首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development and function of secondary lymphoid tissue require signaling by tumor necrosis factor and lymphotoxins. Mice deficient in LTbetaR show defective organogenesis of lymph nodes and Peyer's patches and a severely disturbed splenic architecture. In contrast, TNF or p55TNF-R deficiency does not affect the organogenesis of peripheral lymphoid organs but interferes with the formation of B cell follicles and the appearance of FDC networks and germinal centers in all secondary lymphoid organs. Based on these differences, we have previously hypothesized that the role of TNF in lymphoid structure is distinct from that of LT and restricted in regulating cellular interactions that allow the differentiation and/or correct positioning of FDCs. In the present study we show that, in addition to the defects in follicular structure, TNF or p55TNF-R knockout mice exhibit defects in the formation of the macrophage populations and of the sinus lining cells of the splenic marginal zone. Interestingly, a large number of dendritic-shaped cells stained with FDC-specific markers and able to trap immune complexes are retained within the defective marginal zone of TNF and p55TNF-R knockout spleens. We conclude that the primary defect in the lymphoid phenotype of TNF or p55TNF-R knockout mice is the failure of FDC precursors to migrate through the disorganized marginal sinus and to home properly into the splenic follicular areas where they would promote the formation of B cell follicles and germinal centers.  相似文献   

2.
Signal transduction pathways regulating NF-kappaB activation essential for microenvironment formation in secondary lymphoid organs remain to be determined. We investigated the effect of a deficiency of TNFR-associated factor 6 (TRAF6), which activates the classical NF-kappaB pathway, in splenic microenvironment formation. Two-week-old TRAF6-deficient mice showed severe defects in B cell follicle and marginal zone formation, similar to mutant mice defective in lymphotoxin (Lt) beta receptor (LtbetaR) signal induction of nonclassical NF-kappaB activation. However, analysis revealed a TRAF6 role in architecture formation distinct from its role in the early neonatal Lt signaling pathway. LtbetaR signal was essential for primary B cell cluster formation with initial differentiation of follicular dendritic cells (FDCs) in neonatal mice. In contrast, TRAF6 was dispensable for progression to this stage but was required for converting B cell clusters to B cell follicles and maintaining FDCs through to later stages. Fetal liver transfer experiments suggested that TRAF6 in radiation-resistant cells is responsible for follicle formation. Despite FDC-specific surface marker expression, FDCs in neonatal TRAF6-deficient mice had lost the capability to express CXCL13. These data suggest that developmentally regulated activation of TRAF6 in FDCs is required for inducing CXCL13 expression to maintain B cell follicles.  相似文献   

3.
Rapid removal of pathogens from the circulation by secondary lymphoid organs is prerequisite for successful control of infection. Blood-borne Ags are trapped mainly in the splenic marginal zone. To identify the cell populations responsible for Ag trapping in the marginal zone, mice were selectively depleted of marginal zone macrophages and marginal metallophilic macrophages. In the absence of these cells, trapping of microspheres and Listeria monocytogenes organisms was lost, and early control of infection was impaired. Depletion of marginal zone macrophages and marginal metallophilic macrophages, however, did not limit Ag presentation because Listeria-specific protective T cell immunity was induced. Therefore, marginal zone macrophages and marginal metallophilic macrophages are crucial for trapping of particulate Ag but dispensable for Ag presentation.  相似文献   

4.
Generation of the B cell recall response appears to involve interaction of Ag, in the form of an immune complex (IC) trapped on follicular dendritic cells (FDCs), with germinal center (GC) B cells. Thus, the expression of receptors on FDC and B cells that interact with ICs could be critical to the induction of an optimal recall response. FDCs in GCs, but not in primary follicles, express high levels of the IgG Fc receptor Fc gamma RIIB. This regulated expression of Fc gamma RIIB on FDC and its relation to recall Ab responses were examined both in vitro and in vivo. Trapping of IC in spleen and lymph nodes of Fc gamma RII-/- mice was significantly reduced compared with that in wild-type controls. Addition of ICs to cultures of Ag-specific T and B cells elicited pronounced Ab responses only in the presence of FDCs. However, FDCs derived from Fc gamma RIIB-/- mice supported only low level Ab production in this situation. Similarly, when Fc gamma RIIB-/- mice were transplanted with wild-type Ag-specific T and B cells and challenged with specific Ag, the recall responses were significantly depressed compared with those of controls with wild-type FDC. These results substantiate the hypothesis that FcgammaRIIB expression on FDCs in GCs is important for FDCs to retain ICs and to mediate the conversion of ICs to a highly immunogenic form and for the generation of strong recall responses.  相似文献   

