共查询到20条相似文献,搜索用时 15 毫秒
1.
RGS9-2, a member of the R7 regulators of G protein signaling (RGS) protein family of neuronal RGS, is a critical regulator of G protein signaling. In striatal neurons, RGS9-2 is tightly associated with a novel palmitoylated protein, R7BP (R7 family binding protein). Here we report that R7BP acts to target the localization of RGS9-2 to the plasma membrane. Examination of the subcellular distribution in native striatal neurons revealed that both R7BP and RGS9-2 are almost entirely associated with the neuronal membranes. In addition to the plasma membrane, a large portion of RGS9-2 was found in the neuronal specializations, the postsynaptic densities, where it forms complexes with R7BP and its constitutive partner Gbeta5. Using site-directed mutagenesis we found that the molecular determinants that specify the subcellular targeting of RGS9-2.Gbeta5.R7BP complex are contained within the 21 C-terminal amino acids of R7BP. This function of the C terminus was found to require the synergistic contributions of its two distinct elements, a polybasic motif and palmitoylated cysteines, which when combined are sufficient for directing the intracellular localization of the constituent protein. In differentiated neurons, the C-terminal targeting motif of R7BP was found to be essential for mediating its postsynaptic localization. In addition to the plasma membrane targeting elements, we identified two functional nuclear localization sequences that can mediate the import of R7BP into the nucleus upon depalmitoylation. These findings provide a mechanism for the subcellular targeting of RGS9-2 in neurons. 相似文献
2.
Palmitoylation regulates plasma membrane-nuclear shuttling of R7BP, a novel membrane anchor for the RGS7 family 总被引:1,自引:0,他引:1 下载免费PDF全文
Drenan RM Doupnik CA Boyle MP Muglia LJ Huettner JE Linder ME Blumer KJ 《The Journal of cell biology》2005,169(4):623-633
The RGS7 (R7) family of RGS proteins bound to the divergent Gbeta subunit Gbeta5 is a crucial regulator of G protein-coupled receptor (GPCR) signaling in the visual and nervous systems. Here, we identify R7BP, a novel neuronally expressed protein that binds R7-Gbeta5 complexes and shuttles them between the plasma membrane and nucleus. Regional expression of R7BP, Gbeta5, and R7 isoforms in brain is highly coincident. R7BP is palmitoylated near its COOH terminus, which targets the protein to the plasma membrane. Depalmitoylation of R7BP translocates R7BP-R7-Gbeta5 complexes from the plasma membrane to the nucleus. Compared with nonpalmitoylated R7BP, palmitoylated R7BP greatly augments the ability of RGS7 to attenuate GPCR-mediated G protein-regulated inward rectifying potassium channel activation. Thus, by controlling plasma membrane nuclear-shuttling of R7BP-R7-Gbeta5 complexes, reversible palmitoylation of R7BP provides a novel mechanism that regulates GPCR signaling and potentially transduces signals directly from the plasma membrane to the nucleus. 相似文献
3.
The GTPase-accelerating protein (GAP) complex RGS9-1.G beta(5) plays an important role in the kinetics of light responses by accelerating the GTP hydrolysis of G alpha(t) in vertebrate photoreceptors. Much, but not all, of this complex is tethered to disk membranes by the transmembrane protein R9AP. To determine the effect of the R9AP membrane complex on GAP activity, we purified recombinant R9AP and reconstituted it into lipid vesicles along with the photon receptor rhodopsin. Full-length RGS9-1.G beta(5) bound to R9AP-containing vesicles with high affinity (K(d) < 10 nm), but constructs lacking the DEP (dishevelled/EGL-10/pleckstrin) domain bound with much lower affinity, and binding of those lacking the entire N-terminal domain (i.e. the dishevelled/EGL-10/pleckstrin domain plus intervening domain) was not detectable. Formation of the membrane-bound complex with R9AP increased RGS9-1 GAP activity by a factor of 4. Vesicle titrations revealed that on the time scale of phototransduction, the entire reaction sequence from GTP uptake to GAP-catalyzed hydrolysis is a membrane-delimited process, and exchange of G alpha(t) between membrane surfaces is much slower than hydrolysis. Because in rod cells different pools exist of RGS9-1.G beta(5) that are either associated with R9AP or not, regulation of the association between R9AP and RGS9-1.G beta(5) represents a potential mechanism for the regulation of recovery kinetics. 相似文献
4.
