首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Epipodophyllotoxins are effective antitumour drugs that trap eukaryotic DNA topoisomerase II in a covalent complex with DNA. Based on DNA cleavage assays, the mode of interaction of these drugs was proposed to involve amino acid residues of the catalytic site. An in vitro binding study, however, revealed two potential binding sites for etoposide within human DNA topoisomerase IIα (htopoIIα), one in the catalytic core of the enzyme and one in the ATP-binding N-terminal domain. Here we have tested how N-terminal mutations that reduce the affinity of the site for etoposide or ATP affect the sensitivity of yeast cells to etoposide. Surprisingly, when introduced into full-length enzymes, mutations that lower the drug binding capacity of the N-terminal domain in vitro render yeast more sensitive to epipodophyllotoxins. Consistently, when the htopoIIα N-terminal domain alone is overexpressed in the presence of yeast topoII, cells become more resistant to etoposide. Point mutations that weaken etoposide binding eliminate this resistance phenotype. We argue that the N-terminal ATP-binding pocket competes with the active site of the holoenzyme for binding etoposide both in cis and in trans with different outcomes, suggesting that each topoisomerase II monomer has two non-equivalent drug-binding sites.  相似文献   

2.
DNA topoisomerase II is a multidomain homodimeric enzyme that changes DNA topology by coupling ATP hydrolysis to the transport of one DNA helix through a transient double-stranded break in another. The process requires dramatic conformational changes including closure of an ATP-operated clamp, which is comprised of two N-terminal domains from each protomer. The most N-terminal domain contains the ATP-binding site and is directly involved in clamp closure, undergoing dimerization upon ATP binding. The second domain, the transducer domain, forms the walls of the N-terminal clamp and connects the clamp to the enzyme core. Although structurally conserved, it is unclear whether the transducer domain is involved in clamp mechanism. We have purified and characterized a human topoisomerase II alpha enzyme with a two-amino acid insertion at position 408 in the transducer domain. The enzyme retains both ATPase and DNA cleavage activities. However, the insertion, which is situated far from the N-terminal dimerization area, severely disrupts the function of the N-terminal clamp. The clamp-deficient enzyme is catalytically inactive and lacks most aspects of interdomain communication. Surprisingly, it seems to have retained the intersubunit communication, allowing it to bind ATP cooperatively in the presence of DNA. The results show that even distal parts of the transducer domain are important for the dynamics of the N-terminal clamp and furthermore indicate that stable clamp closure is not required for cooperative binding of ATP.  相似文献   

3.
F14512 is a novel etoposide derivative that contains a spermine in place of the C4 glycosidic moiety. The drug was designed to exploit the polyamine transport system that is upregulated in some cancers. However, a preliminary study suggests that it is also a more efficacious topoisomerase II poison than etoposide [Barret et al. (2008) Cancer Res. 68, 9845-9853]. Therefore, we undertook a more complete study of the actions of F14512 against human type II topoisomerases. As determined by saturation transfer difference (1)H NMR spectroscopy, contacts between F14512 and human topoisomerase IIα in the binary enzyme-drug complex are similar to those of etoposide. Although the spermine of F14512 does not interact with the enzyme, it converts the drug to a DNA binder [Barret et al. (2008)]. Consequently, the influence of the C4 spermine on drug activity was assessed. F14512 is a highly active topoisomerase II poison and stimulates DNA cleavage mediated by human topoisomerase IIα or topoisomerase IIβ. The drug is more potent and efficacious than etoposide or TOP-53, an etoposide derivative that contains a C4 aminoalkyl group that strengthens drug-enzyme binding. Unlike the other drugs, F14512 maintains robust activity in the absence of ATP. The enhanced activity of F14512 correlates with a tighter binding and an increased stability of the ternary topoisomerase II-drug-DNA complex. The spermine-drug core linkage is critical for these attributes. These findings demonstrate the utility of a C4 DNA binding group and provide a rational basis for the development of novel and more active etoposide-based topoisomerase II poisons.  相似文献   

