首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of our studies was to establish which enzymes constitute the "cGMP pathway" in rat and guinea pig peritoneal macrophages (PM). We found that in guinea pig PM synthesis of the nucleotide was significantly enhanced in response to activators of soluble guanylyl cyclase (sGC) and it was only slightly stimulated by specific activators of particulate guanylyl cyclases (pGC). In contrast, rat PM responded strongly to atrial natriuretic peptide (ANP), the activator of pGC type A. The rat cells synthesized about three-fold more cGMP than an equal number of the guinea pig cells. The activity of phosphodiesterases (PDE) hydrolyzing cGMP was apparently regulated by cGMP itself in PM of both species and again it was higher in the rat cells than in those isolated from guinea pig. However, guinea pig PM revealed an activity of Ca(2+)/calmodulin-dependent PDE1, which was absent in the rat cells. Using Western blotting analysis we were unable to detect the presence of cGMP-dependent protein kinase 1 (PKG1) in PM isolated from either species. In summary, our findings indicate that particulate GC-A is the main active form of GC in the rat PM, while in guinea pig macrophages the sGC activity dominates. Since the profiles of the PDE activities in rat and guinea pig PM are also different, we conclude that the mechanisms regulating cGMP metabolism in PM are species-specific. Moreover, our results suggest that targets for cGMP other than PKG1 should be present in PM of both species.  相似文献   

2.
AimsPhosphodiesterases (PDEs) are key enzymes controlling cAMP and cGMP levels and spatial distribution within cardiomyocytes. Despite the clinical importance of several classes of PDE inhibitor there has not been a complete characterization of the PDE profile within the human cardiomyocyte, and no attempt to assess which species might best be used to model this for drug evaluation in heart disease.Main methodsVentricular cardiomyocytes were isolated from failing human hearts of patients with various etiologies of disease, and from rat and guinea pig hearts. Expression of PDE isoforms was determined using RT-PCR. cAMP- and cGMP-PDE hydrolytic activity was determined by scintillation proximity assay, before and after treatment with PDE inhibitors for PDEs 1, 2, 3, 4, 5 and 7. Functional effects of cAMP PDEi were determined on the contraction of single human, rat and guinea pig cardiomyocytes.Key findingsThe presence and activity of PDE5 were confirmed in ventricular cardiomyocytes from failing and hypertrophied human heart, as well as PDE3, with ventricle-specific results for PDE4 and a surprisingly large contribution from PDE1 for hydrolysis of both cAMP and cGMP. The total PDE activity of human cardiomyocytes, and the profile of inhibition by PDE1, 3, 4, and 5 inhibitors, was modelled well in guinea pig but not rat cardiomyocytes.SignificanceOur results provide the first full characterisation of human cardiomyocyte PDE isoforms, and suggest that guinea pig myocytes provide a better model than rat for PDE levels and activity.  相似文献   

3.
3':5'-Cyclic nucleotide phosphodiesterase was isolated from human brain and characterized. After the first stage of purification on phenyl-Sepharose, the enzyme activity was stimulated by Ca2+ and micromolar concentrations of cGMP. High pressure liquid chromatography on a DEAE-TSK-3SW column permitted to identify three ranges of enzymatic activity designated as PDE I, PDE II and PDE III. Neither of the three enzymes possessed a high selectivity for cAMP and cGMP substrates. The catalytic activity of PDE I and PDE II increased in the presence of Ca2+-calmodulin (up to 6-fold); the degradation of cAMP was decreased by cGMP. The Ca2+-calmodulin stimulated PDE I and PDE II activity was decreased by W-7. PDE I and PDE II can thus be classified as Ca2+-calmodulin-dependent phosphodiesterases. With cAMP as substrate, the PDE III activity increased in the presence of micromolar concentrations of cGMP (up to 10-fold), Ca2+ and endogenous calmodulin (up to 2-3-fold). No additivity in the effects of saturating concentrations of these compounds on PDE III was observed. Ca2+ did not influence the rate of cGMP hydrolysis catalyzed by PDE III. In comparison with PDE I and PDE II, the inhibition of PDE III was observed at higher concentrations of W-7 and was not limited by the basal level of the enzyme. These results do not provide any evidence in favour of the existence of several forms of the enzyme in the PDE III fraction. The double regulation of PDE III creates some difficulties for its classification.  相似文献   

