首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several N-acyltetrapeptides of the general structure 2-aminobenzoyl-Gly-X-Phe(4-nitro)-Arg were synthesized and tested as substrates for atrial dipeptidyl carboxyhydrolase, an enzyme associated with atrial granules that converts one active atrial natriuretic peptide, atriopeptin II, to another, atriopeptin I. Hydrolysis of the X-Phe(4-nitro) bond generates the 2-aminobenzoyl fluorophore and the increasing fluorescence can be monitored in a continuous assay. Based on the ratio of Vmax/Km as an indication of substrate specificity, peptides containing X = Ser greater than Ala approximately equal to Lys- greater than Asn much greater than Thr approximately equal to Asp. With the exception of the Asn substrate, the Km determined for all the substrates was about the same. Thus, the effect of the P1 residue substitution shows up almost exclusively in Vmax.  相似文献   

2.
R B Harris  I B Wilson 《Peptides》1985,6(3):393-396
We are examining the substrate specificity of atrial dipeptidyl carboxyhydrolase, a membrane-bound metallo enzyme that we isolated from bovine atrial tissue homogenates. This enzyme readily removes the dipeptide, Phe-Arg, from Bz-Gly-Ser-Phe-Arg, a stand-in substrate for atriopeptin II, one of several atrial natriuretic factors. We now report that the atrial enzyme cleaves the C-terminal dipeptide, Phe-Arg, from atriopeptin II to form atriopeptin I. The km (pH 7.5) is 25 microM and the ratio of relative Vmax/km as a measure of substrate specificity indicates that atriopeptin II is a 240-fold better substrate than Bz-Gly-His-Leu. Only Phe-Arg was detected as a hydrolysis product, indicating that sequential cleavage of Asn-Ser from atriopeptin II does not occur, and that atriopeptin I is not a substrate. Bz-Gly-Asn-Ser was as good a substrate for the atrial enzyme as Bz-Gly-His-Leu, but Bz-Cys(bzl)-Asn-Ser was not hydrolyzed. This result suggests that the presence of an intact disulfide bond or an S-alkylated residue in the P1 position of a substrate (as in atriopeptin I) prevents hydrolysis by the atrial enzyme. Comparative studies were made with the angiotensin I converting enzyme. Atriopeptin II was not a substrate. The stand-in substrates for atriopeptin I, Bz-Cys(bzl)-Asn-Ser and Bz-Gly-Asn-Ser were barely hydrolyzed, which by itself suggests that atriopeptin I is not a substrate of the angiotensin converting enzyme. Our results strongly suggest that atriopeptin II is converted to atriopeptin I and that hydrolysis is mediated by the atrial enzyme. The angiotensin I converting enzyme plays no role in processing these peptides. We suggest that the atrial enzyme be named atrial peptide convertase.  相似文献   

3.
We recently found and partially purified a new membrane-bound metallo dipeptidyl dipeptidase from bovine atrial tissue homogenates (Harris, R.B. & Wilson, I.B. (1984) Arch. Biochem. Biophys. 233, 667-675). We suggested that this enzyme was capable of cleaving the dipeptide, phenylalanyl-arginine from the C-terminus of atriopeptin II to give atriopeptin I. The atriopeptins are two atrial natriuretic peptides and the existence of the atrial peptide system has implicated the mammalian heart as an endocrine organ. The tetrapeptide benzoyl-glycyl-seryl-phenylalanyl-arginine was synthesized because it contains the C-terminal tripeptide sequence of atriopeptin II and should be useful to test the roles of the atrial enzyme and angiotensin I-converting enzyme in processing the atrial peptides. We found that for the atrial enzyme, Vmax was 13-fold higher and Km 7-fold-lower for this stand-in substrate than for benzoyl-glycyl-histidyl-leucine, a standard substrate used to measure converting enzyme activity. The ratio of Vmax/Km as a measure of substrate specificity indicates that the stand-in substrate is 86-fold better than benzoyl-glycyl-histidyl-leucine. In contrast, the stand-in substrate is a 20-fold poorer substrate for the converting enzyme than benzoyl-glycyl-histidyl-leucine. With the stand-in substrate, the converting enzyme showed pronounced substrate inhibition. An effective Vmax and Km were calculated using only concentrations of S below the optimum substrate concentration. These results confirm that the atrial enzyme is distinct from the converting enzyme. They also suggest that the conversion of atriopeptin II to atriopeptin I is a physiological process that is mediated by this enzyme.  相似文献   