5.
PLCgamma2 plays a critical role in B cell receptor (BCR) signaling and its targeted deletion results in defective B cell development and function. Here, we show that PLCgamma2 deficiency specifically blocks B cell maturation at the transitional type 2 (T2) to follicular (FO) B cell transition and the PLCgamma2 pathway regulates survival of B cells. BCR-induced apoptosis is dramatically enhanced in all subsets of splenic PLCgamma2-deficient B cells, especially in T2 and FO B cell subpopulations. We also find that all splenic PLCgamma2-deficient B cell subpopulations express abnormally low levels of Bcl-2 protein. In addition, PLCgamma2 deficiency disrupts BCR-mediated induction of A1 expression. Enforced expression of Bcl-2 prevents BCR-induced apoptosis in all splenic PLCgamma2-deficient B cell subpopulations and partially restores the numbers of PLCgamma2-deficient FO B cells. In contrast to Bcl-2, enforced expression of A1 preferentially prevents BCR-induced apoptosis in PLCgamma2-deficient FO B cells and partially restores the numbers of these B cells. Therefore, the PLCgamma2 pathway provides a survival signal via regulation of Bcl-2 in all splenic B cell subpopulations and via additional induction of A1 in mature FO B cells.  相似文献   

6.
Infections with variant Creutzfeldt-Jakob disease (vCJD) have almost exclusively occurred in young patients, but the reasons for this age distribution are uncertain. Our data suggest that the pathogenesis of many peripherally acquired transmissible spongiform encephalopathy (TSE) agents is less efficient in aged individuals. Four vCJD cases linked to transfusion of vCJD-contaminated blood or blood products have been described. Three cases occurred in elderly patients, implying that intravenous exposure is more efficient in aged individuals than other peripheral routes. To test this hypothesis, young (6 to 8 weeks old) and aged (600 days old) mice were injected intravenously with a TSE agent. In aged and young mice, the intravenous route was more efficient than other peripheral routes of TSE agent exposure. However, in aged mice, disease pathogenesis was significantly reduced. Although most aged mice failed to develop clinical disease during their life spans, many showed histopathological signs of TSE disease in their brains. Thus, the effects of age on intravenous TSE pathogenesis may lead to significant levels of subclinical disease in the population. After peripheral exposure, many TSE agents accumulate upon follicular dendritic cells (FDCs) in lymphoid tissues before they infect the brain. In aged spleens, PrP(C) expression and TSE agent accumulation upon FDCs were reduced. Furthermore, the splenic marginal zone microarchitecture was substantially disturbed, adversely affecting the delivery of immune complexes to FDCs. This study is the first to suggest that the effects of aging on the microarchitecture and the function of the splenic marginal zone significantly influence the pathogenesis of an important pathogen.  相似文献   

7.
Lymphotoxin-β receptor (LTβR) axis plays a crucial role in development and compartmentalization of peripheral lymphatic organs. But, it is also required for the appropriate function and maintenance of structural integrity of the thymus: in LTβR-deficient animals the clonal deletion of autoreactive lymphocytes is impaired and differentiation of thymic medullary epithelial cells is disturbed. In this study, using several markers, we showed that thymic metallophilic macrophages were lacking in LTβR-deficient mice. In tumor necrosis factor receptor-I (p55)-deficient mice (which we used as positive control) thymic metallophilic cells were located, similarly as in normal mice, in the thymic cortico-medullary zone at the junction of cortex and medulla. These findings show that LTβR is necessary for maintenance of metallophilic macrophages in the thymus and provide further evidence that these cells may represent a factor involved in thymic negative selection.  相似文献   