4.
There is broad species variation in the type of cAMP-dependent protein kinase isozyme present in supernatant fractions of heart homogenates as determined by DEAE-cellulose chromatography, Isozyme I, which elutes at less than 0.1 M NaCl, is predominant in mouse and rat hearts; while isozyme II, which elutes at greater than 0.1 M NaCl, is the predominant type in beef and guinea pig. Human and rabbit hearts contain about equal amounts of the two types. The type I heart kinases are more easily dissociated into free regulatory and catalytic subunits by incubation with histone than are the type II kinases, and the separated regulatory and catalytic subunits of isozyme II of rat heart reassociate more rapidly than the subunits of isozyme I under the conditions used. The data from several experiments using rat heart indicate that the basal activity ratio of the protein kinase in crude extracts (approximately 0.15) is due mainly to basal endogenous cAMP and that cAMP elevation accounts entirely for the epinephrine effect on the enzyme. Addition of epinephrine and 1-methyl-3-isobutylxanthine to the perfusate causes a rapid (1 min) increase in cAMP, active supernatant protein kinase, and active phosphorylase in perfused hearts of both rat (mainly isozyme I) and guinea pig (mainly isozyme II). The elevation percentage in cAMP is about the same in the two species, but the increase in active protein kinase is greater in rat heart. If hearts from either animal are perfused continually (10 min) with epinephrine (0.8 muM) and 1-methyl-3-isobutylxanthine (10 muM), the cAMP level, active protein kinase, and active phosphorylase remain elevated. Likewise, all parameters return rapidly to the basal levels when epinephrine and 1-methyl-3-isobutylxanthin are removed. Most of the epinephrine effect on the rat heart supernatant kinase is retained at 0 degrees if cAMP is removed by Sephadex G-25 chromatography, although this procedure completely reverses the epinephrine effect in the guinea pig heart. The epinephrine effect on the rabbit heart kinase (approximately equal amounts of isozymes I and II) is partially reversed by Sephadex G-25. These species differences can be accounted for by differences in association-dissociation behavior of the isozymes in vitro. The data suggest that epinephrine causes activation of both isozymes. The activity present in the particulate fraction comprises nearly half of the total cAMP-dependent protein kinase activity in homogenates of rabbit heart. Triton X-100 extracts of low speed particulate fractions from hearts of each species tested, including rat heart, contain predominantly or entirely the type II isozyme, suggesting differences in intracellular distribution of the isozymes. The binding of the protein kinase to the particulate fraction is apparently due to the properties of the regulatory subunit component. Differences in topographical distribution of the isozymes could provide for differences in either physiological regulation or substrate specificity.  相似文献   

5.
Three isoforms of PDE3 (cGMP-inhibited) cyclic nucleotide phosphodiesterase regulate cAMP content in different intracellular compartments of cardiac myocytes in response to different signals. We characterized the catalytic activity and inhibitor sensitivity of these isoforms by using recombinant proteins. We determined their contribution to cAMP hydrolysis in cytosolic and microsomal fractions of human myocardium at 0.1 and 1.0 microm cAMP in the absence and presence of Ca(2+)/calmodulin. We examined the effects of cGMP on cAMP hydrolysis in these fractions. PDE3A-136, PDE3A-118, and PDE3A-94 have similar K(m) and k(cat) values for cAMP and are equal in their sensitivities to inhibition by cGMP and cilostazol. In microsomes, PDE3A-136, PDE3A-118, and PDE3A-94 comprise the majority of cAMP hydrolytic activity under all conditions. In cytosolic fractions, PDE3A-118 and PDE3A-94 comprise >50% of the cAMP hydrolytic activity at 0.1 microm cAMP, in the absence of Ca(2+)/calmodulin. At 1.0 microm cAMP, in the presence of Ca(2+)/calmodulin, activation of Ca(2+)/calmodulin-activated (PDE1) and other non-PDE3 phosphodiesterases reduces their contribution to <20% of cAMP hydrolytic activity. cGMP inhibits cAMP hydrolysis in microsomal fractions by inhibiting PDE3 and in cytosolic fractions by inhibiting both PDE3 and PDE1. These findings indicate that the contribution of PDE3 isoforms to the regulation of cAMP hydrolysis in intracellular compartments of human myocardium and the effects of PDE3 inhibition on cAMP hydrolysis in these compartments are highly dependent on intracellular [Ca(2+)] and [cAMP], which are lower in failing hearts than in normal hearts. cGMP may amplify cAMP-mediated signaling in intracellular compartments of human myocardium by PDE3-dependent and PDE3-independent mechanisms.  相似文献   

