首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Three cDNA from the pyloric ceca of the starfish Asterina pectinifera, (namely, cDNA 1, 2, and 3), encoding phospholipase A2 (PLA2), were isolated and sequenced. These cDNAs were composed of 415 bp with an open reading frame of 414 bp at nucleotide positions 1–414, which encodes 138 amino acids including N-terminal Met derived from the PCR primer. The amino acid sequence deduced from the cDNA 1 was completely consistent with the sequence determined with the starfish PLA2 protein, while those deduced from cDNA 2 and cDNA 3 differed at one and twelve amino acid residual positions, respectively, from the sequence of the PLA2 protein, suggesting the presence of multiple forms in the starfish PLA2. All of the sequences deduced from cDNA 1, 2, and 3 required two amino acid deletions in pancreatic loop region, and sixteen insertions and three deletions in β-wing region when aligned with the sequence of mammalian pancreatic PLA2. In phylogenetic tree, the starfish PLA2 should be classified into an independent group, but hardly to the established groups IA and IB. The characteristic structure in the pancreatic loop and β-wing regions may account for the specific properties of the starfish PLA2, e.g. the higher activity and characteristic substrate specificity compared with commercially available PLA2 from porcine pancreas.  相似文献   

2.
Phospholipase A2 (PLA2) is one of the main components of bee venom. Here, we identify a venom PLA2 from the bumblebee, Bombus ignitus. Bumblebee venom PLA2 (Bi-PLA2) cDNA, which was identified by searching B. ignitus venom gland expressed sequence tags, encodes a 180 amino acid protein. Comparison of the genomic sequence with the cDNA sequence revealed the presence of four exons and three introns in the Bi-PLA2 gene. Bi-PLA2 is an 18-kDa glycoprotein. It is expressed in the venom gland, cleaved between the residues Arg44 and Ile45, and then stored in the venom sac. Comparative analysis revealed that the mature Bi-PLA2 (136 amino acids) possesses features consistent with other bee PLA2s, including ten conserved cysteine residues, as well as a highly conserved Ca2+-binding site and active site. Phylogenetic analysis of bee PLA2s separated the bumblebee and honeybee PLA2 proteins into two groups. The mature Bi-PLA2 purified from the venom of B. ignitus worker bees hydrolyzed DBPC, a known substrate of PLA2. Immunofluorescence staining of Bi-PLA2-treated insect Sf9 cells revealed that Bi-PLA2 binds at the cell membrane and induces apoptotic cell death.  相似文献   

3.
Venomous snakes such as Gloydius brevicaudus have three distinct types of phospholipase A2 inhibitors (PLIα, PLIβ, and PLIγ) in their blood so as to protect themselves from their own venom phospholipases A2 (PLA2s). Expressions of these PLIs in G. brevicaudus liver were found to be enhanced by the intramuscular injection of its own venom. The enhancement of gene expressions of PLIα and PLIβ in the liver was also found to be induced by acidic PLA2 contained in this venom. Furthermore, these effects of acidic PLA2 on gene expression of PLIs were shown to be unrelated to its enzymatic activity. These results suggest that these venomous snakes have developed the self-protective system against their own venom, by which the venom components up-regulate the expression of anti-venom proteins in their liver.  相似文献   

4.
A novel phospholipase A2 (PLA2) with Asn at its site 49 was purified from the snake venom of Protobothrops mucrosquamatus by using SP-Sephadex C25, Superdex 75, Heparin-Sepharose (FF) and HPLC reverse-phage C18 chromatography and designated as TM-N49. It showed a molecular mass of 13.875 kDa on MALDI-TOF. TM-N49 does not possess enzymatic, hemolytic and hemorrhagic activities. It fails to induce platelet aggregation by itself, and does not inhibit the platelet aggregation induced by ADP. However, it exhibits potent myotoxic activity causing inflammatory cell infiltration, severe myoedema, myonecrosis and myolysis in the gastrocnemius muscles of BALB/c mice. Phylogenetic analysis found that that TM-N49 combined with two phospholipase A2s from Trimeresurus stejnegeri, TsR6 and CTs-R6 cluster into one group. Structural and functional analysis indicated that these phospholipase A2s are distinct from the other subgroups (D49 PLA2, S49 PLA2 and K49 PLA2) and represent a unique subgroup of snake venom group II PLA2, named N49 PLA2 subgroup.  相似文献   

