首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
N L Poyser 《Prostaglandins》1987,33(1):101-112
Hydrocortisone (10 micrograms/ml) had no effect on the basal outputs and A23187-stimulated outputs of PGF2 alpha, PGE2 and 6-keto-PGF1 alpha from the Day 15 guinea-pig uterus superfused in vitro. These findings indicate that the high output of PGF2 alpha from the guinea-pig uterus during the last one-third of the oestrous cycle is not modulated by the adrenal glucocorticoid hormones. Progesterone (10 micrograms/ml) had no effect on the A23187-induced increases in PG output from the Day 15 guinea-pig uterus. However, oestradiol (10 micrograms/ml but not 1 microgram/ml) significantly reduced the increases in outputs of PGF2 alpha, PGE2 and 6-keto-PGF1 alpha induced by A23187 from the Day 15 guinea-pig uterus, without affecting basal PG outputs. The increase in uterine tone induced by A23187 in the Day 15 guinea-pig uterus was reduced by 20-50% by oestradiol (10 micrograms/ml). The addition of oestradiol (10 micrograms/ml) and progesterone together (10 micrograms/ml) produced the same effects on the Day 15 guinea-pig uterus as oestradiol alone. Oestradiol (10 micrograms/ml) also reduced the A23187-induced increases in PG output from the Day 7 guinea-pig uterus, but did not reduce the increase in uterine tone. Oestradiol (10 micrograms/ml) reduced the increases in outputs of PGF2 alpha, PGE2 and 6-keto-PGF1 alpha induced by exogenous arachidonic acid from the Day 7 and Day 15 guinea-pig uterus. Previous studies have shown that oestradiol is not a cyclo-oxygenase inhibitor. The present findings suggest that oestradiol, at a relatively high concentration, may interfere with the access of arachidonic acid to the cyclo-oxygenase enzyme. This action of oestradiol may explain its anti-luteolytic action when administered to guinea-pigs in large doses after Day 9 of the cycle.  相似文献   

3.
The aim of the present study was to determine the effect of tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta) and interleukin-6 (IL-6) on prostaglandin (PG)F(2 alpha) and PGE(2) secretion as well as cyclooxygenase-2 (COX-2) protein expression in chorioamnion collected on days 25, 30 and 40 of pregnancy in pigs. Fetal membrane slices were incubated for 16 h with TNF-alpha, IL-1 beta, IL-6 (1 or 10 ng/ml of medium) or two combinations of the three cytokines (1 or 10 ng/ml of each cytokine per combination). We demonstrated the stimulatory effect of TNF-alpha, IL-1 beta and/or IL-6 on PGF(2 alpha) and PGE(2) secretion by the porcine fetal membranes. The medium content of these PGs depended on the cytokine type, treatment dose and day of pregnancy. Cytokine stimulation of PGE(2) was more pronounced than that of PGF(2 alpha). In addition, an increase in PGF(2 alpha) and/or PGE(2) secretion was usually associated with an augmentation of COX-2 protein expression. Our results support the notion concerning the possible role of cytokines in modulating production of PGs by fetal membranes during the first trimester of gestation.  相似文献   