Martemyanov KA Yoo PJ Skiba NP Arshavsky VY 《The Journal of biological chemistry》2005,280(7):5133-5136
The R7 subfamily of the regulators of G protein signaling (RGS) proteins is represented by four members broadly expressed in the mammalian nervous system. Here we report that in the brain all four R7 proteins form tight complexes with a previously unidentified protein, which we call the R7-binding protein or R7BP. We initially identified R7BP as a protein co-precipitating with the R7 protein, RGS9, from extracts obtained from the striatal region of the brain. We further showed that R7BP forms a tight complex with RGS9 in vitro and that this binding occurs via the N-terminal DEP domain of RGS9. R7BP is expressed throughout the entire central nervous system but not in any of the tested non-neuronal tissues. All four R7 RGS proteins co-precipitate with R7BP from brain extracts and recombinant R7 proteins bind recombinant R7BP with high efficiency. The closest homolog of R7BP is R9AP which was previously found to interact with RGS9 in photoreceptors. Both R7BP and R9AP are related to the syntaxin subfamily of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins involved in vesicular trafficking and exocytosis. In photoreceptors R9AP regulates several critical properties of RGS9 including its intracellular targeting, stability and catalytic activity. This suggests that R7BP interactions with R7 proteins in the brain may also bear major functional significance. 相似文献
5.
The duration of the photoreceptor's response to a light stimulus determines the speed at which an animal adjusts to ever-changing conditions of the visual environment. One critical component which regulates the photoresponse duration on the molecular level is the complex between the ninth member of the regulators of G protein signaling family (RGS9-1) and its partner, type 5 G protein beta-subunit (Gbeta5L). RGS9-1.Gbeta5L is responsible for the activation of the GTPase activity of the photoreceptor-specific G protein, transducin. Importantly, this function of RGS9-1.Gbeta5L is regulated by its membrane anchor, R9AP, which drastically potentiates the ability of RGS9-1.Gbeta5L to activate transducin GTPase. In this study, we address the kinetic mechanism of R9AP action and find that it consists primarily of a direct increase in the RGS9-1.Gbeta5L activity. We further showed that the binding site for RGS9-1.Gbeta5L is located within the N-terminal putative trihelical domain of R9AP, and even though this domain is sufficient for binding, it takes the entire R9AP molecule to potentiate the activity of RGS9-1.Gbeta5L. The mechanism revealed in this study is different from and complements another well-established mechanism of regulation of RGS9-1.Gbeta5L by the effector enzyme, cGMP phosphodiesterase, which is based entirely on the enhancement in the affinity between RGS9-1.Gbeta5L and transducin. Together, these mechanisms ensure timely transducin inactivation in the course of the photoresponse, a requisite for normal vision. 相似文献
6.
Porter MY Xie K Pozharski E Koelle MR Martemyanov KA 《The Journal of biological chemistry》2010,285(52):41100-41112
Regulators of G protein signaling (RGS) proteins of the R7 subfamily limit signaling by neurotransmitters in the brain and by light in the retina. They form obligate complexes with the Gβ5 protein that are subject to proteolysis to control their abundance and alter signaling. The mechanisms that regulate this proteolysis, however, remain unclear. We used genetic screens to find mutations in Gβ5 that selectively destabilize one of the R7 RGS proteins in Caenorhabditis elegans. These mutations cluster at the binding interface between Gβ5 and the N terminus of R7 RGS proteins. Equivalent mutations within mammalian Gβ5 allowed the interface to still bind the N-terminal DEP domain of R7 RGS proteins, and mutant Gβ5-R7 RGS complexes initially formed in cells but were then rapidly degraded by proteolysis. Molecular dynamics simulations suggest the mutations weaken the Gβ5-DEP interface, thus promoting dynamic opening of the complex to expose determinants of proteolysis known to exist on the DEP domain. We propose that conformational rearrangements at the Gβ5-DEP interface are key to controlling the stability of R7 RGS protein complexes. 相似文献
7.
Drenan RM Doupnik CA Jayaraman M Buchwalter AL Kaltenbronn KM Huettner JE Linder ME Blumer KJ 《The Journal of biological chemistry》2006,281(38):28222-28231
The RGS7 (R7) family of G protein regulators, Gbeta5, and R7BP form heterotrimeric complexes that potently regulate the kinetics of G protein-coupled receptor signaling. Reversible palmitoylation of R7BP regulates plasma membrane/nuclear shuttling of R7*Gbeta5*R7BP heterotrimers. Here we have investigated mechanisms whereby R7BP controls the function of the R7 family. We show that unpalmitoylated R7BP undergoes nuclear/cytoplasmic shuttling and that a C-terminal polybasic motif proximal to the palmitoylation acceptor sites of R7BP mediates nuclear localization, palmitoylation, and plasma membrane targeting. These results suggest a novel mechanism whereby palmitoyltransferases and nuclear import receptors both utilize the C-terminal domain of R7BP to determine the trafficking fate of R7*Gbeta5*R7BP heterotrimers. Analogous mechanisms may regulate other signaling proteins whose distribution between the plasma membrane and nucleus is controlled by palmitoylation. Lastly, we show that cytoplasmic RGS7*Gbeta5*R7BP heterotrimers and RGS7*Gbeta5 heterodimers are equivalently inefficient regulators of G protein-coupled receptor signaling relative to plasma membrane-bound heterotrimers bearing palmitoylated R7BP. Therefore, R7BP augments the function of the complex by a palmitoylation-regulated plasma membrane-targeting mechanism. 相似文献
8.