4.
Human DNA topoisomerase I not only has DNA relaxing activity, but also splicing factors phosphorylating activity. Topo I shows strong preference for ATP as the phosphate donor. We used photoaffinity labeling with the ATP analogue [alpha-32P] 8-azidoadenosine-5'-triphosphate combined with limited proteolysis to characterize Topo I domains involved in ATP binding. The majority of incorporated analogue was associated with two fragments derived from N-terminal and C-terminal regions of Topo I, respectively. However, mutational analysis showed that deletion of the first 138 N-terminal residues, known to be dispensable for topoisomerase activity, did not change the binding of ATP or the kinase activity. In contrast, deletion of 162 residues from the C-terminal domain was deleterious for ATP binding, kinase and topoisomerase activities. Furthermore, a C-terminal tyrosine 723 mutant lacking topoisomerase activity is still able to bind ATP and to phosphorylate SF2/ASF, suggesting that the two functions of Topo I can be separated. These findings argue in favor of the fact that Topo I is a complex enzyme with a number of potential intra-cellular functions.  相似文献   

5.
Reverse gyrase, the only topoisomerase known to positively supercoil DNA, has an N-terminal ATPase domain that drives the activity of a topoisomerase domain. This study shows that the N-terminal domain represses topoisomerase activity in the absence of nucleotide, and nucleotide binding is sufficient to relieve the repression. A "latch" region in the N-terminal part was observed to close over the topoisomerase domain in the reverse gyrase crystal structure. Mutants lacking all or part of the latch relax DNA in the absence of nucleotide, indicating that this region mediates topoisomerase repression. The mutants also show altered DNA-dependent ATPase activity, suggesting that the latch may be involved in coupling nucleotide hydrolysis to supercoiling. It is not required for this process, however, because the mutants can still positively supercoil DNA. Nucleotide hydrolysis is essential to the specificity of reverse gyrase for increasing the linking number of DNA. Although with ATP the enzyme performs strand passage always toward increasing linking number, it can increase or decrease the linking number in the presence of a nonhydrolyzable ATP analog. This suggests that the mechanism of reverse gyrase is best described by a combination of recently proposed models.  相似文献   

6.
Topoisomerase II is an ATP-operated clamp that effects topological changes by capturing a double stranded DNA segment and transporting it through another DNA molecule. Despite the extensive use of topoisomerase II-targeted drugs in cancer chemotherapy and the impact of drug resistance on the efficacy of treatment, much remains unknown concerning the interactions between these agents and topoisomerase II. To identify the interaction of the bisdioxopiperazine dexrazoxane (ICRF-187) with topoisomerase II, we developed a rapid gel-filtration assay and characterized the binding of ((3)H)-dexrazoxane to human topoisomerase II alpha. Dexrazoxane binds to human topoisomerase II alpha in the presence of DNA and ATP with an apparent K(d) of 23 microM and a stoichiometry of 1 drug molecule per enzyme dimer. Various N-terminal single amino acid substitutions in human topoisomerase II alpha that were previously shown to confer specific bisdioxopiperazine resistance either totally abolished drug binding or resulted in less efficient binding. The effect of the various mutations on drug binding correlated well with their effect on drug resistance in vivo and in vitro. Interestingly, an altered active site tyrosine mutant of human topoisomerase II alpha, which is incapable of carrying out DNA strand passage, was unable to bind dexrazoxane, which agrees with the drug's proposed mechanism of action late in the topoisomerase II catalytic cycle. The direct correlation between the level of drug binding and dexrazoxane resistance is consistent with a decreased drug binding mechanism of action for these dexrazoxane resistance conferring mutations.  相似文献   