4.
A luteotropic role for prostaglandins (PGs) during the luteal phase of the menstrual cycle of rhesus monkeys was suggested by the observation that intraluteal infusion of a PG synthesis inhibitor caused premature luteolysis. This study was designed to identify PGs that promote luteal function in primates. First, the effects of various PGs on progesterone (P) production by macaque luteal cells were examined in vitro. Collagenase-dispersed luteal cells from midluteal phase of the menstrual cycle (Day 6-7 after the estimated surge of LH, n = 3) were incubated with 0-5,000 ng/ml PGE2, PGD, 6 beta PGI1 (a stable analogue of PGI2), PGA2, or PGF2 alpha alone or with hCG (100 ng/ml). PGE2, PGD2, and 6 beta PGI1 alone stimulated (p less than 0.05) P production to a similar extent (2- to 3-fold over basal) as hCG alone, whereas PGA2 and PGF2 alpha alone had no effect on P production. Stimulation (p less than 0.05) of P synthesis by PGE2, PGD2, and 6 beta PGI1 in combination with hCG was similar to that of hCG alone. Whereas PGA2 inhibited gonadotropin-induced P production (p less than 0.05), that in the presence of PGF2 alpha plus hCG tended (p = 0.05) to remain elevated. Second, the effects of various PGs on P production during chronic infusion into the CL were studied in vivo. Saline with or without 0.1% BSA (n = 12), PGE2 (300 ng/h; n = 4), PGD2 (300 ng/h; n = 4), 6 beta PGI1 (500 ng/h; n = 3), PGA2 (300 ng/h; n = 4), or PGF2 alpha (10 ng/h; n = 8) was infused via osmotic minipump beginning at midluteal phase (Days 5-8 after the estimated LH surge) until menses. In addition, the same dose of PGE, PGD, PGI, or PGA was infused in combination with PGF2 alpha (n = 3-4/group) for 7 days. P levels over 5 days preceding treatment were not different among groups. In 5 of 8 monkeys receiving PGF2 alpha alone, P declined to less than 0.5 ng/ml within 72 h after initiation of infusion and was lower (p less than 0.05) than controls. The length of the luteal phase in PGF2 alpha-infused monkeys was shortened (12.3 +/- 0.9 days; mean +/- SEM, n = 8; p less than 0.05) compared to controls (15.8 +/- 0.5). Intraluteal infusion of PGE, PGD, PGI, or PGA alone did not affect patterns of circulating P or luteal phase length.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The outputs of PGF(2 alpha), PGE(2) and 6-keto-PGF(1 alpha) were higher from the day 29 guinea-pig placenta than from the sub-placenta in culture, with PGF(2 alpha)being the major prostaglandin produced by the placenta. Lack of extracellular calcium reduced the production of all three prostaglandins by the sub-placenta and 6-keto-PGF(1 alpha) production by the placenta, but had no effect on the production of PGF(2 alpha) and PGE(2) by the placenta. EGTA (a calcium chelator) and a low concentration (30 microM) of TMB-8 (an intracellular calcium antagonist) generally inhibited prostaglandin output from the placenta and sub-placenta at various time points during culture, although EGTA had no effect on PGE(2) output from the placenta. Trifluoperazine and W-7 (calmodulin inhibitors) had no inhibitory effect on the outputs of PGF(2 alpha) and PGE(2) from the placenta, nor on the outputs of any prostaglandin from the sub-placenta. However, these two compounds inhibited the output of 6-keto-PGF(1 alpha) from the placenta. Nifedipine and verapamil (calcium channel blocking drugs) generally reduced the outputs of prostaglandins from the placenta and sub-placenta, except verapamil had no inhibitory effect on PGF(2 alpha) output from the sub-placenta. Gonadotrophin-releasing hormone (GnRH) did not stimulate the output of prostaglandins from the placenta, and tended to have a weak inhibitory action on this tissue. On the sub-placenta, GnRH had an initial inhibitory action on the outputs of PGF(2alpha) and 6-keto-PGF(1 alpha), which was then followed by a stimulation of the outputs of PGF(2 alpha) and, to a lesser extent, of PGE(2).  相似文献   