Masuho I Wakasugi-Masuho H Posokhova EN Patton JR Martemyanov KA 《The Journal of biological chemistry》2011,286(24):21806-21813
The R7 family of regulators of G protein signaling (RGS) proteins, comprising RGS6, RGS7, RGS9, and RGS11, regulate neuronal G protein signaling pathways. All members of the R7 RGS form trimeric complexes with the atypical G protein β subunit, Gβ5, and membrane anchor R7BP or R9AP. Association with Gβ5 and membrane anchors has been shown to be critical for maintaining proteolytic stability of the R7 RGS proteins. However, despite its functional importance, the mechanism of how R7 RGS forms complexes with Gβ5 and membrane anchors remains poorly understood. Here, we used protein-protein interaction, co-localization, and protein stability assays to show that association of RGS9 with membrane anchors requires Gβ5. We further establish that the recruitment of R7BP to the complex requires an intact interface between the N-terminal lobe of RGS9 and protein interaction surface of Gβ5. Site-directed mutational analysis reveals that distinct molecular determinants in the interface between Gβ5 and N-terminal Dishevelled, EGL-10, Pleckstrin/DEP Helical Extension (DEP/DHEY) domains are differentially involved in R7BP binding and proteolytic stabilization. On the basis of these findings, we conclude that Gβ5 contributes to the formation of the binding site to the membrane anchors and thus is playing a central role in the assembly of the proteolytically stable trimeric complex and its correct localization in the cell. 相似文献
9.
He W Lu L Zhang X El-Hodiri HM Chen CK Slep KC Simon MI Jamrich M Wensel TG 《The Journal of biological chemistry》2000,275(47):37093-37100
RGS (regulators of G protein signaling) proteins regulate G protein signaling by accelerating GTP hydrolysis, but little is known about regulation of GTPase-accelerating protein (GAP) activities or roles of domains and subunits outside the catalytic cores. RGS9-1 is the GAP required for rapid recovery of light responses in vertebrate photoreceptors and the only mammalian RGS protein with a defined physiological function. It belongs to an RGS subfamily whose members have multiple domains, including G(gamma)-like domains that bind G(beta)(5) proteins. Members of this subfamily play important roles in neuronal signaling. Within the GAP complex organized around the RGS domain of RGS9-1, we have identified a functional role for the G(gamma)-like-G(beta)(5L) complex in regulation of GAP activity by an effector subunit, cGMP phosphodiesterase gamma and in protein folding and stability of RGS9-1. The C-terminal domain of RGS9-1 also plays a major role in conferring effector stimulation. The sequence of the RGS domain determines whether the sign of the effector effect will be positive or negative. These roles were observed in vitro using full-length proteins or fragments for RGS9-1, RGS7, G(beta)(5S), and G(beta)(5L). The dependence of RGS9-1 on G(beta)(5) co-expression for folding, stability, and function has been confirmed in vivo using transgenic Xenopus laevis. These results reveal how multiple domains and regulatory polypeptides work together to fine tune G(talpha) inactivation. 相似文献
10.
Hooks SB Waldo GL Corbitt J Bodor ET Krumins AM Harden TK 《The Journal of biological chemistry》2003,278(12):10087-10093
Regulator of G-protein signaling (RGS) proteins are GTPase activating proteins (GAPs) of heterotrimeric G-proteins that alter the amplitude and kinetics of receptor-promoted signaling. In this study we defined the G-protein alpha-subunit selectivity of purified Sf9 cell-derived R7 proteins, a subfamily of RGS proteins (RGS6, -7, -9, and -11) containing a Ggamma-like (GGL) domain that mediates dimeric interaction with Gbeta(5). Gbeta(5)/R7 dimers stimulated steady state GTPase activity of Galpha-subunits of the G(i) family, but not of Galpha(q) or Galpha(11), when added to proteoliposomes containing M2 or M1 muscarinic receptor-coupled G-protein heterotrimers. Concentration effect curves of the Gbeta(5)/R7 proteins revealed differences in potencies and efficacies toward Galpha-subunits of the G(i) family. Although all four Gbeta(5)/R7 proteins exhibited similar potencies toward Galpha(o), Gbeta(5)/RGS9 and Gbeta(5)/RGS11 were more potent GAPs of Galpha(i1), Galpha(i2), and Galpha(i3) than were Gbeta(5)/RGS6 and Gbeta(5)/RGS7. The maximal GAP activity exhibited by Gbeta(5)/RGS11 was 2- to 4-fold higher than that of Gbeta(5)/RGS7 and Gbeta(5)/RGS9, with Gbeta(5)/RGS6 exhibiting an intermediate maximal GAP activity. Moreover, the less efficacious Gbeta(5)/RGS7 and Gbeta(5)/RGS9 inhibited Gbeta(5)/RGS11-stimulated GTPase activity of Galpha(o). Therefore, R7 family RGS proteins are G(i) family-selective GAPs with potentially important differences in activities. 相似文献
11.