4.
A new membrane-bound dipeptidyl carboxyhydrolase has been identified in bovine atrial tissue, and has been partially purified after extraction with Triton X-100. This enzyme, found in quantities of 0.01-0.03 units/g tissue assayed with Bz-Gly-His-Leu, is potentially capable of hydrolyzing atriopeptin II to atriopeptin I. The enzyme is located in the microsomal fraction and in sucrose density fractions enriched for atrial granules. The enzyme is completely inhibited by reagents for heavy metals such as EDTA, o-phenanthroline, dithiothreitol, and mercaptoethanol. The latter two compounds are also disulfide reagents. The atrial enzyme is also inhibited by D-2-methyl-3-mercaptopropanoyl-L-Pro(Captopril), 3-mercaptopropanoyl-L-Pro, 2-D-methylsuccinyl-L-Pro, and bradykinin potentiating factor, all inhibitors of the angiotensin I-converting enzyme. However, the atrial enzyme differs from the converting enzyme in a number of kinetic and molecular properties. Its activity increases with ionic strength, but the atrial enzyme does not have a chloride dependence for Bz-Gly-His-Leu hydrolysis; the pH optimum, 7.3, is slightly lower, and it is 5500 times less sensitive to the very potent converting enzyme inhibitor, D-Cys-L-Pro. The strokes radius of the atrial enzyme is 5.00 nm as compared to 4.10 nm, and its molecular weight is 240,000 compared to 145,000. Ventricular tissue, which does not contain the atrial peptides, does not contain the dipeptidyl carboxyhydrolase enzyme.  相似文献   

5.
A method has been developed to determine preferred residue substitutions in the P' position of peptide substrates for proteolytic enzymes. The method has been validated with four different enzymes; the angiotensin I-converting enzyme, atrial dipeptidyl carboxyhydrolase, bacterial dipeptidyl carboxyhydrolase, and meprin A. A mixture of N-acylated potential peptide-substrates for each of the enzymes was prepared in a single synthesis procedure on the same solid-phase synthesis resin. The peptides were identical in all residue positions except the P' position to be studied, into which numerous amino acid residues were incorporated on a theoretical equimolar basis. After cleavage and extraction of the peptides from the resin, no attempt was made to purify them individually; the exact concentration of each peptide in the mixture was determined by quantitative amino acid analysis. Incubation of an enzyme with its peptide-substrate mixture at [S] much less than Km yielded peptide hydrolytic products with newly exposed N-termini. The identity and amount of each hydrolysis product was determined by automated N-terminal sequence analysis. One cycle of sequencing revealed preferred amino acid substitutions in the P'1 position, two cycles the P'2 position, and so forth. Comparison of the rates of production of the various products indicates the preferred substitution in that particular P' position. New information on the substrate specificities of each of the enzymes tested was obtained and it is clear that this approach can be applied to any protease with a defined (or suspected) point of cleavage in a peptide substrate.  相似文献   

6.
At least three enzymes have been identified in atrial tissue homogenates that are capable of processing pro-atrial natriuretic factor to active atrial peptides. The atrial peptides possess potent natriuretic, diuretic, vasorelaxant, and hemodynamic properties, and their existence has implicated the mammalian heart as an endocrine organ. We have purified and characterized a serine proteinase (Mr approximately equal to 70,000) associated with atrial granules that preferentially hydrolyzes the Arg-Ser bond in the synthetic substrates Gly-Pro-Arg-Ser-Leu-Arg, benzoyl-Gly-Pro-Arg-Ser-Leu-Arg, and benzoyl-Gly-Pro-Arg-Ser-Leu-Arg-Arg-2-naphthylamide, the Arg-2-naphthylamide bond in the substrate benzoyl-Gly-Pro-Arg-2-naphthylamide, and the Arg-Ser bond in a 31-residue substrate (Gly96-Tyr126 peptide) corresponding to residues Arg98-Ser99 in pro-atrial natriuretic factor. The Gly96-Tyr126 peptide contains the putative processing site in pro-atrial natriuretic factor and the sequence for the bioactive peptides. Our results indicate that the minimum processing site sequence is -Gly-Pro-Arg-Ser-Leu-Arg-Arg- and that the Ser99-Tyr126 natriuretic peptide is the predominant hydrolytic product. After prolonged incubation or at high enzyme concentrations, the Ser103-Tyr126 natriuretic peptide may also be formed. The Ser103-Arg125 natriuretic peptide was only a very minor product. The doublet of basic amino acids is not the primary processing site in pro-atrial natriuretic factor, but their presence may influence cleavage at the single Arg residue "upstream." Our findings are consistent with the idea that the pro-protein and the processing enzymes are packaged into the secretory granule and in response to the proper stimulus, the pro-protein is processed to the active peptides, probably during the process of secretion. The processing pathway of pro-atrial natriuretic factor is discussed.  相似文献   