5.
Type-IIA secreted phospholipase A2 (sPLA2-IIA) has been proposed to play a role in the development of inflammatory diseases. It has been shown to release arachidonic acid, the precursor of proinflammatory eicosanoids, to hydrolyze phospholipids of pulmonary surfactant, and to bind to specific receptors located on cell surface membranes. However, the most established biological role of sPLA2-IIA is related to its potent bactericidal property in particular toward Gram-positive bacteria. This enzyme is present in animal and human biological fluids at concentrations sufficient to kill bacteria. Human recombinant sPLA2-IIA is able to kill Gram-positive bacteria at concentrations as low as 1.1 ng/ml. This remarkable property is due to the unique preference of sPLA2-IIA for anionic phospholipids such as phosphatidylglycerol, the main phospholipid component of bacterial membranes. Much higher concentrations of sPLA2-IIA are required for its action on host cell membranes and surfactant both of which are mainly composed by phosphatidylcholine, a poor substrate for sPLA2-IIA. Transgenic mice over-expressing human sPLA2-IIA are resistant to infection by Staphylococcus aureus, Escherichia coli, and Bacillus anthracis, the etiological agent of anthrax. Conversely, certain bacteria, such as B. anthracis, E. coli and Bordetella pertussis are able to inhibit sPLA2-IIA expression by host cells, thus highlighting a mechanism by which these bacteria can subvert the host immune system. Intranasal instillation of recombinant sPLA2-IIA protects mice from mortality caused by pulmonary anthrax. Interestingly, this protective effect was obtained even with B. anthracis strains that down-regulate the expression of endogenous sPLA2-IIA, indicating that instilled sPLA2-IIA can overcome the subversive action of B. anthracis. We conclude that sPLA2-IIA is an efficient endogenous antibiotic of the host and can play a role in host defense against pathogenic bacteria. It can be used as a therapeutic agent in adjunct with current therapy to treat bacteria resistant to multiple antibiotics.  相似文献   

6.
Phospholipase A2 (PLA2) enzymes catalyze the hydrolysis of the sn-2 position of glycerophospholipids to produce free fatty acids and lysophospholipids. More than one third of the mammalian PLA2 enzymes belong to the secreted PLA2 (sPLA2) family, which consists of low molecular mass, Ca2+-requiring enzymes with a His–Asp catalytic dyad. Individual sPLA2 enzymes exhibit unique tissue and cellular localizations and specific enzymatic properties, suggesting their distinct biological roles. The past decade has met a new era of the sPLA2 research field toward deciphering their in vivo functions by developing several specific tools and methods. These include i) the production of transgenic and knockout mouse lines for several sPLA2s, ii) the development of specific analytical tools including the production of large amounts of recombinant sPLA2 proteins, and iii) applying mass spectrometry lipidomics to unveil their specific enzymatic properties occurring in vivo. It is now obvious that individual sPLA2s are involved in diverse biological events through lipid mediator-dependent and -independent processes, act redundantly or non-redundantly in the context of physiology and pathophysiology, and may represent potential drug targets or novel bioactive molecules in certain situations. In this review, we will highlight the newest understanding of the biological roles of sPLA2s in the past few years.  相似文献   