8.
An acute infection with lymphocytic choriomeningitis virus (LCMV) is efficiently controlled by the cytotoxic-T-cell (CTL) response of the host, and LCMV titers in the spleen and peripheral solid organs usually fall sharply after day 4 to 6 postinfection. Surprisingly, infection of immunodeficient recombination-activating gene 2-deficient (RAG2-/-) mice with 5 x 10(2) PFU of LCMV-WE causes about 80-fold-lower LCMV titers in the spleen on day 4 postinfection compared with C57BL/6 control mice. This could not be attributed to NK cell activity, since common gamma-chain-deficient RAG2-/- mice lacking NK cells show low LCMV titers comparable to those for RAG2-/- mice. Furthermore, the reduced early LCMV production in spleens could not be explained by an enhanced gamma interferon production in RAG2-/- mice. Analysis of mutant mice exhibiting various defects in the splenic microarchitecture, including (i) tumor necrosis factor alpha-negative (TNF-alpha-/-), lymphotoxin alpha-negative (LTalpha-/-), B-cell-deficient muMT mice, (ii) immunoglobulin M-negative mice, and (iii) RAG2-/- mice reconstituted with wild-type versus TNF-alpha-/- LTalpha-/- B cells, revealed a clear correlation between an intact splenic marginal zone, rapid early replication of LCMV in the spleen, and efficient CTL induction. These results suggest that by the preferential infection of the highly organized splenic microarchitecture, LCMV seems to successfully exploit one of the key elements in the chain of the adaptive immune system. Not only does the early tropism of LCMV for the splenic marginal zone trigger a potent immune response, but at the same time the marginal zone may also become a target of early CTL-mediated immunopathology that impairs immune responsiveness.  相似文献   

9.
The factors limiting neonatal and infant IgG Ab responses to T-dependent Ags are only partly known. In this study, we assess how these B cell responses are influenced by the postnatal development of the spleen and lymph node microarchitecture. When BALB/c mice were immunized with alum-adsorbed tetanus toxoid at various stages of their immune development, a major functional maturation step for induction of serum IgG, Ab-secreting cells, and germinal center (GC) responses was identified between the second and the third week of life. This correlated with the development of the follicular dendritic cell (FDC) network, as mature FDC clusters only appeared at 2 wk of age. Adoptive transfer of neonatal splenocytes into adult SCID mice rapidly induced B cell follicles and FDC precursor differentiation into mature FDC, indicating effective recruitment and signaling capacity of neonatal B cells. In contrast, adoptive transfer of adult splenocytes into neonatal SCID mice induced primary B cell follicles without any differentiation of mature FDC and failed to correct limitations of tetanus toxoid-induced GC. Thus, unresponsiveness to lymphoid-mediated signals at the level of neonatal FDC precursors delays FDC maturation and GC induction, thus limiting primary Ab-secreting cell responses to T-dependent Ags in early postnatal life.  相似文献   

10.
We have already shown that metallophilic macrophages, which represent an important component in the thymus physiology, are lacking in lymphotoxin-β receptor-deficient mice. However, further molecular requirements for the development and correct tissue positioning of these cells are unknown. To this end, we studied a panel of mice deficient in different chemokine ligand or receptor genes. In contrast to normal mice, which have these cells localized in the thymic cortico-medullary zone (CMZ) as a distinct row positioned between the cortex and medulla, in plt/plt (paucity of lymph node T cells) mice lacking the functional CCL19/CCL21 chemokines, metallophilic macrophages are not present in the thymic tissue. Interestingly, in contrast to the CCL19/21-deficient thymus, metallophilic macrophages are present in the CCR7-deficient thymus. However, these cells are not appropriately located in the CMZ, but are mostly crowded in central parts of thymic medulla. The double staining revealed that these metallophilic macrophages are CCR7-negative and CXCR3-positive. In the CXCL13-deficient thymus the number, morphology and localization of metallophilic macrophages are normal. Thus, our study shows that CCL19/21 and its possible signaling through CXCR3 are required for the development of thymic metallophilic macrophages, whereas the CXCL13–CXCR5 signaling is not necessary.  相似文献   