RGS9-1 is a GTPase-accelerating protein (GAP) required for rapid recovery of the light response in vertebrate rod and cone photoreceptors. Similar to its phototransduction partners transducin (G(t)) and cGMP phosphodiesterase, it is a peripheral protein of the disc membranes, but it binds membranes much more tightly. It lacks the lipid modifications found on G(t) and cGMP phosphodiesterase, and the mechanism for membrane attachment is unknown. We have used limited proteolysis to generate a fragment of RGS9-1 that is readily removed from membranes under moderate salt conditions. Immunoblots reveal that this soluble fragment lacks a 3-kDa fragment from the C-terminal domain, the only domain within RGS9-1 that differs in sequence from the brain-specific isoform RGS9-2. Recombinant fragments of RGS9-1 with or without the partner subunit G beta(5L) were constructed with or without the C-terminal domain. Those lacking the C-terminal domain bound to photoreceptor membranes much less tightly than those containing it. Removal by urea of G beta(5L) from endogenous or recombinant RGS9-1 bound to rod outer segment membranes left RGS9-1 tightly membrane-bound, and recombinant RGS9-1 was urea-soluble in the absence of membranes. Thus the C-terminal domain of RGS9-1 is critical for membrane binding, whereas G beta(5L) does not play an important role in membrane attachment. 相似文献
12.
Lishko PV Martemyanov KA Hopp JA Arshavsky VY 《The Journal of biological chemistry》2002,277(27):24376-24381
The complex between the short splice variant of the ninth member of the RGS protein family and the long splice variant of type 5 G protein beta subunit (RGS9-Gbeta5L) plays a critical role in regulating the duration of the light response in vertebrate photoreceptors by activating the GTPase activity of the photoreceptor-specific G protein, transducin. RGS9-Gbeta5L is tightly associated with the membranes of photoreceptor outer segments; however, the nature of this association remains unknown. Here we demonstrate that rod outer segment membranes contain a limited number of sites for high affinity RGS9-Gbeta5L binding, which are highly sensitive to proteolysis. In membranes isolated from bovine rod outer segments, all of these sites are occupied by the endogenous RGS9-Gbeta5L, which prevents the binding of exogenous recombinant RGS9-Gbeta5L to these sites. However, treating membranes with urea or high pH buffers causes either removal or denaturation of the endogenous RGS9-Gbeta5L, allowing for high affinity binding of recombinant RGS9-Gbeta5L to these sites. This binding results in a striking approximately 70-fold increase in the RGS9-Gbeta5L ability to activate transducin GTPase. The DEP (disheveled/EGL-10/pleckstrin) domain of RGS9 plays a crucial role in the RGS9-Gbeta5L membrane attachment, as evident from the analysis of membrane-binding properties of deletion mutants lacking either N- or C-terminal parts of the RGS9 molecule. Our data indicate that specific association of RGS9-Gbeta5L with photoreceptor disc membranes serves not only as a means of targeting it to an appropriate subcellular compartment but also serves as an important determinant of its catalytic activity. 相似文献
13.
Psifogeorgou K Papakosta P Russo SJ Neve RL Kardassis D Gold SJ Zachariou V 《Journal of neurochemistry》2007,103(2):617-625
Regulators of G-protein signaling (RGS) 9-2 is a striatal enriched protein that controls G protein coupled receptor signaling duration by accelerating Galpha subunit guanosine triphosphate hydrolysis. We have previously demonstrated that mice lacking the RGS9 gene show enhanced morphine analgesia and delayed development of tolerance. Here we extend these studies to understand the mechanism via which RGS9-2 modulates opiate actions. Our data suggest that RGS9-2 prevents several events triggered by mu-opioid receptor (MOR) activation. In transiently transfected PC12 cells, RGS9-2 delays agonist induced internalization of epitope HA-tagged mu-opioid receptor. This action of RGS9-2 requires localization of the protein near the cell membrane. Co-immunoprecipitation studies reveal that RGS9-2 interacts with HA-tagged mu-opioid receptor, and that this interaction is enhanced by morphine treatment. In addition, morphine promotes the association of RGS9-2 with another essential component of MOR desensitization, beta-arrestin-2. We also show that over-expression of RGS9-2 prevents opiate-induced extracellular signal-regulated kinase phosphorylation. Our data indicate that RGS9-2 plays an essential role in opiate actions, by negatively modulating MOR downstream signaling as well as the rate of MOR endocytosis. 相似文献
14.
Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1) required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior. 相似文献
15.
《朊病毒》2013,7(3):134-138
In transmissible spongiform encephalopathies (TSE or prion diseases) such as sheep scrapie, bovine spongiform encephalopathy and human Creutzfeldt-Jakob disease, normally soluble and protease-sensitive prion protein (PrP-sen or PrPC) is converted to an abnormal, insoluble and protease-resistant form termed PrP-res or PrPSc. PrP-res/PrPSc is believed to be the main component of the prion, the infectious agent of the TSE/prion diseases. Its precursor, PrP-sen, is anchored to the cell surface at the C-terminus by a co-translationally added glycophosphatidyl-inositol (GPI) membrane anchor which can be cleaved by the enzyme phosphatidyl-inositol specific phospholipase (PIPLC). The GPI anchor is also present in PrP-res, but is inaccessible to PIPLC digestion suggesting that conformational changes in PrP associated with PrP-res formation have blocked the PIPLC cleavage site. Although the GPI anchor is present in both PrP-sen and PrP-res, its precise role in TSE diseases remains unclear primarily because there are data to suggest that it both is and is not necessary for PrP-res formation and prion infection. 相似文献
16.