7.
We have partially purified a thiol-dependent protease from bovine atrial tissue that cleaves the Arg98-Ser99 bond of rat natriuretic peptide (Gly96-Tyr126) to produce the natriuretic Ser99-Tyr126 peptide (cardionatrin I). This was the only hydrolytic product we detected. The existence of the atrial natriuretic peptide system implicates the mammalian heart as an endocrine organ which participates in the hormonal regulation of extracellular fluid volume, electrolyte balance and vascular tone. This enzyme appears to be part of that system. The atrial protease also hydrolyzes the Arg-2-Napthylamide bond of natriuretic peptide stand-in substrates; on the basis of relative Vmax/Km as a measure of substrate specificity, Bz-Leu-Arg-Arg-2-Napthylamide (NA) greater than Bz-Leu-Arg-2-NA greater than Arg-2-NA. There is little or no cleavage between the Arg-Arg pair of the first substrate. Since in the Gly96-Tyr126 peptide the Arg-Arg pair is not the principle cleavage site for this enzyme, it is very unlikely that it is a principle cleavage site for this enzyme in pro-atrial natriuretic factor. It is possible that it is a cleavage site for a different enzyme or the pair may serve as a signal for cleavage at Arg98.  相似文献   

8.
Atrial peptide inactivation by rabbit-kidney brush-border membranes   总被引:2,自引:0,他引:2  
Atriopeptin (AP) 24, containing amino acids Ser103-Tyr126 of the carboxy-terminal portion of the atrial natriuretic peptide prohormone, was degraded rapidly by rabbit kidney brush border membranes. The rate of degradation of AP24 measured by the loss of vasorelaxant activity followed a similar time course to the decrease in peptide peak area measured by high-performance liquid chromatography. Inactivation of AP24 produced peptide fragments which were separated by HPLC. The major products were purified individually and their peptide sequences determined. Results indicate that AP24 was proteolytically cleaved at three peptide bonds: Ser103-Ser104, Cys105-Phe106 and Ser123-Phe124. des-Ser103-AP24 had similar vasorelaxant activity to AP24, while AP24 cleaved at Cys105-Phe106 was inactive. Regarding the proteolytic cleavage at Ser123-Phe124, there was an accumulation of the C-terminal tripeptide, Phe-Arg-Tyr, only at the later time points of the incubation. Degradation experiments were repeated with an amino- and carboxy-terminal protected peptide, acetyl-AP24-amide. Peptide sequence analysis of the major degradation products of this peptide revealed that the critical peptide bond cleaved was Cys105-Phe106. We conclude that the Cys-Phe peptide bond renders atrial peptides highly susceptible to proteolysis by renal brush border membranes, resulting in inactivation.  相似文献   

9.
Human atrial natriuretic peptide (Ser 99-Tyr 126) was rapidly degraded by both choroid plexus and hypothalamic membranes with a complex pattern of cleavage. The use of protease inhibitors allowed a preliminary characterization of the enzymes involved in the hydrolysis of the Ser-Phe and Phe-Arg bonds of iodine-labelled atrial natriuretic peptide.The C-terminal tripeptide was generated by three different enzymatic activities acting on the Ser-Phe bond: endopeptidase 24.11, a phosphoramidon-insensitive metallopeptidase and a thiol protease. Peptides like substance P, neurotensin, bradykinin inhibited the cleavage of the Ser-Phe bond of atrial natriuretic peptide. The C-terminal tripeptide was further degraded by aminopeptidases. Cleavage of the C-terminal dipeptide was inhibited by aprotinin, suggesting the contribution of brain kallikrein in the formation of this metabolite.These results show that many different proteases were involved in the hydrolysis of the C-terminal sequence of atrial natriuretic peptide, at least in vitro and underline the complexity of neuropeptide catabolism by brain preparations.  相似文献   