7.
A new D49 PLA(2) was purified from the venom of Calloselasma rhodostoma after two chromatographic steps. Molecular exclusion chromatography was done through a Protein-Pack 300 SW column (0.78 cm x 30 cm), eluting with 0.25 M ammonium bicarbonate, pH 7.9, at a flow rate of 0.3 ml/min. Reverse-phase HPLC was then performed on mu-Bondapack C-18. The sample was determined to have a molecular mass of 13,870.94 Da MALDI-TOF by mass spectrometry, and the amino acid composition showed that Cr-IV 1 presented a high content of Lys, Tyr, Gly, Pro, and 14 half-Cys residues, typical of a basic PLA(2). Cr-IV 1 presented a sequence of 122 amino acid residues: DLWEFGQMILKETGSLPFPY YTTYGCYCGV GGRGGKPKDA TDRCCFVHDC CYGKLTGCPK TNDRYSYSRL DYTIVCGEGG PCKQICECDK AAAVCFRENL RTYNKKYRYHLKPFCKEPAE TC and a calculated pI value of 8.0. Cr-IV 1 had PLA(2) activity in the presence of a synthetic chromogenic substrate (4-nitro-3-(octanoyloxy)benzoic acid) and showed a rapid cytolytic effect on mouse skeletal muscle myoblasts and myotubes in culture. In mice, Cr-IV 1 induced myonecrosis and edema upon intramuscular and intravenous injections, respectively. The LD(50) of Cr-IV 1 was determined to be 0.07 mg/k body weight by intracerebroventricular (i.c.v.) injection. The combination of structural and functional information obtained herein classifies Cr-IV 1 as a new member of the D49 PLA(2) family, as it presents the typical behavior of a phospholipase A(2) from this family.  相似文献   

8.
Among the emerging phospholipase A2 (PLA2) superfamily, the secreted PLA2 (sPLA2) family consists of low-molecular-mass, Ca2+-requiring extracellular enzymes with a His-Asp catalytic dyad. To date, more than 10 sPLA2 enzymes have been identified in mammals. Individual sPLA2s exhibit unique tissue and cellular localizations and enzymatic properties, suggesting their distinct pathophysiological roles. Despite numerous enzymatic and cell biological studies on this enzyme family in the past two decades, their precise in vivo functions still remain largely obscure. Recent studies using transgenic and knockout mice for several sPLA2 enzymes, in combination with lipidomics approaches, have opened new insights into their distinct contributions to various biological events such as food digestion, host defense, inflammation, asthma and atherosclerosis. In this article, we overview the latest understanding of the pathophysiological functions of individual sPLA2 isoforms fueled by studies employing transgenic and knockout mice for several sPLA2s.  相似文献   

9.
Several snake species possess endogenous phospholipase A2 inhibitors (sbPLIs) in their blood plasma, the primary role of which is protection against an eventual presence of toxic phospholipase A2 (PLA2) from their venom glands in the circulation. These inhibitors have an oligomeric structure of, at least, three subunits and have been categorized into three classes (α, β and γ) based on their structural features. SbγPLIs have been further subdivided into two subclasses according to their hetero or homomeric nature, respectively. Despite the considerable number of sbγPLIs described, their structures and mechanisms of action are still not fully understood. In the present study, we focused on the native structure of CNF, a homomeric sbγPLI from Crotalus durissus terrificus, the South American rattlesnake. Based on the results of different biochemical and biophysical experiments, we concluded that, while the native inhibitor occurs as a mixture of oligomers, tetrameric arrangement appears to be the predominant quaternary structure. The inhibitory activity of CNF is most likely associated with this oligomeric conformation. In addition, we suggest that the CNF tetramer has a spherical shape and that tyrosinyl residues could play an important role in the oligomerization. The carbohydrate moiety, which is present in most sbγPLIs, is not essential for the inhibitory activity, oligomerization or complex formation of the CNF with the target PLA2. A minor component, comprising no more than 16% of the sample, was identified in the CNF preparations. The amino-terminal sequence of that component is similar to the B subunits of the heteromeric sbγPLIs; however, the role played by such molecule in the functionality of the CNF, if any, remains to be determined.  相似文献   