Regulator of G protein signalling (RGS) proteins are primarily known for their ability to act as GTPase activating proteins (GAPs) and thus attenuate G protein function within G protein-coupled receptor (GPCR) signalling pathways. However, RGS proteins have been found to interact with additional binding partners, and this has introduced more complexity to our understanding of their potential role in vivo. Here, we identify a novel interaction between RGS proteins (RGS4, RGS5, RGS16) and the multifunctional protein 14-3-3. Two isoforms, 14-3-3β and 14-3-3ε, directly interact with all three purified RGS proteins and data from in vitro steady state GTP hydrolysis assays show that 14-3-3 inhibits the GTPase activity of RGS4 and RGS16, but has limited effects on RGS5 under comparable conditions. Moreover in a competitive pull-down experiment, 14-3-3ε competes with Go for RGS4, but not for RGS5. This mechanism is further reinforced in living cells, where 14-3-3ε sequesters RGS4 in the cytoplasm and impedes its recruitment to the plasma membrane by G protein. Thus, 14-3-3 might act as a molecular chelator, preventing RGS proteins from interacting with G, and ultimately prolonging the signal transduction pathway. In conclusion, our findings suggest that 14-3-3 proteins may indirectly promote GPCR signalling via their inhibitory effects on RGS GAP function. 相似文献
17.
Normal cellular and abnormal disease-associated forms of prion protein (PrP) contain a C-terminal glycophosphatidyl-inositol (GPI) membrane anchor. The importance of the GPI membrane anchor in prion diseases is unclear but there are data to suggest that it both is and is not required for abnormal prion protein formation and prion infection. Utilizing an in vitro model of prion infection we have recently demonstrated that, while the GPI anchor is not essential for the formation of abnormal prion protein in a cell, it is necessary for the establishment of persistent prion infection. In combination with previously published data, our results suggest that GPI anchored PrP is important in the amplification and spread of prion infectivity from cell to cell.Key words: prion, GPI anchor, PrP, prion spread, scrapieIn transmissible spongiform encephalopathies (TSE or prion diseases) such as sheep scrapie, bovine spongiform encephalopathy and human Creutzfeldt-Jakob disease, normally soluble and protease-sensitive prion protein (PrP-sen or PrPC) is converted to an abnormal, insoluble and protease-resistant form termed PrP-res or PrPSc. PrP-res/PrPSc is believed to be the main component of the prion, the infectious agent of the TSE/prion diseases. Its precursor, PrP-sen, is anchored to the cell surface at the C-terminus by a co-translationally added glycophosphatidyl-inositol (GPI) membrane anchor which can be cleaved by the enzyme phosphatidyl-inositol specific phospholipase (PIPLC). The GPI anchor is also present in PrP-res, but is inaccessible to PIPLC digestion suggesting that conformational changes in PrP associated with PrP-res formation have blocked the PIPLC cleavage site.1 Although the GPI anchor is present in both PrP-sen and PrP-res, its precise role in TSE diseases remains unclear primarily because there are data to suggest that it both is and is not necessary for PrP-res formation and prion infection.In tissue culture cells infected with mouse scrapie, PrP-res formation occurs at the cell surface and/or along the endocytic pathway2–4 and may be dependent upon the membrane environment of PrP-sen. For example, localization via the GPI anchor to caveolae-like domains favors PrP-res formation5 while substitution of the GPI anchor addition site with carboxy termini favoring transmembrane anchored PrP-sen inhibits formation of PrP-res.5,6 Other studies have shown that localization of both PrP-sen and PrP-res to lipid rafts, cholesterol and sphingolipid rich membrane microdomains where GPI anchored proteins can be located, is important in PrP-res formation.6–9However, there are also data which suggest that such localization is not necessarily essential for PrP-res formation. Anchorless PrP-sen isolated from cells by immunoprecipitation or wild-type PrP-sen purified by immunoaffinity column followed by cation exchange chromatography are efficiently converted into PrP-res in cell-free systems.10,11 Furthermore, recombinant PrP-sen derived from E. coli, which has no membrane anchor or glycosylation, can be induced to form protease-resistant PrP in vitro when reacted with prion-infected brain homogenates.12–14 Finally, in at least one instance, protease-resistant recombinant PrP-res generated in the absence of infected brain homogenate was reported to cause disease when inoculated into transgenic mice.15The data concerning the role of the PrP-sen GPI anchor in susceptibility to TSE infection are similarly contradictory. Transgenic mice expressing anchorless mouse PrP-sen are susceptible to infection with mouse scrapie and accumulate both PrP-res and prion infectivity.16 Thus, the GPI anchor is clearly not needed for PrP-res formation or productive TSE infection in vivo. However, we recently published data demonstrating that, in vitro, anchored PrP-sen is in fact required to persistently infect cells.17 Given that anchorless PrP-sen is not present on the cell surface but is released into the cell medium, we speculated that the differences between the in