共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Bradyrhizobium japonicum FixK2, a Crucial Distributor in the FixLJ-Dependent Regulatory Cascade for Control of Genes Inducible by Low Oxygen Levels 下载免费PDF全文
D. Nellen-Anthamatten P. Rossi O. Preisig I. Kullik M. Babst H. M. Fischer H. Hennecke 《Journal of bacteriology》1998,180(19):5251-5255
Bradyrhizobium japonicum possesses a second fixK-like gene, fixK2, in addition to the previously identified fixK1 gene. The expression of both genes depends in a hierarchical fashion on the low-oxygen-responsive two-component regulatory system FixLJ, whereby FixJ first activates fixK2, whose product then activates fixK1. While the target genes for control by FixK1 are unknown, there is evidence for activation of the fixNOQP, fixGHIS, and rpoN1 genes and some heme biosynthesis and nitrate respiration genes by FixK2. FixK2 also regulates its own structural gene, directly or indirectly, in a negative way. 相似文献
4.
Bradyrhizobium japonicum is a Gram-negative soil bacterium symbiotically associated with soya bean plants, which is also able to denitrify under free-living and symbiotic conditions. In B. japonicum, the napEDABC, nirK, norCBQD and nosRZDYFLX genes which encode reductases for nitrate, nitrite, nitric oxide and nitrous oxide respectively are required for denitrification. Similar to many other denitrifiers, expression of denitrification genes in B. japonicum requires both oxygen limitation and the presence of nitrate or a derived nitrogen oxide. In B. japonicum, a sophisticated regulatory network consisting of two linked regulatory cascades co-ordinates the expression of genes required for microaerobic respiration (the FixLJ/FixK2 cascade) and for nitrogen fixation (the RegSR/NifA cascade). The involvement of the FixLJ/FixK2 regulatory cascade in the microaerobic induction of the denitrification genes is well established. In addition, the FNR (fumarase and nitrate reduction regulator)/CRP(cAMP receptor protein)-type regulator NnrR expands the FixLJ/FixK2 regulatory cascade by an additional control level. A role for NifA is suggested in this process by recent experiments which have shown that it is required for full expression of denitrification genes in B. japonicum. The present review summarizes the current understanding of the regulatory network of denitrification in B. japonicum. 相似文献
5.
6.
7.
Bradyrhizobium japonicum USDA 110 and 61A152 can utilize the hydroxamate-type siderophores ferrichrome and rhodotorulate, in addition to ferric citrate, to overcome iron starvation. These strains can also utilize the pyoverdin-type siderophore pseudobactin St3. The ability to utilize another organism's siderophores may confer a selective advantage in the rhizosphere. 相似文献
8.
Although there is considerable circumstantial evidence for the involvement of cytokinins in legume nodulation, the cytokinins produced by rhizobia have not been well characterized. Bradyrhizobium japonicum 61A68, a bacterium which nodulates soybean (Glycine max [L.] Merr.), was grown in defined medium. Cytokinins were purified from the culture medium by Amberlite XAD-2 chromatography and fractionated by column chromatography on Sephadex LH-20 in 35% ethanol. Pooled fractions from the Sephadex column were analyzed for cytokinin activity with the tobacco callus bioassay. Cytokinin activity was observed in fractions corresponding to the elution volumes of zeatin, ribosylzeatin, and methylthiozeatin. No activity corresponding to the elution volumes of isopentenyladenine or its riboside was found. Total cytokinin activity in the B. japonicum culture filtrate was equivalent to approximately 1 microgram of kinetin per liter. Transfer RNA was isolated from B. japonicum cells by phenol extraction, followed by potassium acetate extraction, cetyltrimethylammonium bromide precipitation, and DEAE cellulose chromatography. Transfer RNA was enzymically hydrolyzed to nucleosides. High performance liquid chromatographic analysis of cytokinin nucleosides showed peaks corresponding to the retention times of trans-ribosylzeatin, methylthioribosylzeatin, isopentenyladenosine, and methylthioisopentenyladenosine. Analysis of the tRNA hydrolysate by Sephadex LH-20 chromatography and tobacco bioassay showed cytokinin activity in fractions corresponding to ribosylzeatin, methylthioribosylzeatin, and isopentenyladenosine. The presence of the trans isomer of ribosylzeatin was also determined by enzyme immunoassay. 相似文献
9.
Rhizobia utilize phenolic substances as sole carbonsource. Bradyrhizobium japonicum utilizescatechin, a unit of condensed tannin as carbonsource. To establish the degradative pathway ofcatechin, the products of catechin degradation wereisolated by paper chromatography and TLC andidentified by HPLC, UV, IR and NMR spectra. B.japonicum cleaves catechin through catechinoxygenase. Phloroglucinolcarboxylic acid andprotocatechuic acid were identified as the initialproducts of degradation. Phloroglucinolcarboxylicacid is further decarboxylated to phloroglucinolwhich is dehydroxylated to resorcinol. Resorcinolis hydroxylated to hydroxyquinol. Protocatechuicacid and hydroxyquinol undergo intradiol cleavagethrough protocatechuate 3,4-dioxygenase andhydroxyquinol 1,2-dioxygenase to form-carboxy cis, cis-muconic acidand maleylacetate respectively. The enzymes ofcatechin degradative pathway are inducible. Estimation of all the enzymes involved in thecatabolism of catechin reveals the existence of acatechin degradative pathway in B. japonicum. 相似文献
10.