10.
Atriopeptin III and related atrial natriuretic peptide hormones strongly elevate the level of cyclic GMP in three neural tumor cell lines. At peptide concentrations of 1 microM clear-cut plateaus of the dose-response curves are not yet reached. Atriopeptin III increases the intracellular concentration of cyclic GMP to a maximum in the course of 30-40 min. The effect of atriopeptin III on the cellular cyclic GMP level is independent of the concentration of extracellular Ca2+ and is not affected by the Ca2+ ionophore A23187. These results suggest (1) that atrial natriuretic hormones may play an important role in the nervous system, and (2) that cultured neural cells may be useful tools in the elucidation of the mechanisms of action of these hormones.  相似文献   

11.
The effect of prostaglandin synthesis inhibition and of beta-adrenoceptor blockade on the blood pressure and renin response to the synthetic atrial natriuretic peptide atriopeptin III was assessed in unanesthetized normotensive rats. This peptide was infused i.v. for 30 min at a rate of 1 microgram/min in rats pretreated either with indomethacin (5 mg i.v.) or propranolol (1 mg i.v.). The blood pressure reducing effect of atriopeptin III was attenuated neither by indomethacin nor by propranolol. Atriopeptin III per se did not modify plasma renin activity. Both the administration of indomethacin and of propranolol had a suppressing effect on renin release during atriopeptin III infusion. These data suggest that the vasodilating properties of atrial natriuretic peptides do not depend in the conscious normotensive rats on the production of prostaglandins. They also provide evidence that during infusion of such peptides, both prostaglandins and beta-adrenergic mechanisms are still involved in the regulation of renin secretion.  相似文献   

12.
D Müller  C Schulze  H Baumeister  F Buck  D Richter 《Biochemistry》1992,31(45):11138-11143
The degradation of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP) by insulin-degrading enzyme (IDE) has been investigated. As revealed by high-performance liquid chromatography, all three peptides are sequentially cleaved at a limited number of sites, the latter of which were identified by mass spectrometric analyses. The studies revealed that ANP is preferred as substrate over BNP and CNP. ANP degradation is rapidly initiated by hydrolysis at the Ser25-Phe26 bond. Three additional cleavage sites were identified in ANP after prolonged incubation with IDE; in contrast, three and two bonds were hydrolyzed in BNP and CNP, respectively. Analysis of the nine cleavage sites shows a preference for basic or hydrophobic amino acid residues on the carboxyl side of a cleaved peptide bond. In contrast to most of the peptide fragments generated by IDE activity, the initial ANP cleavage product, F-R-Y, is rapidly degraded further by cleavage of the R-Y bond. Cross-linking studies with 125I-ANP in the presence of sulfhydryl-modifying agent indicate that IDE activity is inhibited at the level of initial substrate binding whereas metal-ion chelating agents only prevent hydrolysis. On the basis of its structural and enzymatic properties, IDE exhibits striking similarity to a number of recently-described endopeptidases.  相似文献   

13.
The crystal structure of prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis was determined. Prolyl tripeptidyl aminopeptidase consists of beta-propeller and catalytic domains, and a large cavity between the domains; this structure is similar to dipeptidyl aminopeptidase IV. A catalytic triad (Ser603, His710, and Asp678) was located in the catalytic domain; this triad was virtually identical to that of the enzymes belonging to the prolyl oligopeptidase family. The structure of an inactive S603A mutant enzyme complexed with a substrate was also determined. The pyrrolidine ring of the proline residue appeared to fit into a hydrophobic pocket composed of Tyr604, Val629, Trp632, Tyr635, Tyr639, Val680, and Val681. There were characteristic differences in the residues of the beta-propeller domain, and these differences were related to the substrate specificity of tripeptidyl activity. The N-terminal amino group was recognized by salt bridges, with two carboxyl groups of Glu205 and Glu206 from a helix in dipeptidyl aminopeptidase IV. In prolyl tripeptidyl aminopeptidase, however, the Glu205 (located in the loop) and Glu636 were found to carry out this function. The loop structure provides sufficient space to accommodate three N-terminal residues (Xaa-Xaa-Pro) of substrates. This is the first report of the structure and substrate recognition mechanism of tripeptidyl peptidase.  相似文献   