vitro and in vivo data were related to the location of PrP-res formation. In the mice expressing anchorless PrP-sen, environments conducive to PrP-res formation are present in certain areas of the complex extracellular milieu of the brain where anchorless, secreted PrP-sen can accumulate and come into contact with PrP-res from the infectious inoculum. Since similar environments are missing in vitro, any PrP-res formation in cells expressing anchorless PrP-sen must be cell-associated. While this explanation addresses how extracellular PrP-res could be generated in an unusual transgenic mouse model of TSE infection, it does not really help to define how the GPI anchor is involved in normal prion infection of a cell.As with other infectious organisms such as viruses, TSE infection can be roughly divided into three steps: uptake, replication and spread. Over the last several years, data derived from new techniques as well as new cell lines susceptible to prion infection have increased our knowledge of some of the basic events that occur during each of these steps. In order to try to tease out the role of the GPI anchor in normal TSE pathogenesis, it is therefore useful to consider the process of TSE infection of a cell and how the GPI anchor might be involved in each stage.In a conventional viral infection, binding and uptake of the virus is essential to establish infection. Studying PrP-res uptake has been complicated by the lack of an antibody that can specifically distinguish PrP-res from PrP-sen in live cells and by the difficulty of detecting the input PrP-res from the PrP-res made de novo by the cell. Recently, however, several groups have been able to study PrP-res uptake using input PrP-res that was either fluorescently labeled18–20 or tagged with the epitope to the monoclonal antibody 3F4,21 or cell lines that express little or no PrP-sen.19,21–23 The data show that PrP-res uptake is independent of scrapie strain or cell type but is influenced by the PrP-res microenvironment as well as PrP-res aggregate size.21 Importantly, these studies demonstrated that PrP-sen expression was not required.19,21–23 Given these data, it is clear that GPI anchored PrP-sen is not involved in the initial uptake of PrP-res into the cell.The next stage of prion infection involves replication of infectivity which is typically assayed by following cellular PrP-res formation. Once again, however, the issue of how to distinguish PrP-res in the inoculum from newly formed PrP-res in the cells has made it difficult to study the early stages of prion replication. To overcome this difficulty, we developed a murine tissue culture system that utilizes cells expressing mouse PrP-sen tagged with the epitope to the 3F4 antibody (Mo3F4 PrP-sen).24 Wild-type mouse PrP does not have this epitope. As a result, following exposure to an infected mouse brain homogenate, de novo PrP-res formation can be followed by assaying for 3F4 positive PrP-res. Our studies showed that there were two stages of PrP-res formation: (1) an initial acute burst within the first 96 hours post-infection that was cell-type and scrapie strain independent and, (2) persistent PrP-res formation (i.e., formation of PrP-res over multiple cell passages) that was dependent on cell-type and scrapie strain and associated with long-term infection.24 Acute PrP-res formation did not necessarily lead to persistent PrP-res formation suggesting that other cell-specific factors or processes are needed for PrP-res formation to persist.24When cells expressing Mo3F4 PrP-sen without the GPI anchor (Mo3F4 GPI-PrP-sen) were exposed to mouse scrapie infected brain homogenates, GPI negative, 3F4 positive PrP-res (Mo3F4 GPI-PrP-res) was detected within 96 hours indicating that acute PrP-res formation had occurred.17 Thus, despite the fact that Mo3F4 GPI-PrP-sen is not expressed on the cell surface16 (Fig. 1A), it was still available for conversion to PrP-res. These results are consistent with data from cell-free systems and demonstrate that, at least acutely, membrane anchored PrP is not necessary for PrP-res formation in a cell.Open in a separate windowFigure 1Persistent infection of cells in vitro requires the expression of GPI-anchored cell surface PrP-sen. PrP knockout cells (CF10)21 were transduced with 3F4 epitope tagged mouse PrP-sen (Mo3F4), 3F4 epitope tagged mouse PrP-sen without the GPI anchor (Mo3F4 GPI-), or Mo3F4 GPI-PrP-sen plus wild-type, GPI anchored mouse PrP-sen (MoPrP). The cells were then exposed to the mouse scrapie strain 22L and passaged. (A) The presence of 3F4 epitope tagged, cell surface mouse PrP-sen was assayed by FACS analysis of fixed, non-permeabilized cells. CF10 cells expressing the following mouse PrP-sen molecules were assayed: Mo3F4 (solid line); Mo3F4 GPI− (dashed line); Mo3F4 GPI− + MoPrP (dotted and dashed line); Mo3F4 GPI− + MoPrP infected with 22L scrapie (dotted line). Only cells expressing Mo3F4 PrP-sen were positive for cell surface, 3F4 epitope tagged PrP. (B) Persistent infection was analyzed by inoculating the cells intracranially into transgenic mice overexpressing MoPrP (Tga20 mice). Only cells expressing anchored mouse PrP-sen were susceptible to scrapie infection. Cells expressing anchorless mouse PrP-sen did not contain detectable infectivity in either the cells or the cellular supernatant (data not shown). Data in (B) are adapted