7.
Kingma PS  Burden DA  Osheroff N 《Biochemistry》1999,38(12):3457-3461
Despite the prevalence of topoisomerase II-targeted drugs in cancer chemotherapy and the impact of drug resistance on the efficacy of treatment, interactions between these agents and topoisomerase II are not well understood. Therefore, to further define interactions between anticancer drugs and the type II enzyme, a nitrocellulose filter assay was used to characterize the binding of etoposide to yeast topoisomerase II. Results indicate that etoposide binds to the enzyme in the absence of DNA. The apparent Kd value for the interaction was approximately 5 microM drug. Etoposide also bound to ytop2H1012Y, a mutant yeast type II enzyme that is approximately 3-4-fold resistant to etoposide. However, the apparent Kd value for the drug (approximately 16 microM) was approximately 3 times higher than that determined for wild-type topoisomerase II. Although it has been widely speculated that resistance to topoisomerase II-targeted anticancer agents results from a decreased drug-enzyme binding affinity, these data provide the first direct evidence in support of this hypothesis. Finally, the ability of yeast topoisomerase II to bind etoposide was dependent on the presence of the hydroxyl moiety of Tyr783, suggesting specific interactions between etoposide and the active site residue that is involved in DNA scission.  相似文献   

8.
DNA topoisomerase II is an essential enzyme that releases a topological strain in DNA by introduction of transient breaks in one DNA helix through which another helix is passed. While changing DNA topology, ATP is required to drive the enzyme through a series of conformational changes dependent on interdomain communication. We have characterized a human topoisomerase IIalpha enzyme with a two-amino acid insertion at position 351 in the transducer domain. The mutation specifically abolishes the DNA strand passage event of the enzyme, probably because of a sterical hindrance of T-segment transport. Thus, the enzyme fails to decatenate and relax DNA, even though it is fully capable of ATP hydrolysis, closure of the N-terminal clamp, and DNA cleavage. The cleavage activity is increased, suggesting that the transducer domain has a role in regulating DNA cleavage. Furthermore, the enzyme has retained a tendency to increase DNA cleavage upon nucleotide binding and also responds to DNA with elevated ATP hydrolysis. However, the DNA-mediated increase in ATP hydrolysis is lower than that obtained with the wild-type enzyme but similar to that of a cleavage-deficient topoisomerase IIalpha enzyme. Our results strongly suggest that the strand passage event is required for efficient DNA stimulation of topoisomerase II-mediated ATP hydrolysis, whereas the stimulation occurs independent of the DNA cleavage reaction per se. A comparison of the strand passage deficient-enzyme described here and the cleavage-deficient enzyme may have applications in other studies where a clear distinction between strand passage and topoisomerase II-mediated DNA cleavage is desirable.  相似文献   

9.
McClendon AK  Dickey JS  Osheroff N 《Biochemistry》2006,45(38):11674-11680
Previous studies with human and bacterial topoisomerases suggest that the type II enzyme utilizes two distinct mechanisms to recognize the handedness of DNA supercoils. It has been proposed that the ability of some type II enzymes, such as human topoisomerase IIalpha and Escherichia coli topoisomerase IV, to distinguish supercoil geometry during DNA relaxation is mediated by elements in the variable C-terminal domain of the protein. In contrast, the ability of human topoisomerase IIalpha and topoisomerase IIbeta to discern the handedness of supercoils during DNA cleavage suggests that residues in the conserved N-terminal or central domain of the protein are involved in this process. To test this hypothesis, the ability of Paramecium bursaria chlorella virus-1 (PBCV-1) and chlorella virus Marburg-1 (CVM-1) topoisomerase II to relax and cleave negatively and positively supercoiled plasmids was assessed. These enzymes display a high degree of sequence identity with the N-terminal and central domains of eukaryotic topoisomerase II but naturally lack the C-terminal domain. While PBCV-1 and CVM-1 topoisomerase II relaxed under- and overwound substrates at similar rates, they were able to discern the handedness of supercoils during the cleavage reaction and preferentially cut negatively supercoiled DNA. Preferential cleavage was not due to a change in site specificity, DNA binding, or religation. These findings are consistent with a bimodal recognition of DNA geometry in which topoisomerase II uses elements in the C-terminal domain to sense the handedness of supercoils during DNA relaxation and elements in the conserved N-terminal or central domain during DNA cleavage.  相似文献   