14.
Extracts of rat atria are potent stimulators of sodium and urine excretion, and relax vascular and intestinal smooth muscle preparations. The structures of six biologically active peptides obtained from atrial extracts are reported here. Ion exchange chromatography of a low molecular weight fraction obtained by gel filtration of atrial extracts produced two natriuretic fractions: the first induced relaxation of intestinal smooth muscle strips only, whereas the second also relaxed vascular strips as well. From the first fraction four pure biologically active peptides obtained by reverse phase HPLC have been sequenced: the 21 amino acid peptide, designated atriopeptin I, and three homologs (des- ser1 -, des- ser1 -ser2-, and des- ser21 - atriopeptin I). From the second fraction two pure biologically active peptides were obtained, which had C-terminal extensions of atriopeptin I: atriopeptins II (23 amino acid residues) and III (24 residues), having respectively phe-arg and phe-arg-tyr C-termini. These results suggest that this family of six peptides, sharing the same 17 membered ring formed by an internal cystine disulfide, is derived from a common high molecular weight precursor.  相似文献   

15.
Rat 125I-labeled atrial natriuretic factor (ANF (8-33)) was used to identify ANF receptors on cultured bovine aortic endothelial cells. Specific binding of 125I-ANF at 37 degrees C to confluent endothelial cells was saturable and of high affinity. Scatchard analysis of the equilibrium binding data indicated that endothelial cells contain a single class of binding sites with a Kd of 0.1 +/- 0.01 nM. This particular clone of endothelial cells had 16000 +/- 1300 receptors per cell. The order of potency for competing with 125I-ANF binding was human atrial natriuretic peptide (hANP) = atrial natriuretic factor (ANF (8-33)) greater than atriopeptin II greater than atriopeptin III greater than atriopeptin. The weakest competitor, atriopeptin I, had a K1 of 0.45 nM, which was only 6-fold higher than the K1 for hANP and ANF (8-33). ANF (8-33) and hANP in the presence of 0.5 mM isobutylmethyl-xanthine produced a 15-20-fold increase in cyclic GMP content at 10 pM and a maximal 500-fold elevation of cyclic GMP at 10 nM. The concentrations required to elicit a half-maximal increase in cyclic GMP for hANP, ANF (8-33), atriopeptin I, atriopeptin II and atriopeptin III were 0.30, 0.35, greater than 500, 4.0 and 5.0 nM, respectively. Although atriopeptin I acted as a partial agonist, it was unable to antagonize the effect of ANF (8-33) on cyclic GMP formation. These findings suggest that endothelial cells have multiple and functionally distinct ANF-binding sites.  相似文献   

16.
We previously reported the discovery and partial characterization of bovine atrial granule serine proteinase, a candidate processing enzyme of pro-atrial natriuretic factor, which is associated with atrial granule membranes. We now report the physicochemical properties of electrophoretically homogeneous enzyme purified by a series of chromatography steps from a subcellular fraction enriched for atrial granules. The enzyme tends to associate during purification to higher molecular weight species, but SDS-PAGE analysis reveals a single polypeptide chain of molecular weight 70,000. The enzyme is activated 2-3 fold by Ca+2 and 1.5-fold by Mg+2 and is nearly 100% inhibited by Zn+2 or Co+2. Thus, the enzyme can be considered a calcium activated, neutral pH, serine proteinase. Based on the hydrolysis of numerous synthetic peptide substrates, the recognition sequence for the enzyme within the pro-hormone has been mapped to A96PRSLRR102; cleavage occurs at the Arg98-Ser99 bond yielding bioactive atrial natriuretic peptide directly from the pro-hormone. The doublet of basic amino acids is part of the recognition sequence but is not the primary cleavage site. It is our hypothesis that the processing site sequence acts as a recognition element for the endoproteinase and resides at the surface of the pro-hormone and thus contributes to the molecular basis for limited proteolysis.  相似文献   

17.
Recently we reported the presence of both the guanylyl cyclase-linked (116 kDa) and the ANF-C (66 kDa) atrial natriuretic peptide receptors in the rat liver. Since ANF 103-125 (atriopeptin II) stimulates cGMP production in livers and because cGMP has previously been shown to mimic the actions of cAMP in regulating hepatic carbohydrate metabolism, studies were performed to investigate the effects of atriopeptin II on hepatic glycolysis and gluconeogenesis. Additionally, employing analogs of atrial natriuretic hormone [des-(Q116, S117, G118, L119, G120) ANF 102-121 (C-ANF) and des-(C105,121) ANF 104-126 (analog I)] which bind only the ANF-C receptors, the role of the ANF-C receptors in the hepatic actions of atriopeptin II was evaluated. In perfused livers of fed rats atriopeptin II, but not C-ANF and analog I, inhibited hepatic glycolysis and stimulated glucose production. Moreover, analog I did not alter the ability of atriopeptin II to inhibit hepatic glycolysis. Atriopeptin II, but not C-ANF and analog I, also stimulated cGMP production in perfused rat livers. Furthermore, while atriopeptin II inhibited the activity ratio of pyruvate kinase by 30%, C-ANF did not alter hepatic pyruvate kinase activity. Finally, in rat hepatocytes, atriopeptin II stimulated the synthesis of [14C]glucose from [2-14C]pyruvate by 50% and this effect of atriopeptin II was mimicked by the exogenously supplied cGMP analog, 8-bromo cGMP. Thus atriopeptin II increases hepatic gluconeogenesis and inhibits glycolysis, in part by inhibiting pyruvate kinase activity, and the effects of atriopeptin II are mediated via activation of guanylyl cyclase-linked ANF receptors which elevate cGMP production.  相似文献   