6.
Griseolic acid inhibited cAMP phosphodiesterase (PDE) at low concentrations, the I50 being of the order of 0.01-0.1 microM. Administration of griseolic acid to rats increased the cAMP level in liver and plasma several-fold. It increased glycogen degradation in mouse liver and stimulated lipolysis in isolated rat fat cells. Griseolic acid did not block the adenosine-elicited accumulation of cAMP in guinea pig brain slices. It had no effect on cAMP-dependent protein kinase from rat liver nor on the adenyl cyclase from rat brain.  相似文献   

7.
Four main phosphodiesterase (PDE) forms were resolved and partially purified from rat liver and Morris hepatoma 5123tc(h). The activities of the high Km cyclic nucleotide PDE (form II) in hepatoma were markedly reduced compared to liver, while the activities of the low Km cAMP PDE (form III) and low Km cyclic nucleotide PDE (form IV) in hepatoma were markedly higher than those of liver. The partially purified low Km cAMP PDE's (forms III and IV) from liver showed non-linear Lineweaver-Burk plots, whereas the same enzyme forms in hepatoma displayed linear kinetics. Activation of low Km cGMP PDE activity by calmodulin was found with form I in liver whereas in hepatoma form II was responsive to calmodulin.  相似文献   

8.
Multiple isozymes of cyclic nucleotide phosphodiesterases (PDEs) are expressed simultaneously in mammalian tissues. To identify and clone these PDEs, a polymerase chain reaction (PCR) strategy was developed using degenerate oligonucleotide primers designed to hybridize with highly conserved PDE DNA domains. Both known and novel PDEs were cloned from rat liver, the mouse K30a-3.3 lymphoma cell line, and a human hypothalamus cDNA library, demonstrating that these PCR primers can be used to amplify the cDNA of multiple PDE isozymes. One unique mouse PDE clone was found to encode a polypeptide identical with the corresponding portion of the bovine brain 63-kDa calmodulin-dependent PDE as reported in the companion article (Bentley, J. K., Kadlecek, A., Sherbert, C. H., Seger, D., Sonnenburg, W. K., Charbonneau, H., Novack, J. P., and Beavo, J. A. (1992) J. Biol. Chem. 267, 18676-18682). This mouse clone was used as a probe to screen a rat brain cDNA library for a full-length clone. The conceptual translation of the nucleotide sequence of the resulting rat clone has an open reading frame of 535 amino acids and maintains a high degree of homology with the bovine 63-kDa calmodulin-dependent PDE, indicating that this protein is likely to be the rat homolog of the 63-kDa calmodulin-dependent PDE. Expression of the full-length clone in Escherichia coli yielded a cGMP hydrolyzing activity that was stimulated severalfold by calmodulin. Northern blot analysis demonstrated that the mRNA encoding this PDE is highly expressed in rat brain and also in the S49.1 T-lymphocyte cell line. These data demonstrate that the PCR method described is a viable strategy to isolate cDNA clones of known and novel members of different families of PDE isozymes. Molecular cloning of these PDEs will provide valuable tools for investigating the roles of these isozymes in regulation of intracellular concentrations of the cyclic nucleotides.  相似文献   

9.
In the preceding papers, we demonstrated that the endogenous phosphorylation of a 29,000-dalton protein is stimulated in response to secretagogue application to intact cells from the rat exocrine pancreas and parotid and dephosphorylated upon termination of secretagogue action. One- and two-dimensional gel analysis of 32Pi-labeled pancreatic and parotid lobules as well as their respective subcellular fractions revealed that the same protein was covalently modified in both tissues and was localized to the ribosomal fraction. To identify the intracellular second messengers which may mediate or modulate the phosphorylation of the 29,000-dalton protein in intact cells, the effects of Ca2+, cAMP, and cGMP on the endogenous phosphorylation of this protein were assessed in subcellular fractions from the rat pancreas and parotid. Our results demonstrate that the phosphorylation of the 29,000-dalton polypeptide may be regulated by both Ca2+ and cAMP in the pancreas and in the parotid. No cGMP-dependent protein phosphorylation was found in either tissue. As in the in situ phosphorylation studies, the Ca2+- and cAMP-dependent phosphorylation of this same protein was localized to the ribosomal fraction. The cAMP-dependent protein kinase activity was found primarily in the postmicrosomal supernatant in contrast to the Ca2+-dependent protein kinase that appeared to be tightly associated with the substrate in addition to being present in the postmicrosomal supernatant. The data suggest that, in cells from the exocrine pancreas and parotid, secretagogues may regulate the phosphorylation of the 29,000-dalton protein through Ca2+ and/or cAMP.  相似文献   

