidic acid released by the action of cabbage phospholipase D was converted to phosphatidylethanol in an ethanol concentration dependent manner. These results demonstrate that [1-14C]oleate labelled, autoclaved E. coli can be used to measure phospholipase D activity by monitoring accumulation of either [14C]phosphatidic acid or [14C]phosphatidylethanol.  相似文献   

19.
The possibility that chronic activation of the phosphoinositide-mediated signaling pathway modifies the Ca(2+)-mobilizing action of inositol 1,4,5-trisphosphate (InsP3) was examined. SH-SY5Y human neuroblastoma cells were exposed to carbachol, permeabilized electrically, loaded with 45Ca2+, and 45Ca2+ mobilization in response to exogenous InsP3 was assessed. In control permeabilized cells, InsP3 released 65 +/- 2% of sequestered 45Ca2+ (EC50 = 0.32 +/- 0.05 microM). Pre-treatment with carbachol reduced both maximal InsP3-induced 45Ca2+ release (to 34 +/- 3%, with half-maximal and maximal inhibition at approximately 3 and 6 h, respectively) and the potency of InsP3 (EC50 = 0.92 +/- 0.13 microM). This inhibitory effect of carbachol was half-maximal at approximately 5 microM, was mediated by muscarinic receptors, and was reversible following withdrawal of agonist. Pretreatment with phorbol 12,13-dibutyrate did not alter the maximal effect of InsP3 but doubled its EC50. Evidence suggesting that the inhibitory effects of carbachol pretreatment resulted from altered Ca2+ homeostasis was not forthcoming; both 45Ca2+ uptake and release induced by ionomycin and thapsigargin were identical in control and pretreated permeabilized cells, as were the characteristics of reuptake of released Ca2+. In contrast, carbachol pretreatment, without altering the affinity of InsP3 (Kd = 64 +/- 7 nM), reduced the density of [32P]InsP3-binding sites from 2.0 +/- 0.1 to 1.0 +/- 0.1 pmol/mg protein with a time course essentially identical to that for the reduction in responsiveness to InsP3. This effect was not mimicked by pretreatment of cells with phorbol 12,13-dibutyrate. These data indicate that chronic activation of phosphoinositide hydrolysis can reduce the abundance of InsP3 receptors and that this causes a reduction in size of the InsP3-sensitive Ca2+ store. This modification, possibly in conjunction with a protein kinase C-mediated event, appears to account for the carbachol-induced suppression of InsP3 action. As intracellular InsP3 mass remained elevated above basal for at least 24 h after addition of carbachol, suppression of the Ca(2+)-mobilizing activity of InsP3 represents an important adaptive response to cell stimulation that can limit the extent to which intracellular Ca2+ is mobilized.  相似文献   

20.
Lead has been shown to affect calcium homeostasis. However, there is no prior evidence to indicate an effect of low concentrations of lead in the environment (approximately 1 microM) on the intracellular free Ca2+ concentration in any human tissue. We have investigated the effect of lead on the intracellular free Ca2+ concentration of human blood platelets using 19F-NMR and a fluorinated intracellular Ca2+ indicator. We report a basal intracellular free Ca2+ value of 172 +/- 8 nM. Treatment with 1, 5, 10 and 25 microM Pb2+ resulted in average increases in intracellular free Ca2+ of 39%, 91%, 135% and 172%, respectively. The percent increase in intracellular free Ca2+ was linearly and positively correlated with the log of Pb2+ concentration. Using atomic absorption spectroscopy, a significant increase in total calcium of approx. 10 nmol/mg protein was found in 25 microM Pb2+ treated platelets. This indicates that influx of external Ca2+ contributes to the observed increase in free Ca2+. The results provide an explanation for the previously reported effects of lead on platelet function, and suggest a mechanism for low level lead-induced hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号