6.
Modulation of bovine luteal cell synthetic capacity by interferon-gamma   总被引:1,自引:0,他引:1  
Previous work from our laboratory has demonstrated that major histocompatibility complex (MHC) antigens are expressed on cultured bovine luteal cells following exposure to the T lymphocyte-derived cytokine, interferon-gamma (IFN-gamma). In light of these actions of IFN-gamma, it was of interest to investigate the effects of this cytokine on other aspects of luteal function. Therefore, bovine luteal cells were cultured for 7 days in the presence or absence of IFN-gamma, and luteal progesterone (P4), prostaglandin F2 alpha (PGF2 alpha), and 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) production were evaluated. After a 24-h exposure to IFN-gamma (100 U), both PGF2 alpha and 6-keto-PGF1 alpha production were decreased approximately 50% (p less than 0.05). However, as time in culture progressed, IFN-gamma markedly increased the synthesis of both prostaglandins approximately 400% above controls (p less than 0.05). Stimulation of prostaglandin production by IFN-gamma was abrogated by the addition of exogenous P4. During the period of IFN-gamma-stimulated prostaglandin synthesis, LH-stimulated P4 production was inhibited by IFN-gamma treatment. However, the suppression of P4 production by IFN-gamma was not mediated by the increase in prostaglandins since concomitant treatment with indomethacin did not reverse the inhibition of steroidogenesis. These results suggest that IFN-gamma, in addition to an indirect role in promoting immune response mechanisms, may also directly affect luteal function by enhancing luteal prostaglandin synthesis and by inhibiting luteal steroidogenesis.  相似文献   

7.
The ability of de novo biosynthesis of prostaglandins (PGs) in individual whole corpora lutea (CL) obtained from sterile-mated adult pseudopregnant rats on different days of the luteal phase and the post-luteolytic period was evaluated. Production of PGs, progesterone and 20 alpha-dihydroprogesterone were determined after in vitro incubation of CL extirpated from Day 2 to Day 19 after mating. A time-relationship with increased accumulation of PGs in the medium was demonstrated from 18 s to 5 h, with large increments during the first 30 min. Basal accumulation of PGs in the incubation medium was highest for 6-keto-PGF1 alpha (the stable metabolite of prostacyclin) greater than PGE2 greater than PGF2 alpha greater than thromboxane B2 (TXB2) and basal accumulation of PGF2 alpha and PGE2 measured in the medium was maximal on Day 10-11 of pseudopregnancy, concomitantly with a decline in secretion of progesterone. Addition of arachidonic acid (AA) dose-dependently increased synthesis of PGs, with absolute amounts of PGE2 greater than 6-keto-PGF1 alpha greater than PGF2 alpha greater than TXB2 and addition of 14 microM indomethacin markedly inhibited accumulation of all PGs measured. Luteinizing hormone (LH, 10 micrograms/ml) stimulated progesterone secretion on all days during pseudopregnancy, but not on the post-luteolytic Day 19. LH increased PGF2 alpha, PGE2 and 6-keto-PGF1 alpha secretion on Day 13 of pseudopregnancy by 76%, 91% and 28%, respectively, but not on the other days tested. Furthermore, stimulation of PG-synthesis by addition of AA abrogated the LH-induced progesterone accumulation markedly, but only on Day 13 of pseudopregnancy. Epinephrine (5 micrograms/ml) increased production of progesterone and also PGs, but only on Day 2 of pseudopregnancy, whereas oxytocin (100 mIU/ml) was found to be without effect on progesterone as well as PG secretion on all days tested. The results of the present study demonstrates the independent ability of the rat CL to synthesize PGG/PGH2-derived prostaglandins, including the putative luteolysin PGF2 alpha. Secondly, we demonstrate that LH and AA-induced increases in PGF2 alpha and PGE2 production during the luteolytic period, may be an autocrine or paracrine mechanism involved in luteolysis.  相似文献   