11.
McGovern G  Jeffrey M 《PloS one》2007,2(12):e1304
Transmissible spongiform encephalopathies (TSEs) or prion diseases often result in accumulation of disease-associated PrP (PrP(d)) in the lymphoreticular system (LRS), specifically in association with follicular dendritic cells (FDCs) and tingible body macrophages (TBMs) of secondary follicles. We studied the effects of sheep scrapie on lymphoid tissue in tonsils and lymph nodes by light and electron microscopy. FDCs of sheep were grouped according to morphology as immature, mature or regressing. Scrapie was associated with FDC dendrite hypertrophy and electron dense deposit or vesicles. PrP(d) was located using immunogold labelling at the plasmalemma of FDC dendrites and, infrequently, mature B cells. Abnormal electron dense deposits surrounding FDC dendrites were identified as immunoglobulins suggesting that excess immune complexes are retained and are indicative of an FDC dysfunction. Within scrapie-affected lymph nodes, macrophages outside the follicle and a proportion of germinal centre TBMs accumulated PrP(d) within endosomes and lysosomes. In addition, TBMs showed PrP(d) in association with the cell membrane, non-coated pits and vesicles, and also with discrete, large and random endoplasmic reticulum networks, which co-localised with ubiquitin. These observations suggest that PrP(d) is internalised via the caveolin-mediated pathway, and causes an abnormal disease-related alteration in endoplasmic reticulum structure. In contrast to current dogma, this study shows that sheep scrapie is associated with cytopathology of germinal centres, which we attribute to abnormal antigen complex trapping by FDCs and abnormal endocytic events in TBMs. The nature of the sub-cellular changes in FDCs and TBMs differs from those of scrapie infected neurones and glial cells suggesting that different PrP(d)/cell membrane interactions occur in different cell types.  相似文献   

12.
Cho KA  Kim JY  Kim HS  Ryu KH  Woo SY 《Cytokine》2012,59(2):211-214
Tonsils comprise part of the mucosal immune system and contain lymphocytes, macrophages, and follicular dendritic cells (FDCs). FDCs are located in the B cell area of the follicles of secondary lymphoid organs, such as the spleen, tonsils, or lymph nodes, and they trap and retain immune complexes on their surfaces to regulate B cell activation and maturation. Stromal cells from the palatine tonsils are often used for FDC in vitro studies, and it has been reported that human palatine tonsils may be a good source of multipotent mesenchymal cells. Therefore, we assessed whether tonsil-derived mesenchymal stromal cells could differentiate into a FDC-like phenotype. We discovered that stromal cells isolated from human tonsils not only had the potential to differentiate into various cell types of mesenchymal origin, but they also could differentiate into FDC-like cells under cytokine stimulation in vitro.  相似文献   

13.
Ab responses in early life are low and short-lived; therefore, induction of protective immunity requires repeated vaccinations. One of the major limitations in early-life immunity is delayed maturation of follicular dendritic cells (FDCs), which play a central role in mediating the germinal center (GC) reaction leading to production of Ab-secreting cells (AbSCs). We assessed whether a nontoxic mutant of Escherichia coli heat-labile enterotoxin (LT-K63) and CpG1826 as model adjuvants could accelerate FDC maturation and immune response in neonatal mice, using a pneumococcal polysaccharide of serotype 1 conjugated to tetanus toxoid (Pnc1-TT) as a model vaccine. In neonatal NMRI mice, a single dose of Pnc1-TT coadministered with LT-K63 enhanced Pnc1-TT-induced GC reaction. In contrast, CpG1826 had no effect. Accordingly, LT-K63, but not CpG1826, accelerated the maturation of FDC networks, detected by FDC-M2(+) staining, characteristic for adult-like FDCs. This coincided with migration of MOMA-1(+) macrophages into the GCs that can enhance GC reaction and B cell activation. The FDC-M2(+) FDC networks colocalized with enhanced expression of TNF-α, which is critical for the maintenance of mature FDCs and is poorly expressed in neonates. The accelerated maturation of FDC networks correlated with increased frequency and prolonged persistence of polysaccharide- and protein-specific IgG(+) AbSCs in spleen and bone marrow. Our data show for the first time, to our knowledge, that an adjuvant (LT-K63) can overcome delayed maturation of FDCs in neonates, enhance the GC reaction, and prolong the persistence of vaccine-specific AbSCs in the BM. These properties are attractive for parenteral vaccination in early life.  相似文献   