10.
Chromosomal breakage resulting from stabilization of DNA topoisomerase II covalent complexes by epipodophyllotoxins may play a role in the genesis of leukemia-associated MLL gene translocations. We investigated whether etoposide catechol and quinone metabolites can damage the MLL breakpoint cluster region in a DNA topoisomerase II-dependent manner like the parent drug and the nature of the damage. Cleavage of two DNA substrates containing the normal homologues of five MLL intron 6 translocation breakpoints was examined in vitro upon incubation with human DNA topoisomerase IIalpha, ATP, and either etoposide, etoposide catechol, or etoposide quinone. Many of the same cleavage sites were induced by etoposide and by its metabolites, but several unique sites were induced by the metabolites. There was a preference for G(-1) among the unique sites, which differs from the parent drug. Cleavage at most sites was greater and more heat-stable in the presence of the metabolites compared to etoposide. The MLL translocation breakpoints contained within the substrates were near strong and/or stable cleavage sites. The metabolites induced more cleavage than etoposide at the same sites within a 40 bp double-stranded oligonucleotide containing two of the translocation breakpoints, confirming the results at a subset of the sites. Cleavage assays using the same oligonucleotide substrate in which guanines at several positions were replaced with N7-deaza guanines indicated that the N7 position of guanine is important in metabolite-induced cleavage, possibly suggesting N7-guanine alkylation by etoposide quinone. Not only etoposide, but also its metabolites, enhance DNA topoisomerase II cleavage near MLL translocation breakpoints in in vitro assays. It is possible that etoposide metabolites may be relevant to translocations.  相似文献   

11.
Reverse gyrases are topoisomerases that catalyze ATP-dependent positive supercoiling of circular covalently closed DNA. They consist of an N-terminal helicase-like domain, fused to a C-terminal topoisomerase I-like domain. Most of our knowledge on reverse gyrase-mediated positive DNA supercoiling is based on studies of archaeal enzymes. To identify general and individual properties of reverse gyrases, we set out to characterize the reverse gyrase from a hyperthermophilic eubacterium. Thermotoga maritima reverse gyrase relaxes negatively supercoiled DNA in the presence of ADP or the non-hydrolyzable ATP-analog ADPNP. Nucleotide binding is necessary, but not sufficient for the relaxation reaction. In the presence of ATP, positive supercoils are introduced at temperatures above 50 degrees C. However, ATP hydrolysis is stimulated by DNA already at 37 degrees C, suggesting that reverse gyrase is not frozen at this temperature, but capable of undergoing inter-domain communication. Positive supercoiling by reverse gyrase is strictly coupled to ATP hydrolysis. At the physiological temperature of 75 degrees C, reverse gyrase binds and hydrolyzes ATPgammaS. Surprisingly, ATPgammaS hydrolysis is stimulated by DNA, and efficiently promotes positive DNA supercoiling, demonstrating that inter-domain communication during positive supercoiling is fully functional with both ATP and ATPgammaS. These findings support a model for communication between helicase-like and topoisomerase domains in reverse gyrase, in which an ATP and DNA-induced closure of the cleft in the helicase-like domain initiates a cycle of conformational changes that leads to positive DNA supercoiling.  相似文献   

12.
Reverse gyrase is a peculiar DNA topoisomerase, specific of thermophilic microorganisms, which induces positive supercoiling into DNA molecules in an ATP-dependent reaction. It is a modular enzyme and comprises an N-terminal helicase-like module fused to a C-terminal topoisomerase IA-like domain. The exact molecular mechanism of this unique reaction is not understood, and a fundamental mechanistic question is how its distinct steps are coordinated. We studied the cross-talk between the components of this molecular motor and probed communication between the DNA-binding sites and the different activities (DNA relaxation, ATP hydrolysis and positive supercoiling). We show that the isolated ATPase and topoisomerase domains of reverse gyrase form specific physical interactions, retain their own DNA binding and enzymatic activities, and when combined cooperate to achieve the unique ATP-dependent positive supercoiling activity. Our results indicate a mutual effect of both domains on all individual steps of the reaction. The C-terminal domain shows ATP-independent topoisomerase activity, which is repressed by the N-terminal domain in the full-length enzyme; experiments with the isolated domains showed that the C-terminal domain has stimulatory influence on the ATPase activity of the N-terminal domain. In addition, the two domains showed a striking reciprocal thermostabilization effect.  相似文献   