10.
Nine distinct monoclonal antibodies raised against purified rat liver cytochrome P-450c react with six different epitopes on the antigen, and one of these epitopes is shared by cytochrome P-450d. None of these monoclonal antibodies recognize seven other purified rat liver isozymes (cytochromes P-450a, b, and e-i) or other proteins in the cytochrome P-450 region of "Western blots" of liver microsomes. Each of the monoclonal antibodies was used to probe "Western blots" of liver microsomes from untreated, or 3-methylcholanthrene-, or isosafrole-treated animals to determine if laboratory animals other than rats possess isozymes immunochemically related to cytochromes P-450c and P-450d. Two protein-staining bands immunorelated to cytochromes P-450c and P-450d were observed in all animals treated with 3-methylcholanthrene (rabbit, hamster, guinea pig, and C57BL/6J mouse) except the DBA/2J mouse, where no polypeptide immunorelated to cytochrome P-450c was detected. The conservation of the number of rat cytochrome P-450c epitopes among these species varied from as few as two (guinea pig) to as many as five epitopes (C57BL/6J mouse and rabbit). The relative mobility in sodium dodecyl sulfate-gels of polypeptides immunorelated to cytochromes P-450c and P-450d was similar in all species examined except the guinea pig, where the polypeptide related to cytochrome P-450c had a smaller Mr than cytochrome P-450d. With the use of both monoclonal and polyclonal antibodies, we were able to establish that purified rabbit cytochromes P-450 LM4 and P-450 LM6 are immunorelated to rat cytochromes P-450d and P-450c, respectively.  相似文献   

11.
Chronic treatment of rats with LiCl is known to induce a decrease in cAMP, while this decrease has also been found to occur together with both a simultaneous increase in total cortical phosphodiesterase (PDE; EC 3.1.4.17) activity and a concomitant increase in cGMP. These studies have implicated an involvement of PDE in lithium (Li+) action and it has been suggested that cGMP and the cGMP-stimulated PDE may be instrumental in the observed effects of Li+ on cAMP. In this study, three isozymes of PDE were isolated and identified from rat cortex and their activity determined, together with simultaneous measurement of cAMP and cGMP, after chronic treatment with oral LiCl (0.35% m/m). Li+ treatment exerted profound effects on cyclic nucleotides in the cortex, inducing significant suppression of cAMP while increasing cGMP levels. However, the ion only induced a slight but insignificant increase in the activities of the three PDE isozymes. To confirm these observations, methylparaben (MPB), a drug demonstrating both an ability to induce a selective stimulation of cAMP-specific PDE and also to lower intracellular levels of cGMP, was co-administration orally (0.4% m/m) with Li+ over the same period. This combination emphasized certain actions of Li+ not noted with Li+ alone. MPB inhibited the Li+-induced increase in cGMP, yet did not prevent the ion from decreasing cAMP. However, the combination of Li+ and MPB engendered a synergistic 100% increase in the activity of the membrane-bound, cAMP-specific PDE, PDE IV. This combination also produced a significant suppression of cAMP, while no reduction in cGMP was observed. The data is indicative that Li+-induced suppression of cAMP does not appear to be related to an effect on the cGMP-dependent PDE II, and that the increases in cGMP and PDE induced by Li+ observed previously and in the present study are two unrelated events. Instead, the synergistic response of Li+ plus MPB on PDE IV, and the associated reduction of cAMP, indicate that Li+ may promote selective cAMP hydrolysis via an effect on membrane-bound forms of PDE. This effect of Li+ on PDE IV, as well as the reciprocal effects on cyclic nucleotide balance, may have important implications in explaining the antipsychotic actions of the ion.  相似文献   