8.
Microsomal prostaglandin E synthase (mPGES)-1 is a newly identified inducible enzyme of the arachidonic acid cascade with a key function in prostaglandin (PG)E2 synthesis. We investigated the kinetics of inducible cyclo-oxygenase (COX)-2 and mPGES-1 expression with respect to the production of 6-keto-PGF1alpha and PGE2 in rat chondrocytes stimulated with 10 ng/ml IL-1beta, and compared their modulation by peroxisome-proliferator-activated receptor (PPAR)gamma agonists. Real-time PCR analysis showed that IL-1beta induced COX-2 expression maximally (37-fold) at 12 hours and mPGES-1 expression maximally (68-fold) at 24 hours. Levels of 6-keto-PGF1alpha and PGE2 peaked 24 hours after stimulation with IL-1beta; the induction of PGE2 was greater (11-fold versus 70-fold, respectively). The cyclopentenone 15-deoxy-Delta12,14prostaglandin J2 (15d-PGJ2) decreased prostaglandin synthesis in a dose-dependent manner (0.1 to 10 microM), with more potency on PGE2 level than on 6-keto-PGF1alpha level (-90% versus -66% at 10 microM). A high dose of 15d-PGJ2 partly decreased COX-2 expression but decreased mPGES-1 expression almost completely at both the mRNA and protein levels. Rosiglitazone was poorly effective on these parameters even at 10 microM. Inhibitory effects of 10 microM 15d-PGJ2 were neither reduced by PPARgamma blockade with GW-9662 nor enhanced by PPARgamma overexpression, supporting a PPARgamma-independent mechanism. EMSA and TransAM analyses demonstrated that mutated IkappaBalpha almost completely suppressed the stimulating effect of IL-1beta on mPGES-1 expression and PGE2 production, whereas 15d-PGJ2 inhibited NF-kappaB transactivation. These data demonstrate the following in IL-1-stimulated rat chondrocytes: first, mPGES-1 is rate limiting for PGE2 synthesis; second, activation of the prostaglandin cascade requires NF-kappaB activation; third, 15d-PGJ2 strongly inhibits the synthesis of prostaglandins, in contrast with rosiglitazone; fourth, inhibition by 15d-PGJ2 occurs independently of PPARgamma through inhibition of the NF-kappaB pathway; fifth, mPGES-1 is the main target of 15d-PGJ2.  相似文献   

9.
We cultured phagocytic cells derived from the thymic reticulum in order to study the regulation of prostaglandin (PG) production by antiinflammatory or immunostimulating agents. The kinetics of PGE2, 6-keto-PGF1 alpha and PGF2 alpha production were measured by specific radioimmunoassays of the supernatants harvested from cells treated with dexamethasone, a steroidal antiinflammatory drug and by two non steroidal inhibitors (indomethacin and sulindac) or by various immunostimulating agents, one of them, RU 41740 is currently being used in humans. Our results revealed that each of these drugs exerts a differential effect on the PG production, with a striking action on PGE2 synthesis, a lesser effect on 6-keto-PGF1 alpha production and almost no effect on PGF2 alpha synthesis. The possible mechanisms responsible for this complex regulation of PG production are discussed.  相似文献   

10.
Luteinizing hormone (LH) stimulates prostaglandin biosynthesis and steroidogenesis in preovulatory (PO) follicles prior to ovulation. Since the ovulatory process shares many similarities with an inflammatory reaction, mediators of the inflammatory response, such as bradykinin (BK) have been suggested to modulate the effects of LH. In the present study the effect of BK (5 microM) on: 1) prostaglandin biosynthesis (PGE2, PGF2 alpha and 6-keto-PGF1 alpha), 2) the levels of two enzymes in the cyclo-oxygenase pathway, prostaglandin endoperoxide synthase (PGS) and prostacyclin synthase (PCS), and 3) cyclic adenosine 3'5'-monophosphate (cAMP) and progesterone response of PO follicles incubated in vitro were examined. LH (0.1 microgram/ml) stimulated the accumulation of cAMP and progesterone in the medium, while BK had no effect on these parameters. BK exerted a slight stimulatory effect on PGE2, and PGF2 alpha, (p less than or equal to 0.01) but not on 6-keto-PGF1 alpha synthesis, but no changes in PGS or PCS levels could be detected. The effect of LH on prostaglandin biosynthesis was much more pronounced, with an increase of PGE2, PGF2 alpha and 6-keto-PGF1 alpha. LH also induced PGS. The combination of LH and BK did not alter these responses compared to that of LH alone. This study demonstrates that BK stimulates prostaglandin biosynthesis in PO follicles. In contrast to LH, this effect of BK does not seem to involve the adenylate cyclase system, since BK did not stimulate cAMP production. BK did not affect the levels of PGS or PCS, and the stimulatory effect of BK is suggested to involve an increase in the availability of substrate for the cyclo-oxygenase pathway.  相似文献   