14.
15.
The characteristic microarchitecture of the marginal zone (MZ), formed by locally interacting MZ-specific B cells, macrophages, and endothelial cells, is critical for productive marginal zone B cell (MZB cell) Ab responses. Reportedly, IL-7-deficient mice, although severely lymphopenic, retain small numbers of CD21(high)CD23(low) B cells consistent with MZB cell phenotype, suggesting that IL-7 signaling is not exclusively required for MZB cell lymphopoiesis. In this study, we investigated the function of IL-7(-/-) MZB cells and the IL-7(-/-) microenvironment using a model of hamster heart xenograft rejection, which depends exclusively on MZB cell-mediated production of T cell-independent IgM xenoantibodies (IgMXAb). C57BL/6-IL-7(-/-) mice accepted xenografts indefinitely and failed to produce IgMXAb, even after transfer of additional IL-7(-/-) or wild-type C57BL/6 MZB cells. Transfer of wild-type but not IL-7(-/-) B cells enabled SCID mice to produce IgMXAb. When transferred to SCID mice, wild-type but not IL-7(-/-) B cells formed B cell follicles with clearly defined IgM(+), MOMA-1(+), and MAdCAM-1(+) MZ structures. Conversely, adoptively transferred GFP(+) C57BL/6 B cells homed to the MZ area in a SCID but not an IL-7(-/-) environment. Naive IL-7(-/-) mice showed absent or aberrant splenic B cell structures. We provide evidence that IL-7 is critical for the development of the intrinsic function of MZB cells in producing rapidly induced IgM against T cell-independent type II Ags, for their homing potential, and for the development of a functional MZ microanatomy capable of attracting and lodging MZB cells.  相似文献   

16.
The marginal zone (MZ) region of the spleen plays an important role in leukocyte traffic and the removal of blood-borne pathogens by resident macrophages. Macrophage receptor with a collagenous structure (MARCO), expressed by MZ macrophages, recognizes several microbial ligands and is also involved in the retention of MZ B cells. Here, we report that MARCO is also associated with follicular dendritic cells (FDCs) in the spleen. In its FDC-associated form MARCO is arranged in 0.3–0.5-μm diameter granular-fibrillar structures with an appearance similar to the white pulp conduit system formed by fibroblastic reticular cells (FRCs), but with different compartment preference. The follicular display of MARCO resists irradiation and requires the presence of both MZ macrophages and differentiated FDCs. The follicular delivery of MARCO is independent from the shuffling of marginal zone B cells, and it persists after clodronate liposome-mediated depletion of MZ macrophages. Our findings thus indicate that MARCO is distributed to both MZ and follicles within the spleen into conduit-like structures, where FDC-bound MARCO may mediate communication between the stromal microenvironments of MZ and follicles.  相似文献   

17.
In most peripheral infections of rodents and sheep with scrapie, infectivity is found first in lymphoid tissues and later in the central nervous system (CNS). Cells within the germinal centers (GCs) of the spleen and lymph nodes are important sites of extraneural replication, from which infection is likely to spread to the CNS along peripheral nerves. Here, using immunodeficient mice, we investigate the identity of the cells in the spleen that are important for disease propagation. Despite possessing functional T and B lymphocytes, tumor necrosis factor alpha-deficient (TNF-alpha(-/-)) mice lack GCs and follicular dendritic cell (FDC) networks in lymphoid tissues. In contrast, lymphoid tissues of interleukin-6-deficient (IL-6(-/-)) mice possess FDC networks but have impaired GCs. When the CNSs of TNF-alpha(-/-), IL-6(-/-), and wild-type mice were directly challenged with the ME7 scrapie strain, 100% of the mice were susceptible, developing disease after closely similar incubation periods. However, when challenged peripherally (intraperitoneally), most TNF-alpha(-/-) mice failed to develop scrapie up to 503 days postinjection. All wild-type and IL-6(-/-) mice succumbed to disease approximately 300 days after the peripheral challenge. High levels of scrapie infection and the disease-specific isomer of the prion protein, PrP(Sc), were detectable in spleens from challenged wild-type and IL-6(-/-) mice but not from TNF-alpha(-/-) mice. Histopathological analysis of spleen tissue demonstrated heavy PrP accumulations in direct association with FDCs in challenged wild-type and IL-6(-/-) mice. No PrP(Sc) accumulation was detected in spleens from TNF-alpha(-/-) mice. We conclude that, for the ME7 scrapie strain, mature FDCs are critical for replication in lymphoid tissues and that in their absence, neuroinvasion following peripheral challenge is impaired.  相似文献   