12.
Six species (CD-1 mouse, Fischer 344 rat, Syrian golden hamster, Duncan-Hartley guinea pig, half-lop rabbit and marmoset monkey) were treated orally with ciprofibrate, a potent oxyisobutyrate hypolipidaemic drug for 14 days. A dosedependent liver enlargement was observed in the mouse and rat and at the high dose level in the hamster. A marked dose-dependent increase in the 12-hydroxylation of lauric acid was observed in the treated mouse, hamster, rat, and rabbit, associated with a concomitant elevation in the specific content of cytochrome P-450 4A1 apoprotein, determined by an ELISA technique. Similarly, in these responsive species, an increase in mRNA levels coding for cytochrome P450 4A1 was observed. Lauric acid 12-hydroxylation was unchanged in the guinea pig and marmoset after ciprofibrate pre-treatment, and cytochrome P-450 4A1 was not detected immunochemically in liver microsomes from these latter species. In the untreated mouse, hamster, rat, and rabbit, the 12-hydroxylation of lauric acid was more extensive than the 11-hydroxylation, whereas in the guinea pig and marmoset the activity ratios were reversed, with 11-hydroxylation predominating. Peroxisomal fatty acid β-oxidation was markedly induced in the mouse, hamster, rat, and rabbit on treatment at the higher dose level (39-, 3-, 13- and 5-fold, respectively) and was slightly increased in the marmoset (2-fold), yet was unchanged in the guinea pig following treatment. In the marmoset the increase in peroxisomal β-oxidation was 3- to 4-fold at the high dose level; however, the dose levels used in the marmoset were 20 and 100 mg/kg as opposed to 2 and 20 mg/kg in the other species. The differences in the foregoing hepatic enzyme responses to ciprofibrate between the species examined in our studies indicate a specific pattern of enzyme changes in responsive species. In the responsive species (rat, mouse, hamster, and rabbit), cytochrome P-450 4A1 specific content and related enzyme activity were increased concomitant with elevated peroxisomal β-oxidation. By contrast, the marmoset and guinea pig lack the coordinate hepatic induction of peroxisomal and microsomal parameters and may be categorized as less responsive species. Accordingly, the rat hepatic responses to peroxisome proliferators cannot confidently be used to predict biological responses in primates, with obvious implications for the extrapolation of animal data to man.  相似文献   

13.
In this study, we present the identification and characterization of hamster and guinea pig nicotinic acid receptors. The hamster receptor shares approximately 80-90% identity with the nucleotide and amino acid sequences of human, mouse, and rat receptors. The guinea pig receptor shares 76-80% identity with the nucleotide and amino acid sequences of these other species. [(3)H]nicotinic acid binding affinity at guinea pig and hamster receptors is similar to that in human (dissociation constant = 121 nM for guinea pig, 72 nM for hamster, and 74 nM for human), as are potencies of nicotinic acid analogs in competition binding studies. Inhibition of forskolin-stimulated cAMP production by nicotinic acid and related analogs is also similar to the activity in the human receptor. Analysis of mRNA tissue distribution for the hamster and guinea pig nicotinic acid receptors shows expression across a number of tissues, with higher expression in adipose, lung, skeletal muscle, spleen, testis, and ovary.  相似文献   

14.
Regulation of adenylyl cyclase type V/VI and cAMP-specific, cGMP-inhibited phosphodiesterase (PDE) 3 and cAMP-specific PDE4 by cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) was examined in gastric smooth muscle cells. Expression of PDE3A but not PDE3B was demonstrated by RT-PCR and Western blot. Basal PDE3 and PDE4 activities were present in a ratio of 2:1. Forskolin, isoproterenol, and the PKA activator 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole 3',5'-cyclic monophosphate, SP-isomer, stimulated PDE3A phosphorylation and both PDE3A and PDE4 activities. Phosphorylation of PDE3A and activation of PDE3A and PDE4 were blocked by the PKA inhibitors [protein kinase inhibitor (PKI) and H-89] but not by the PKG inhibitor (KT-5823). Sodium nitroprusside inhibited PDE3 activity and augmented forskolin- and isoproterenol-stimulated cAMP levels; PDE3 inhibition was reversed by blockade of cGMP synthesis. Forskolin stimulated adenylyl cyclase phosphorylation and activity; PKI blocked phosphorylation and enhanced activity. Stimulation of cAMP and inhibition of inositol 1,4,5-trisphosphate-induced Ca(2+) release and muscle contraction by isoproterenol were augmented additively by PDE3 and PDE4 inhibitors. The results indicate that PKA regulates cAMP levels in smooth muscle via stimulatory phosphorylation of PDE3A and PDE4 and inhibitory phosphorylation of adenylyl cyclase type V/VI. Concurrent generation of cGMP inhibits PDE3 activity and augments cAMP levels.  相似文献   