from McNally 2009.17In terms of persistent PrP-res formation, however, our data suggest that the GPI anchor is important. Despite an initial burst of PrP-res formation within the first 96 hours post-infection, Mo3F4 GPI-PrP-res was not observed following passage of the cells nor did the cells become infected. This effect was not due either to resistance of the cells to scrapie infection or to an inability of the scrapie strain used to infect cells. When the same cells expressed anchored Mo3F4 PrP-sen and were exposed to the same mouse scrapie strain, both acute and persistent PrP-res formation were detected and the cells were persistently infected with scrapie (Fig. 1B).17 Taken together, these data demonstrate that cells expressing anchorless PrP-sen do not support persistent PrP-res formation. Furthermore, the data strongly suggest that GPI-anchored PrP-sen is required during the transition from acute to persistent scrapie infection. In support of this hypothesis, the resistance of cells expressing Mo3F4 GPI-PrP-sen to persistent prion infection could be overcome if wild-type GPI anchored PrP-sen was co-expressed in the same cell. When both forms of PrP-sen were expressed, anchored and anchorless forms of PrP-res were made and the cells became persistently infected (Fig. 1B).17 Thus, the data suggest that GPI anchored PrP is necessary to establish prion infection within a cell.How could GPI membrane anchored PrP be involved in the establishment and maintenance of persistent prion infection? Several studies have suggested that the GPI anchor is needed to localize PrP-sen to specific membrane environments where PrP-res formation is favored.5–8 However, if this localization was essential for PrP-res formation, GPI-PrP-sen would presumably never form PrP-res. Lacking the GPI anchor, it would not be in the correct membrane environment to support conversion. As a result, neither acute nor persistent prion infection could occur. This is obviously not the case. Transgenic mice expressing only anchorless PrP-sen generate PrP-res and can be infected with scrapie even though (1) flotation gradients showed that anchorless PrP-sen was not in the same membrane environment as anchored PrP-sen and, (2) flow cytometry analysis demonstrated that anchorless PrP-sen was not present on the cell surface.16 Thus, the GPI anchor is not needed to target PrP-sen to a conversion friendly membrane environment.Consistent with the idea that the GPI anchor is not essential for PrP-res formation, in our studies anchorless PrP-sen could form PrP-res in cells acutely infected with scrapie despite the fact that it is processed differently than anchored PrP-sen, is not present on the cell surface (Fig. 1A), and is secreted.17 Persistent formation of anchorless PrP-res only occurred when both anchored and anchorless forms of PrP were expressed in the same cell.17 For this to happen both types of PrP must share a cellular compartment where PrP-res formation occurs, presumably either on the cell surface or in a specific location along the endocytic pathway2,3 such as the endosomal recycling compartment.4 Analysis of infected and uninfected cells co-expressing Mo3F4 GPI-PrP-sen and wild-type PrP-sen demonstrated that Mo3F4 GPI-PrP-sen was not present on the cell surface (Fig. 1A). Thus, it is unlikely that GPI-PrP-res formation is occurring on the cell surface. We speculate that the anchored form of PrP-res encounters anchorless PrP-sen along either a secretory or endocytic pathway, allowing for the formation of anchorless PrP-res. Regardless of the precise location, the in vitro and in vivo data strongly suggest that the role of the anchor in persistent prion infection is not simply to localize PrP-sen to an environment compatible with PrP-res formation.However, the data are consistent with the idea that GPI anchored PrP is absolutely essential for the establishment of persistent infection in vitro. This is likely related to the spread of infectivity within a culture that is necessary for maintaining a persistent infection over time. Evidence suggests that PrP-res can be transferred between cells in a variety of ways including mother-daughter cell division,25 cell-to-cell contact26,27 and exosomes.28 Tunneling nanotubes have also been hypothesized to be involved in intercellular prion spread19 and recent data suggest that spread can occur via these structures.20 Any of these processes could involve the cell-to-cell transfer of PrP-res in membrane containing particles as has been observed in cell-free7 and cell-based systems.29 If cell-to-cell contact were required, for example via simple physical proximity or perhaps tunneling nanotubes,19,20 then the conversion of cell surface PrP-sen on the naïve cell by cell surface PrP-res on the infected cell would transfer infection to the naïve cell. In this instance, GPI membrane anchored, cell surface PrP-sen would be essential as it would allow for PrP-res formation on the cell surface. If spread is via cell division, then GPI-anchored, cell surface PrP-sen would be important for its role as a precursor to PrP-res formation.2 In this instance, cell surface PrP-sen would be an essential intermediate in the continuous formation of PrP-res necessary for the accumulation and amplification of PrP-res within the cell. It would also help to cycle PrP between the cell surface and intracellular