11.
12.
13.
14.
Bacteroid suspensions of Bradyrhizobium japonicum USDA 136 isolated from soybeans grown in Mo-deficient conditions were able to transport molybdate at a nearly constant rate for up to 1 min. The apparent Km for molybdate was 0.1 microM, and the Vmax was about 5 pmol/min per mg (dry weight) of bacteroid. Supplementation of bacteroid suspensions with oxidizable carbon sources did not markedly increase molybdate uptake rates. Anaerobically isolated bacteroids accumulated twice as much Mo in 1 h as aerobically isolated cells did, but the first 5 min of molybdate uptake was not dependent on the isolation condition with respect to O2. Respiratory inhibitors such as cyanide, azide, and hydroxylamine did not appreciably affect molybdate uptake, even at concentrations that inhibited O2 uptake. The uncouplers carbonyl cyanide m-chlorophenylhydrazone (CCCP) and carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and the ionophores nigericin and monensin significantly inhibited molybdate uptake. The electrogenic ionophores valinomycin and gramicidin stimulated molybdate uptake. Rapid pH shift experiments indicated that molybdate transport depends on a transmembrane proton gradient (delta pH), and it is probably transported electroneutrally as H2MoO4. Most of the 99MoO4(2-) taken up was not exchangeable with a 100-fold excess of unlabeled MoO4(2-). Tungstate was a competitive inhibitor of molybdate uptake, with a Ki of 0.034 microM, and vanadate inhibited molybdate uptake slightly. 相似文献
15.
16.
Schirrmeister J Friedrich L Wenzel M Hoppe M Wolf C Göttfert M Zehner S 《Journal of bacteriology》2011,193(15):3733-3739
NopE1 is a type III-secreted protein of the symbiont Bradyrhizobium japonicum which is expressed in nodules. In vitro it exhibits self-cleavage in a duplicated domain of unknown function (DUF1521) but only in the presence of calcium. Here we show that either domain is self-sufficient for cleavage. An exchange of the aspartic acid residue at the cleavage site with asparagine prevented cleavage; however, cleavage was still observed with glutamic acid at the same position, indicating that a negative charge at the cleavage site is sufficient. Close to each cleavage site, an EF-hand-like motif is present. A replacement of one of the conserved aspartic acid residues with alanine prevented cleavage at the neighboring site. Except for EDTA, none of several protease inhibitors blocked cleavage, suggesting that a known protease-like mechanism is not involved in the reaction. In line with this, the reaction takes place within a broad pH and temperature range. Interestingly, magnesium, manganese, and several other divalent cations did not induce cleavage, indicating a highly specific calcium-binding site. Based on results obtained by blue-native gel electrophoresis, it is likely that the uncleaved protein forms a dimer and that the fragments of the cleaved protein oligomerize. A database search reveals that the DUF1521 domain is present in proteins encoded by Burkholderia phytofirmans PsNJ (a plant growth-promoting betaproteobacterium) and Vibrio coralliilyticus ATCC BAA450 (a pathogenic gammaproteobacterium). Obviously, this domain is more widespread in proteobacteria, and it might contribute to the interaction with hosts. 相似文献
17.
18.
M Münchbach P Dainese W Staudenmann F Narberhaus P James 《European journal of biochemistry》1999,264(1):39-48
A set of 19 heat shock proteins (Hsp) was observed - by subtractive two-dimensional gel electrophoresis - to be induced when Bradyrhizobium japonicum, the nitrogen-fixing root-nodule symbiont of soybean, was temperature up-shifted from 28 degrees C to 43 degrees C. Up-regulated protein spots were excised from multiple two-dimensional gels. The proteins were concentrated using a funnel-gel device before being blotted onto poly(vinylidene difluoride) membranes for digestion with trypsin before MS and tandem MS analysis or for Edman sequence determination. Five proteins in the range 8-20 kDa were identified as the small Hsp (sHsp; HspB, C, D, E and H) and three others showed strong sequence similarity to the sHsp family. Two other low molecular mass proteins corresponded to GroES1 and GroES2, and five novel proteins were found. Four proteins of approximately 60 kDa were identified as GroEL2, GroEL4, and GroEL5 and DnaK. An analysis of the heat shock induction of DnaK, of four of the most strongly induced GroESL proteins and six of the sHsp revealed that the proteins could be placed into four distinct regulatory groups based on the kinetics of protein appearance. 相似文献
19.