15.
Calmodulin(CaM)-dependent cyclic nucleotide phosphodiesterase (PDE1) plays a critical role in the complex interactions between the cyclic nucleotide and Ca(2+) second messenger systems. Bovine brain contains two major PDE1 isozymes, designated according to tissue origin and subunit molecular mass as brain 60 kDa and 63 kDa PDE1 isozymes. Kinetic properties suggest that 63 kDa PDE1 isozyme is distinct from 60 kDa, heart and lung PDE1 isozymes. Although 60 kDa, heart and lung PDE1 isozymes are almost identical in immunological properties, they are differentially activated by calmodulin (CaM). These isozymes are further distinguished by the effects of pharmacological agents. Another main difference is that 60 kDa PDE1 isozyme is a substrate of cAMP-dependent protein kinase, whereas, 63 kDa PDE1 isozyme is phosphorylated by CaM-dependent protein kinase. The phosphorylation of PDE1 isozymes is accompanied by a decrease in the isozyme affinity towards CaM, and it can be reversed by a CaM-dependent phosphatase (calcineurin). The complex regulatory properties of PDE1 isozymes are precisely regulated by cross-talk between the Ca(2+) and cAMP signaling pathways.  相似文献   

16.
Capacitative Ca(2+) entry stimulates cAMP synthesis in mouse parotid acini, suggesting that one of the Ca(2+)-sensitive adenylyl cyclases (AC1 or AC8) may play an important role in the regulation of parotid function (Watson, E. L., Wu, Z., Jacobson, K. L., Storm, D. R., Singh, J. C., and Ott, S. M. (1998) Am. J. Physiol. 274, C557-C565). To evaluate the role of AC1 and AC8 in Ca(2+) stimulation of cAMP synthesis in parotid cells, acini were isolated from AC1 mutant (AC1-KO) and AC8 mutant (AC8-KO) mice and analyzed for Ca(2+) stimulation of intracellular cAMP levels. Although Ca(2+) stimulation of intracellular cAMP levels in acini from AC1-KO mice was indistinguishable from wild type mice, acini from AC8-KO mice showed no Ca(2+)-stimulated cAMP accumulation. This indicates that AC8, but not AC1, plays a major role in coupling Ca(2+) signals to cAMP synthesis in parotid acini. Interestingly, treatment of acini from AC8-KO mice with agents, i.e. carbachol and thapsigargin that increase intracellular Ca(2+), lowered cAMP levels. This decrease was dependent upon Ca(2+) influx and independent of phosphodiesterase activation. Immunoblot analysis revealed that AC5/6 and AC3 are expressed in parotid glands. Inhibition of calmodulin (CaM) kinase II with KN-62, or inclusion of the CaM inhibitor, calmidazolium, did not prevent agonist-induced inhibition of stimulated cAMP accumulation. In vitro studies revealed that Ca(2+), independently of CaM, inhibited isoproterenol-stimulated AC. Data suggest that agonist augmentation of stimulated cAMP levels is due to activation of AC8 in mouse parotid acini, and strongly support a role for AC5/6 in the inhibition of stimulated cAMP levels.  相似文献   