18.
Summary The secretory pathways of atrial natriuretic factor have been investigated in atrial and ventricular cardiocytes of control and cardiomyopathic Syrian hamsters in severe congestive heart failure with four antibodies: a monoclonal antibody (2H2) against rat synthetic atrial natriuretic factor (101–126), which is directed against region 101–103 of rat atrial natriuretic factor (99–126), and polyclonal, affinity-purified antibodies produced in rabbits against synthetic C-terminal atrial natriuretic factor (101–126), synthetic N-terminal atrial natriuretic factor (11–37) or the putative cleavage site of atrial natriuretic factor (98–99): atrial natriuretic factor (94–103). Application of the immunogold technique on thin frozen sections (immunocryoultramicrotomy) revealed an identical picture with the four antibodies. In atria of both control and cardiomyopathic hamsters where atrial natriuretic factor secretion is regulated, the atrial natriuretic factor propeptide travels, uncleaved, from the Golgi complex to immature and mature secretory granules. In ventricles of control hamsters, where secretion is constitutive, the atrial natriuretic factor propeptide travels from the Golgi complex to secretory vesicles. In the ventricles of hamsters with severe congestive heart failure, the Golgi complex is larger, secretory vesicles more abundant and a few secretory granules are present in 20% of cardiocytes. Here again, the peptide travels uncleaved in all these pathways. These results reveal the pathways of secretion of atrial natriuretic factor in atrial and ventricular cardiocytes and indicate that the propeptide is not cleaved intracellularly.Supported by a grant from the Medical Research Council of Canada to the Multidisciplinary Research Group on Hypertension, by the Canadian Heart Foundation and the Pfizer Company (England)  相似文献   

19.
M Gagelmann  D Hock  W G Forssmann 《FEBS letters》1987,225(1-2):251-254
Cardiodilatins/atrial natriuretic peptides (CDD/ANP) exhibit a common amino acid sequence: Arg101-Arg102-Ser103-Ser104. Cyclic AMP-dependent phosphorylation of Ser104 of atrial peptides with [gamma-32P]ATP enables rapid identification of cardiac hormones. The biological activity of in vitro phosphorylated cardiodilatin (CDD-28/alpha-hANP) is dramatically altered compared to the unphosphorylated peptide: the vaso-relaxant effect of cardiodilatin 28 is inhibited upon phosphorylation.  相似文献   

20.
Atrial natriuretic peptides refer to a family of related peptides secreted by atria that appear to have an important role in the control of blood pressure. The structure of these peptides shows the amino acid sequence Arg101-Arg102-Ser103-Ser104, which is a typical recognition sequence (Arg-Arg-X-Ser) for phosphorylation by cyclic AMP-dependent protein kinase. With this background, we tested two synthetic atrial natriuretic peptides (Arg101-Tyr126 and Gly96-Tyr126) as substrates for in vitro phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase. The tested atrial natriuretic peptides were found to be substrates for the reaction. Sequence studies demonstrated that the site of phosphorylation was located, as expected, at Ser104. Kinetic studies demonstrate that both atrial natriuretic peptides are excellent substrates for cyclic AMP-dependent protein kinase. In particular, the longer peptide Gly96-Tyr126 exhibited an apparent Km value of about 0.5 microM, to our knowledge the lowest reported Km for a cyclic AMP-dependent protein kinase substrate. Preliminary studies to measure the biological activity of the in vitro phosphorylated atrial peptides indicate that these compounds are more effective than the corresponding dephospho forms in stimulating Na/K/Cl cotransport in cultured vascular smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号