18.
Bcl-3 is an atypical member of the IκB family that has the potential to positively or negatively modulate nuclear NF-κB activity in a context-dependent manner. Bcl-3's biologic impact is complex and includes roles in tumorigenesis and diverse immune responses, including innate immunity. Bcl-3 may mediate LPS tolerance, suppressing cytokine production, but it also seems to contribute to defense against select systemic bacterial challenges. However, the potential role of Bcl-3 in organ-specific host defense against bacteria has not been addressed. In this study, we investigated the relevance of Bcl-3 in a lung challenge with the Gram-negative pathogen Klebsiella pneumoniae. In contrast to wild-type mice, Bcl-3-deficient mice exhibited significantly increased susceptibility toward K. pneumoniae pneumonia. The mutant mice showed increased lung damage marked by neutrophilic alveolar consolidation, and they failed to clear bacteria in lungs, which correlated with increased bacteremic dissemination. Loss of Bcl-3 incurred a dramatic cytokine imbalance in the lungs, which was characterized by higher levels of IL-10 and a near total absence of IFN-γ. Moreover, Bcl-3-deficient mice displayed increased lung production of the neutrophil-attracting chemokines CXCL-1 and CXCL-2. Alveolar macrophages and neutrophils are important to antibacterial lung defense. In vitro stimulation of Bcl-3-deficient alveolar macrophages with LPS or heat-killed K. pneumoniae recapitulated the increase in IL-10 production, and Bcl-3-deficient neutrophils were impaired in intracellular bacterial killing. These findings suggest that Bcl-3 is critically involved in lung defense against Gram-negative bacteria, modulating functions of several cells to facilitate efficient clearance of bacteria.  相似文献   

19.
The splenic marginal zone is a unique compartment that separates the lymphoid white pulp from the surrounding red pulp. Due to the orchestration of specialized macrophages and B cells flanking a marginal sinus, this compartment plays an important role in uptake of blood-borne Ags and it gives the spleen its specialized function in antibacterial immunity. In this study, we demonstrate that both development and maintenance of this marginal zone is highly dependent on the presence of B cells. Spleens from B cell-deficient mice were found to lack both metallophilic and marginal zone macrophages as well as mucosal addressin cellular adhesion molecule-1+ sinus lining cells. Using an inducible Cre/loxP-driven mouse model in which mature B cells could be partially depleted by removal of the B cell receptor subunit Igalpha, we could show that the integrity and function of an established marginal zone was also dependent on the presence of B cells. This was confirmed in a transgenic model in which all B cells were gradually depleted due to overexpression of the TNF family member CD70. The loss of all cellular subsets from the marginal zone in these CD70 transgenic mice was effectively prevented by crossing these mice on a CD27(-/-) or TCRalpha(-/-) background, because this prohibited the ongoing B cell depletion. Therefore, we conclude that B cells are not only important for the development, but also for maintenance, of the marginal zone. This direct correlation between circulating B cells and the function of the spleen implies an increased risk for B cell lymphopenic patients with bacterial infections.  相似文献   

20.
CBA/N mice carry an X-linked immune-deficiency gene, leading to a defect in the ability to form antibodies against T-independent type 2 antigens. By using immunohistochemistry, the organization of the spleen of the immune-deficient male (xid) CBA/N F1 and the normal female F1 were compared. Staining with antilymphocyte markers showed that the total number of cells in the various T- and B-cell areas was smaller in the xid mouse, resulting in very small white pulp compartments. Fewer B cells were seen in the marginal zone. When the spleens of the F1 mice were examined for macrophage markers, the rings of marginal-zone macrophages and the ring of marginal metallophilic macrophages were much thinner in the xid mouse. In particular, the marginal-zone macrophages are thought to play a role in the response against thymus-independent type 2 antigens, and their small numbers in the xid mouse are suggestive of a role for the microenvironment in the defects in these mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号