10.
Phospholipases A2 (PLA2) are major components of snake venoms, exerting a variety of relevant toxic actions such as neurotoxicity and myotoxicity, among others. Since the majority of toxic PLA2s are basic proteins, acidic isoforms and their possible roles in venoms are less understood. In this study, an acidic enzyme (BaspPLA2-II) was isolated from the venom of Bothrops asper (Pacific region of Costa Rica) and characterized. BaspPLA2-II is monomeric, with a mass of 14,212 ± 6 Da and a pI of 4.9. Its complete sequence of 124 amino acids was deduced through cDNA and protein sequencing, showing that it belongs to the Asp49 group of catalytically active enzymes. In vivo and in vitro assays demonstrated that BaspPLA2-II, in contrast to the basic Asp49 counterparts present in the same venom, lacks myotoxic, cytotoxic, and anticoagulant activities. BaspPLA2-II also differed from other acidic PLA2s described in Bothrops spp. venoms, as it did not show hypotensive and anti-platelet aggregation activities. Furthermore, this enzyme was not lethal to mice at intravenous doses up to 100 μg (5.9 μg/g), indicating its lack of neurotoxic activity. The only toxic effect recorded in vivo was a moderate induction of local edema. Therefore, the toxicological characteristics of BaspPLA2-II suggest that it does not play a key role in the pathophysiology of envenomings by B. asper, and that its purpose might be restricted to digestive functions. Immunochemical analyses using antibodies raised against BaspPLA2-II revealed that acidic and basic PLA2s form two different antigenic groups in B. asper venom.  相似文献   

11.
A method for solid-phase detection of phospholipase A2 (PLA2) was developed. The method uses 1-octanoyloxynaphthalene-3-sulfonic acid, which was found to be a good substrate of PLA2. The substrate is hydrolyzed by PLA2 into 1-naphthol-3-sulfonic acid, which is spontaneously coupled with coexisting diazonium salt to form a red-purple azo dye. Streptomyces and bovine pancreatic PLA2 spotted on a nitrocellulose membrane could be detected by this method with considerable sensitivity. In addition, colonies of recombinant Escherichia coli producing bacterial PLA2 were distinguishable from those producing an inactive mutant PLA2, facilitating high-throughput screening in directed evolution of the enzyme.  相似文献   

12.
Human non-pancreatic secretory phospholipase A2 (hnpsPLA2) is a group IIA phospholipase A2 which plays an important role in the innate immune response. This enzyme was found to exhibit bactericidal activity toward Gram-positive bacteria, but not Gram-negative ones. Though native hnpsPLA2 is active over a broad pH range, it is only highly active at alkaline conditions with the optimum activity pH of about 8.5. In order to make it highly active at neutral pH, we have obtained two hnpsPLA2 mutants, Glu89Lys and Arg100Glu that work better at neutral pH in a previous study. In the present study, we tested the bactericidal effects of the native hnpsPLA2 and the two mutants. Both native hnpsPLA2 and the two mutants exhibit bactericidal activity toward Gram-positive bacteria. Furthermore, they can also kill Escherichia coli, a Gram-negative bacterium. The two mutants showed better bactericidal activity for E. coli at neutral pH than the native enzyme, which is consistent with the enzyme activities. As hnpsPLA2 is highly stable and biocompatible, it may provide a promising therapy for bacteria infection treatment or other bactericidal applications.  相似文献   

13.
A marine snail digestive phospholipase A2 (mSDPL) was purified from delipidated hepatopancreas. Unlike known digestive phospholipases A2, which are 14 kDa proteins, the purified mSDPL has a molecular mass of about 30 kDa. It has a specific activity of about 180 U/mg measured at 50 °C and pH 8.5 using phosphatidylcholine liposomes as a substrate in the presence of 4 mM NaTDC and 6 mM CaCl2. The N-terminal amino-acid of the purified mSDPL does not share any homology with known phospholipases.Moreover, the mSDPL exhibits hemolytic activity in intact erythrocytes and can penetrate phospholipid monolayers at high surface pressure, comparable to snake venom PLA2. These observations suggest that mSDPL could be toxic to mammal cells. However, mSDPL can be classified as a member of a new family of enzymes. It should be situated between the class of toxic phospholipase A2 from venoms and another class of non toxic pancreatic phospholipase A2 from mammals.  相似文献   