11.
Cycloheximide produced a large increase in prostaglandin (PG) E2 output and smaller increases in PGF2 alpha and 6-keto-PGF1 alpha when superfused over the guinea-pig uterus for 20 min. This stimulation of the outputs of these 3 PGs by cycloheximide did not require extracellular calcium. TMB-8 (an intracellular calcium antagonist) had no effect on the stimulation of PGE2 output by cycloheximide, but it completely prevented the stimulation of PGF2 alpha and 6-keto-PGF1 alpha outputs. W-7 (a calmodulin antagonist) had no effect on the stimulation of PGE2 and PGF2 alpha outputs by cycloheximide, but it partially reduced and delayed the stimulation of 6-keto-PGF1 alpha output. Neomycin (a phospholipase C inhibitor) did not prevent the increases in PGE2 and 6-keto-PGF1 alpha outputs produced by cycloheximide. However, neomycin (5 and 10 mM, but not 1 mM) inhibited the small increases in PGF2 alpha caused by cycloheximide. On its own, neomycin produced a dose-dependent, transient increase in 6-keto-PGF1 alpha output without affecting the outputs of PGF2 alpha and PGE2. It is concluded that different mechanisms are involved in the processes by which cycloheximide stimulates the syntheses of PGE2, PGF2 alpha and 6-keto-PGF1 alpha in the guinea-pig uterus.  相似文献   

12.
Increased production of prostaglandins and cytokines by amnion, particularly prostaglandin (PG) E2, interleukin (IL)-6 and IL-8, is thought to be an important event in infection-associated preterm labour. We characterized the amnion-derived AV3 cell line to determine its appropriateness as a model for investigation of the regulation of amnion cytokine and PG production. Amnion-derived AV3 cells were treated with tumour necrosis factor-alpha (TNF-alpha, interleukin-1beta (IL-1beta), epidermal growth factor (EGF) and phorbol 12-myristate 13-acetate (PMA) and IL-6, IL-8 and prostaglandin production was determined by immunoassay. Production of IL-6 and IL-8 rose dramatically with all treatments. PGE2, but not PGF2alpha or 6-keto-PGF1alpha, biosynthesis was also increased in a concentration-dependent manner with all treatments. A rapid increase in PGHS-2 (but not PGHS-1) mRNA expression was observed in response to TNF-alpha and IL-1beta. We conclude that the AV3 cell line inflammatory response profile is similar to those observed in primary amnion and other amnion-derived cell lines, and is an appropriate model for human amnion.  相似文献   