13.
TAS-103 is a novel antineoplastic agent that is active against in vivo tumor models [Utsugi, T., et al. (1997) Jpn. J. Cancer Res. 88, 992-1002]. This drug is believed to be a dual topoisomerase I/II-targeted agent, because it enhances both topoisomerase I- and topoisomerase II-mediated DNA cleavage in treated cells. However, the relative importance of these two enzymes for the cytotoxic actions of TAS-103 is not known. Therefore, the primary cellular target of the drug and its mode of action were determined. TAS-103 stimulated DNA cleavage mediated by mammalian topoisomerase I and human topoisomerase IIalpha and beta in vitro. The drug was less active than camptothecin against the type I enzyme but was equipotent to etoposide against topoisomerase IIalpha. A yeast genetic system that allowed manipulation of topoisomerase activity and drug sensitivity was used to determine the contributions of topoisomerase I and II to drug cytotoxicity. Results indicate that topoisomerase II is the primary cellular target of TAS-103. In addition, TAS-103 binds to human topoisomerase IIalpha in the absence of DNA, suggesting that enzyme-drug interactions play a role in formation of the ternary topoisomerase II.drug.DNA complex. TAS-103 induced topoisomerase II-mediated DNA cleavage at sites similar to those observed in the presence of etoposide. Like etoposide, it enhanced cleavage primarily by inhibiting the religation reaction of the enzyme. Based on these findings, it is suggested that TAS-103 be classified as a topoisomerase II-targeted drug.  相似文献   

14.
DNA topoisomerase is involved in DNA repair and replication. In this study, a novel ATP-independent 30-kDa type I DNA topoisomerase was purified and characterized from a marine methylotroph, Methylophaga sp. strain 3. The purified enzyme composed of a single polypeptide was active over a broad range of temperature and pH. The enzyme was able to relax only negatively supercoiled DNA. Mg(2+) was required for its relaxation activity, while ATP gave no effect. The enzyme was clearly inhibited by camptothecin, ethidium bromide, and single-stranded DNA, but not by nalidixic acid and etoposide. Interestingly, the purified enzyme showed Mn(2+)-activated endonuclease activity on supercoiled DNA. The N-terminal sequence of the purified enzyme showed no homology with those of other type I enzymes. These results suggest that the purified enzyme is an ATP-independent type I DNA topoisomerase that has, for the first time, been characterized from a marine methylotroph.  相似文献   

15.
Etoposide, a nonintercalative antitumor drug, is known to inhibit topoisomerase II. Its effects have been tested in concanavalin A stimulated splenocytes, a system of cell proliferation in which topoisomerase II is induced. The primary effect of etoposide was a strong inhibition of DNA synthesis and the production of reversible DNA breaks, presumably associated with topoisomerase II. However, prolonged (20 h) contact with the drug resulted in a secondary fragmentation by irreversible double-strand breaks that yielded unusually small DNA fragments. Surprisingly, the same effect was obtained with novobiocin, which does not produce topoisomerase II associated DNA breaks. Moreover, long-term treatment with camptothecin, a specific inhibitor of topoisomerase I which is known to induce single-strand breaks in vitro and in vivo, also produced double-strand breaks and DNA fragmentation into small pieces. These findings suggest that prolonged treatment of proliferating splenocytes by etoposide and other topoisomerase inhibitors induced DNA fragmentation by a mechanism that does not directly involve topoisomerases.  相似文献   

16.
We have constructed a series of clones encoding N-terminal fragments of human DNA topoisomerase IIalpha. All fragments exhibit DNA-dependent ATPase activity. Fragment 1-420 shows hyperbolic dependence of ATPase on DNA concentration, whereas fragment 1-453 shows hyperstimulation at low ratios of DNA to enzyme, a phenomenon found previously with the full-length enzyme. The minimum length of DNA found to stimulate the ATPase activity was approximately 10 bp; fragments >or=32 bp manifest the hyperstimulation phenomenon. Molecular mass studies show that fragment 1-453 is a monomer in the absence of nucleotides and a dimer in the presence of nucleotide triphosphate. The results are consistent with the role of the N-terminal domain of topoisomerase II as an ATP-operated clamp that dimerises in the presence of ATP. The hyperstimulation effect can be interpreted in terms of a "piggy-back binding" model for protein-DNA interaction.  相似文献   

17.