14.
A phospholipase A2 was isolated from the snake venom of Chinese Agkistrodon blomhoffii Ussurensis by column chromatography using DEAE Sephadex A-50 ion-exchange chromatography, Sephadex G-75 gel filtration chromatography and Mono Q ion-exchange chromatography, and designated as Akbu-PLA2. It showed an average molecular mass of 13,980 ± 3 amu determined by MALDI TOF mass spectrometry. Protein identification results from HPLC-nESI-MS/MS analysis indicated that the Akbu-PLA2 was a new snake venom acidic PLA2. Seven peptides were sequenced from Akbu-PLA2 by HPLC-nESI-MS/MS analysis. Sequencing alignment indicated that Akbu-PLA2 shared homolog peptides of phospholipases A2 from the venoms of Gloydius ussurensis, Gloydius halys, Gloydius halys (halys viper), Deinagkistrodon acutus and Agkistrodon halys Pallas. Akbu-PLA2 has an optimum hydrolytic activity temperature of ∼45 °C. The intrinsic fluorescences of Tyr and Trp residues of Akbu-PLA2 showed emission wavelengths red-shifted by 13.6 and 1.6 nm from those of free Tyr and Trp, respectively. Akbu-PLA2 was shown to contain one Ca2+ per monomer by ICP-AES measurement. The Ca2+ ion was found to be critical for both the hydrolytic activity and the structure of Akbu-PLA2. Ca2+ increased the emission fluorescence intensity and the hydrophobicity of the environment of Akbu-PLA2. The hydrolytic activity of Akbu-PLA2 was accelerated due to the addition of Ca2+ ion by enhancing the substrate binding. However, a protein component with the molecular weight two-fold relative to that of Akbu-PLA2 was found to be difficult to eliminate for the purification of Akbu-PLA2. HPLC-nESI-MS/MS detected the same peptides from it as from Abku-PLA2, which indicated that it should be a homodimer of Akbu-PLA2. A proteomic approach, 2D SDS-PAGE coupled to HPLC-nESI-MS/MS, supported the co-existence of the Akbu-PLA2 monomer and dimer in the crude snake venom. Results from the combination of phosphoprotein and glycoprotein specific stains combined with the HPLC-nESI-MS/MS method indicated that both the Akbu-PLA2 monomer and dimer were both phosphorylated and glycosylated. The addition of exogenous Ca2+ ion was found to be able to promote the dimer formation of Akbu-PLA2. We conclude that a novel PLA2 was successfully obtained. The systemically biochemical, proteomic, structural and functional characterization results from Akbu-PLA2 reveal new threads and provide valuable inputs for the study of snake venom phospholipases A2.  相似文献   

15.
Sequence homologues of the bacterium Streptomyces violaceoruber and sea anemone Nematostella vectensis PLA2 pfam09056 members were identified in several bacteria, fungi and metazoans illustrating the evolution of this PLA2 sub-family. Comparison of their molecular structures revealed that bacteria and fungi members are part of the GXIV of PLA2s while metazoan representatives are similar with GIX PLA2 of the marine snail Conus magus. Members of GXIV and GIX PLA2s show modest overall sequence similarity (21–35%) but considerable motif conservation within the putative Ca2+-binding, catalytic sites and cysteine residue positions which are essential for enzyme function. GXIV PLA2s of bacteria and fungi typically contain four cysteine residues composing two intramolecular disulphide bonds. GIX PLA2 homologues were identified in cnidarians and molluscs and in a single tunicate but appear to be absent from other metazoan genomes. The mature GIX PLA2 deduced peptides contain up to ten cysteine residues capable of forming five putative disulphide bonds. Three disulphide bonds were identified in GIX PLA2s, two of which correspond to those localized in GXIV PLA2s. Phylogenetic analysis demonstrates that metazoan GIX PLA2s cluster separate from the bacterial and fungal GXIV PLA2s and both pfam09056 members form a group separate from the prokaryote and eukaryote GXIIA PLA2 pfam06951. Duplicate PLA2 pfam09056 genes were identified in the genomes of sea anemone N. vectensis and oyster Crassostrea gigas suggest that members of this family evolved via species-specific duplication events. These observations indicate that the newly identified metazoan pfam09056 members may be classified as GIX PLA2s and support the idea of the common evolutionary origin of GXIV and GIX PLA2 pfam09056 members, which emerged early in bacteria and were maintained in the genomes of fungi and selected extant metazoan taxa.  相似文献   