13.
Uteroplacental production of eicosanoids in ovine pregnancy   总被引:3,自引:0,他引:3  
Dramatic cardiovascular alterations occur during normal ovine pregnancy which may be associated with increased prostaglandin production, especially of uteroplacental origin. To study this, we examined (Exp 1) the relationships between cardiovascular alterations, e.g., the rise in uterine blood flow and fall in systemic vascular resistance, and arterial concentrations of prostaglandin metabolites (PGEM, PGFM and 6-keto-PGF1 alpha) in nonpregnant (n = 4) and pregnant (n = 8) ewes. To determine the potential utero-placental contribution of these eicosanoids in pregnancy, we also studied (Exp 2) the relationship between uterine blood flow and the uterine venous-arterial concentration differences of PGE2, PGF2 alpha, PGFM, 6-keto-PGF1 alpha, and TxB2 in twelve additional late pregnant ewes. Pregnancy was associated with a 37-fold increase in uterine blood flow and a proportionate (27-fold) fall in uterine vascular resistance (p less than 0.01). Arterial concentrations of PGEM were similar in nonpregnant and pregnant ewes (316 +/- 19 and 245 +/- 38 pg/ml), while levels of PGFM and PGI2 metabolite 6-keto-PGF1 alpha were elevated 23-fold (31 +/- 14 to 708 +/- 244 pg/ml) and 14-fold (12 +/- 4 to 163 +/- 78 pg/ml), respectively (p less than 0.01). Higher uterine venous versus uterine arterial concentrations were observed for PGE2 (397 +/- 36 and 293 +/- 22 pg/ml) and 6-keto-PGF1 alpha (269 +/- 32 and 204 +/- 32 pg/ml), p less than 0.05, but not PGF2 alpha or TxB2. Although PGFM concentrations appeared to be greater in uterine venous (1197 +/- 225 pg/ml) as compared to uterine arterial (738 +/- 150 pg/ml) plasma, this did not reach significance (0.05 less than p less than 0.1). In normal ovine pregnancy arterial levels of PGI2 are increased, which may in part reflect increased uteroplacental production. Moreover the gravid ovine uterus also appears to produce PGE2 and metabolize PGF2 alpha.  相似文献   

14.
Prostaglandin E2 (PGE2), thromboxane B2 (TXB2; as a stable metabolite of TXA2), prostaglandin F2 alpha (PGF2 alpha) and 6-keto-PGF1 alpha (as a stable end product of prostacyclin) have been measured by using specific radioimmunoassay in the plasma of the cord artery immediately after delivery before the cord was clamped. Plasma prostanoid concentrations in normal deliveries (n = 8, as controls) were 24.8 +/- 2.6 (PGE2), 246.8 +/- 37.0 (TXB2), 122.2 +/- 13.3 (PGF2 alpha) and 82.1 +/- 7.7 (6-keto-PGF1 alpha) respectively (pg/ml, mean +/- s.e). On the other hand, in fetal distressed deliveries showing continuous bradycardia (n = 6), they increased significantly to 275.4 +/- 20.1 (PGE2), 948.6 +/- 102.5 (TXB2), 218.0 +/- 21.4 (PGF2 alpha) and 1498.6 +/- 298.4 (6-keto-PGF1 alpha) respectively (pg/ml, mean +/- s.e, p less than 0.005). However, both PGF2 alpha/PGE2 and TXB2/6-keto-PGF1 alpha ratios declined significantly from 4.70 +/- 0.33 to 0.68 +/- 0.05 and from 3.07 +/- 0.37 to 0.68 +/- 0.12 respectively (mean +/- s.e, p less than 0.005) in the fetal distressed group compared with those of the controls. From these results, it may be concluded that the cord artery, which is known as the patent source for the production of PGE2 and prostacyclin, did exert a sufficiently strong reaction to overcome the undesirable haemodynamic changes to maintain the fetal well-being in utero.  相似文献   

15.
Human fetal tissues have been superfused and prostaglandin (PG)E2, PGF2 alpha and 6-keto-PGF1 alpha have been measured in the effluents using specific radioimmunoassays. In general, the rates of production of 6-keto-PGF by the tissues studied were greater than the rates of production of PGF2 alpha which in turn were greater than the rates of production of PGE2.  相似文献   

16.
The present study examines the effects of prostaglandin F2 alpha (PGF2 alpha) on basal and agonist-stimulated progesterone (P4) production utilizing long-term, serum-free cultures of bovine luteal cells. During the first 24 h of culture, PGF2 alpha had no significant effect on P4 production, and was unable to inhibit either luteinizing hormone (LH)- or dibutyryl cAMP (dbcAMP)-stimulated increases in P4. Treatment with PGF2 alpha on Day 1 produced a moderate, nonsignificant (P greater than 0.05) inhibition of cholera toxin (CT)- and forskolin (FKN)-stimulated P4 synthesis. Beyond Day 1 of culture (Days 3-11), PGF2 alpha continued to have no significant effect on basal P4 production, but suppressed all stimulatory effects of LH, dbcAMP, CT and FKN. Treatment with indomethacin inhibited prostaglandin synthesis by the cultured cells and also elevated levels of P4 from Days 3 to 11 of culture. Concurrent treatment with PGF2 alpha suppressed the steroidogenic effect of indomethacin. From these studies it was concluded that in cultured bovine luteal cells, PGF2 alpha does not affect basal P4 production, but is able to inhibit agonist-stimulated P4 production at a site beyond the accumulation of cAMP. This inhibitory effect is not apparent during the first 24 h of culture, but appears after Day 1 and persists throughout the remaining 10 days of the culture period.  相似文献   