17.
Kyoi T  Oka M  Noda K  Ukai Y 《Life sciences》2004,75(15):1833-1842
The effect of irsogladine [2,4-diamino-6-(2,5-dichlorophenyl)-s-triazine maleate], an antiulcer drug, on contents of cyclic nucleotides including cAMP and cGMP was investigated in rat stomachs. Irsogladine concentration-dependently increased cAMP content in rat glandula stomach. However, irsogladine at higher concentration (10(-5) M) was unable to further increase cAMP level in the presence of non-selective phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine, although 3-isobutyl-1-methylxanthine by itself increased cAMP level. On the other hand, irsogladine had no effect on the glandula cGMP content. Subsequently, the effect of irsogladine on the cyclic nucleotide degradation by purified bovine brain and heart PDEs was investigated. The cAMP degradation by purified bovine brain PDE was partially suppressed by PDE1 inhibitor vinpocetin, PDE2 inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine hydrochloride and PDE4 inhibitor rolipram but not by PDE3 inhibitor cilostamide, and completely inhibited by 3-isobutyl-1-methylxanthine, suggesting that is attributed almost exclusively to PDE1, PDE2 and PDE4. Meanwhile, cGMP degradation by purified bovine brain PDE was partially suppressed by erythro-9-(2-hydroxy-3-nonyl)adenine hydrochloride. Irsogladine preferentially inhibited the response to cAMP degradation compared with cGMP degradation by this brain PDE. The cAMP degradation by bovine heart PDE was almost completely inhibited by the combination with vinpocetine and cilostamide, indicating that is mediated almost exclusively by PDE1 and PDE3. Irsogladine suppressed this cAMP degradation measured in the presence of vinpocetine to almost the same extent as that determined in the presence of cilostamide. These results indicate that irsogladine produces the increase of intracellular cAMP content via non-selective inhibition of PDE isozymes, which may be a key mechanism involved in its gastroprotective actions.  相似文献   

18.
Two kinds of phosphodiesterases were isolated from human placenta by DEAE chromatography and characterized: one Ca2+ and calmodulin dependent, the other stimulated by Ca2+ but not by calmodulin. Both hydrolyzed cAMP and cGMP. The first one exhibited a higher affinity for cGMP. Half maximal activation by calmodulin was attained at 10(-8)M of calmodulin concentration independently of the hydrolyzed substrate (cGMP or cAMP). This phosphodiesterase appears to be almost homogeneous by molecular sieve chromatography on Ultragel AcA 34. The second phosphodiesterase exhibited similar affinities for cAMP and cGMP and could be resolved into three active isoforms with different molecular weight on Ultrogel AcA 34. Only minor differences were observed in the characteristics of these enzymes when the phosphodiesterases were prepared from placentae of 7-8 weeks of pregnancy or from normal term placenta.  相似文献   

19.
Cyclic nucleotide phosphodiesterase in the plasma membranes of bovine epididymal spermatozoa was stimulated by added Ca2+ and calmodulin. The rate of hydrolysis and responsiveness toward calmodulin was greater for cAMP than for cGMP. The kinetic analysis of the activity revealed two forms of phosphodiesterase with apparent Km values of 7.5 and 95 microM for cAMP. Calmodulin stimulated both of the activities by increasing the Vmax without affecting the Km's. The activity response with respect to Ca2+ concentration appears to be biphasic in both the absence and presence of added calmodulin. Trifluoperazine inhibited the Ca2+- and calmodulin-sensitive enzyme activity in a dose-dependent manner. The calmodulin-stimulated phosphodiesterase activity in the sperm plasma membranes can be solubilized and absorbed to a Calmodulin-Sepharose affinity column in the presence of Ca2+.  相似文献   

20.
The nitric oxide (NO) donor, GEA 3162, inhibited isoproterenol-induced cyclic AMP (cAMP) accumulation in a concentration- and time-dependent manner in mouse parotid acini; SIN-1 mimicked these effects. Inhibition of stimulated cAMP accumulation was independent of phosphodiesterase activity. GEA 3162 also inhibited forskolin-induced cAMP accumulation. Removal of extracellular Ca(2+), addition of La(3+), or the calmodulin (CaM) inhibitor, calmidazolium, did not prevent the NO-mediated response, and addition of the soluble guanylyl inhibitor, ODQ, did not reverse GEA 3162-induced inhibition of cAMP accumulation. GEA 3162 also inhibited adenylyl cyclase in vitro independently of Ca(2+)/CaM. Further studies revealed that the NO synthase (NOS) inhibitor, 7-nitroindazole (7-NI), reduced significantly thapsigargin-induced Ca(2+) release and capacitative Ca(2+) entry and reversed thapsigargin inhibition of the AC Type 5/6 isoform (AC5/6). Data suggest that NO produced endogenously has dual effects on cAMP accumulation in mouse parotid acini, an inhibitory effect on AC activity and a modulatory effect on capacitative Ca(2+) entry resulting in AC5/6 inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号