16.
Proton NMR spectra of a dimeric phospholipase A2 from Trimeresurus flavoviridis have been recorded. N-1 proton resonances of the tryptophan indole rings have been detected and assigned to specific positions, Trp-3/Trp-30, Trp-68 and Trp-108, by comparing the spectra of the enzyme derivatives with tryptophans oxidized to differing extents. Photo-CIDNP experiments have revealed that Trp-68 and Trp-108 are exposed while Trp-3 and Trp-30 are buried in the molecule. This is consistent with the X-ray crystal structure of a homologous phospholipase A2 from Crotalus atrox where residues 3 and 30 are located at a dimer interface, but inconsistent with the results of stepwise oxidation of tryptophan residues.  相似文献   

17.
The behavior of a fluid supported membrane during hydrolysis by phospholipase A2 is for the first time visualized by time-resolved fluorescence imaging. After a lag phase, hydrolysis proceeds from the boundary of existing holes and via nucleation of new holes. During subsequent hydrolysis, the shape of the membrane boundary is determined both by hydrolysis and by shape relaxations due to the action of line tension. This is manifested by the appearance of Rayleigh instabilities in membrane rims and by an effect analogous to domain coarsening in phase transitions in which membrane holes decay when they are within a certain distance from larger and expanding holes.  相似文献   

18.
1. 1. Cobra venom phospholipase A2 from three different sources has been fractionated into different isoenzymes by DEAE ion-exchange chromatography.
2. 2. Treatment of intact human erythrocytes with the various isoenzymes revealed significant differences in the degree of phosphatidylcholine hydrolysis in those cells.
3. 3. It is argued that the plateaus observed in dose-response curves for such treatments may be caused by an increase in lateral surface pressure within the outer half of the membrane due to the production of free fatty acids and lyso-compounds.
Keywords: Phospholipase A2 isoenzyme; Snake venom; Phosphatidylcholine hydrolysis; Fatty acid; (Naja naja,Erythrocyte)  相似文献   

19.
Previous studies have suggested a role for cytosolic Ca2+-independent phospholipase A2 (PLA2) activity in the formation of endosome membrane tubules that participate in the export of transferrin (Tf) and transferrin receptors (TfR) from sorting endosomes (SEs) and the endocytic recycling compartment (ERC). Here we show that the PLA2 requirement is a general feature of endocytic trafficking. The reversible cytoplasmic PLA2 antagonist ONO-RS-082 (ONO) produced a concentration-dependent, differential block in the endocytic recycling of both low-density lipoprotein receptor (LDLR) and TfRs, and in the degradative pathways of LDL and epidermal growth factor (EGF). These results are consistent with the model that a cytoplasmic PLA2 plays a general role in the export of cargo from multiple endocytic compartments by mediating the formation of membrane tubules.  相似文献   

20.
Although the activation of phospholipase A2 (PLA2) in ras-transformed cells has been well documented, the mechanisms underlying this activation are poorly understood. In this study we tried to elucidate whether the membrane phospholipid composition and physical state influence the activity of membrane-associated PLA2 in ras-transformed fibroblasts. For this purpose membranes from non-transfected and ras-transfected NIH 3T3 fibroblasts were enriched with different phospholipids by the aid of partially purified lipid transfer protein. The results showed that of all tested phospholipids only phosphatidylcholine (PC) increased PLA2 activity in the control cells, whereas in their transformed counterparts both PC and phosphatidic acid (PA) induced such effect. Further we investigated whether the activatory effect was due only to the polar head of these phospholipids, or if it was also related to their acyl chain composition. The results demonstrated that the arachidonic acid-containing PC and PA molecules induced a more pronounced increase of membrane-associated PLA2 activity in ras-transformed cells compared to the corresponding palmitatestearate- or oleate- containing molecular species. However, we did not observe any specific effect of the phospholipid fatty acid composition in non-transformed NIH 3T3 fibroblasts. In ras-transformed cells incubated with increasing concentrations of arachidonic acid, PLA2 activity was altered in parallel with the changes of the cellular content of this fatty acid. The role of phosphatidic and arachidonic acids as specific activators of PLA2 in ras-transformed cells is discussed with respect to their possible role in the signal transduction pathways as well as in the processes of malignant transformation of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号