17.
Prostaglandins (PGs) have been implicated as possible mediators of the biological activity of thymic hormones. It has been shown that type E-PGs are able to mimic the action of several thymic hormones and that indomethacin prevents in vivo or in vitro the appearance of Thy-1+ antigen induced by some of these factors. We thus investigated a possible role for PGs in the mechanism of action of different thymic extracts and peptides. Attempts to modulate prostaglandin production showed that neither thymosin fraction 5 (0.01-100 micrograms/ml), nor thymosin alpha 1 (1-10 micrograms/ml), thymulin (0.001-100 ng/ml), thymopoietin II (10-1000 ng/ml) or TP5 (10-1000 ng/ml) affect PGE2, 6-keto-PGF1 alpha, PGF2 alpha and TXB2 production by spleen cells from control and thymectomized mice. These results do not support the hypothesis that prostaglandins could act as mediators of thymic hormones.  相似文献   

18.
The effects of oestradiol, oxytocin, progesterone and hydrocortisone in vitro on prostaglandin (PG) output from guinea-pig endometrium, removed on days 7 and 15 of the oestrous cycle and maintained in tissue culture for 3 days, have been investigated. Oestradiol (3.7 to 3700 nM) and oxytocin (2 to 200 pM) did not stimulate endometrial PGF2 alpha output, thus not confirming the findings of a previous report (Leaver & Seawright, 1982), nor did they stimulate the outputs of PGE2 and 6-keto-PGF1 alpha. In fact, oestradiol (3700 nM) inhibited the outputs of PGF2 alpha, PGE2 and, to a lesser extent, 6-keto-PGF1 alpha. Progesterone (3.2 to 3200 nM) inhibited the outputs of PGF2 alpha and PGE2; hydrocortisone (2.8 to 2800 nM) had no effect on endometrial PG output. These findings indicate that the inhibitory effect of progesterone on endometrial PG synthesis and release in the guinea-pig is not due to progesterone having a glucocorticoid-like action. Furthermore, progesterone had no effect on 6-keto-PGF1 alpha output, suggesting that the mechanisms controlling endometrial PGI2 synthesis (as reflected by measuring 6-keto-PGF1 alpha) are different from those controlling endometrial PGF2 alpha and PGE2 synthesis.  相似文献   

19.
In view of recent findings which suggest that renal prostaglandins mediate the effect of hypoxia on erythropoietin production, we have studied whether hypoxia is a stimulus for in vitro prostaglandin synthesis. Studies were carried out in rat renal mesangial cell cultures which produce erythropoietin in an oxygen-dependent manner. Production rates of PGE2 and in specified samples also of 6-keto-PGF1 alpha, as a measure of PGI2, and PGF2 alpha were determined by radioimmunoassay after incubation at either 20% O2 (normoxic) or 2% O2 (hypoxic) in gas permeable dishes for 24 hrs. Considerable variation in PGE2 production was noted among independent cell lines. PGE2 production appeared to be inversely correlated to the cellular density of the cultures. In addition, PGE2 production was enhanced in hypoxic cell cultures. The mean increase was 50 to 60%. PGF2 alpha and 6-keto-PGF1 alpha increased by about the same rate. These results indicate that hypoxia is a stimulus for in vitro prostaglandin production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号