Background

Etoposide is a cancer drug that induces strand breaks in cellular DNA by inhibiting topoisomerase II (topoII) religation of cleaved DNA molecules. Although DNA cleavage by topoisomerase II always produces topoisomerase II-linked DNA double-strand breaks (DSBs), the action of etoposide also results in single-strand breaks (SSBs), since religation of the two strands are independently inhibited by etoposide. In addition, recent studies indicate that topoisomerase II-linked DSBs remain undetected unless topoisomerase II is removed to produce free DSBs.

Methodology/Principal Findings

To examine etoposide-induced DNA damage in more detail we compared the relative amount of SSBs and DSBs, survival and H2AX phosphorylation in cells treated with etoposide or calicheamicin, a drug that produces free DSBs and SSBs. With this combination of methods we found that only 3% of the DNA strand breaks induced by etoposide were DSBs. By comparing the level of DSBs, H2AX phosphorylation and toxicity induced by etoposide and calicheamicin, we found that only 10% of etoposide-induced DSBs resulted in histone H2AX phosphorylation and toxicity. There was a close match between toxicity and histone H2AX phosphorylation for calicheamicin and etoposide suggesting that the few etoposide-induced DSBs that activated H2AX phosphorylation were responsible for toxicity.

Conclusions/Significance

These results show that only 0.3% of all strand breaks produced by etoposide activate H2AX phosphorylation and suggests that over 99% of the etoposide induced DNA damage does not contribute to its toxicity.  相似文献   

18.
Mutagenic PCR method was applied to introduce point mutations to the B'A' core domain of yeast DNA topoisomerase II. Screens for mutants resistant to the anticancer drug etoposide were carried out in a yeast ts system in the presence of high concentrations of the drug or in a drug-hypersensitive genetic background. 129 mutants were obtained from a total of 47,000 transformants. Nucleotide sequencing of 40 selected mutants showed that a large number of the mutations map to regions encoding the linker that joins the ATPase domain to the B' module and the B'A' linker. Significant reduction in catalytic activity was evident for a large fraction of mutant enzymes and all mutants were also resistant to amsacrine, another topoisomerase II drug with a different chemical structure, suggesting that few of the mutations reflect simple changes of specific amino acid side chains that are directly involved in enzyme-drug interactions.  相似文献   

19.
20.
Reverse gyrase is a topoisomerase that introduces positive supercoils into DNA in an ATP-dependent manner. It is unique to hyperthermophilic archaea and eubacteria, and has been proposed to protect their DNA from damage at high temperatures. Cooperation between its N-terminal helicase-like and the C-terminal topoisomerase domain is required for positive supercoiling, but the precise role of the helicase-like domain is currently unknown. Here, the characterization of the isolated helicase-like domain from Thermotoga maritima reverse gyrase is presented. We show that the helicase-like domain contains all determinants for nucleotide binding and ATP hydrolysis. Its intrinsic ATP hydrolysis is significantly stimulated by ssDNA, dsDNA and plasmid DNA. During the nucleotide cycle, the helicase-like domain switches between high- and low-affinity states for dsDNA, while its affinity for ssDNA in the ATP and ADP states is similar. In the context of reverse gyrase, the differences in DNA affinities of the nucleotide states are smaller, and the DNA-stimulated ATPase activity is strongly reduced. This inhibitory effect of the topoisomerase domain decelerates the progression of reverse gyrase through the nucleotide cycle, possibly providing optimal coordination of ATP hydrolysis with the complex reaction of DNA supercoiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号