compartments where PrP-res can be formed.4 In either case, GPI-anchored PrP-sen would facilitate the accumulation of intracellular PrP-res to high enough levels to maintain both persistent infection in the mother cell and enable the transfer of organelles containing sufficient PrP-res to initiate infection in the daughter cell. Thus, we would suggest that efficient spread of infectivity requires not just the passive transfer of PrP-res from cell-to-cell but the concurrent initiation of conversion and amplification of PrP-res via cell surface, GPI anchored PrP-sen.In vivo, several lines of evidence suggest that the spread of scrapie infectivity also requires de novo PrP-res formation in the recipient cell and not simply transfer of PrP-res from one cell to another. For example, when neurografts from PrP expressing mice were placed in the brains of PrP knockout mice and the mice were challenged intracranially with scrapie, the graft showed scrapie pathology, but the surrounding tissue did not.30 Furthermore, PrP-res from the graft migrated to the host tissue demonstrating that simple transfer of PrP-res was not sufficient and that PrP-sen expression was required for the spread of scrapie pathology.30 In fact, these mice did not develop scrapie pathology following peripheral infection even when peripheral lymphoid tissues were reconstituted with PrP-sen expressing cells.31 Even though PrP-sen expressing cells were present in both the brain and spleen, in order for infectivity to spread from the lymphoreticular system to the central nervous system PrP-sen expression was also required in an intermediate tissue such as peripheral nerve.31,32 Given that PrP-res uptake and trafficking do not require PrP-sen, the most obvious explanation for the requirement of PrP-sen in contiguous tissues is that de novo PrP-res formation in naïve cells is necessary for (1) infectivity to move from cell to cell within a tissue and, (2) infectivity to move from tissue to tissue.Another study demonstrated that peripheral expression of heterologous mouse PrP significantly increased the incubation time and actually prevented clinical disease in the majority of transgenic mice expressing hamster PrP in neurons of the brain.33 Once again, if simple transfer and uptake of PrP-res were sufficient for spread, the presence of heterologous PrP molecules should not interfere because cellular uptake of PrP-res is independent of PrP-sen expression.19,21–23 Clinical disease in these mice was likely prevented by the heterologous PrP molecule interfering with conversion of PrP-sen to PrP-res suggesting that prevention of de novo PrP-res formation inhibits spread of PrP-res and infectivity. These in vivo data, when combined with our recent in vitro data,17 provide evidence to support the importance of cell surface, and by extension GPI-anchored, PrP in the spread of prion infection.Our data demonstrate that the GPI anchor plays a role in the establishment of persistent scrapie infection in vitro. In our tissue culture system,21 as well as others where spread of infectivity by cell to cell contact appears to be limited,25,34 the role of GPI anchored PrP-sen would be to amplify PrP-res to enable the efficient transfer of infectivity from mother to daughter cell. In cell systems where spread of prion infectivity may require cell to cell contact,26,27 we propose that the role of GPI anchored PrP-sen is to facilitate the spread of prion infection via a chain of conversion from cell-to-cell, a “domino” type spread of infection that has been previously hypothesized.35,36In vivo, such a mechanism might explain why neuroinvasion does not necessarily require axonal transport32,37,38 and can occur independently of the axonal neurofilament machinery.39 It would likely vary with cell type27 and be most important in areas where infectivity is transferred from the periphery to the nervous system as well as in areas where cell division may be limited. It is also possible, if the location of PrP-res formation differs for different scrapie strains,40 that the relative importance of a domino-like spread of infectivity in vivo would vary with the scrapie strain.Of course, spread of infectivity via a “wave” of GPI anchored, PrP mediated conversion would not preclude the spread of infectivity by other intracellular means such as axonal transport (reviewed in ref. 41). Furthermore, spread of infectivity may still also occur extracellularly such as in the unique case of mice which express anchorless PrP-sen,16 where our in vitro data would suggest that the cells themselves are not infected. In such a case, spread would require neither GPI anchored PrP-sen nor amplification of PrP-res in cells but would likely occur via other means such as blood41 or interstitial fluid flow.42 相似文献
18.
19.
Hyojin Park Sungwoon Lee Pravesh Shrestha Jihye Kim Jeong Ae Park Yeongrim Ko Young Ho Ban Dae-Young Park Sang-Jun Ha Gou Young Koh Victor Sukbong Hong Naoki Mochizuki Young-Myeong Kim Weontae Lee Young-Guen Kwon 《The Journal of cell biology》2015,211(3):619-637
The phosphoinositide 3-kinase–Akt signaling pathway is essential to many biological processes, including cell proliferation, survival, metabolism, and angiogenesis, under pathophysiological conditions. Although 3-phosphoinositide–dependent kinase 1 (PDK1) is a primary activator of Akt at the plasma membrane, the optimal activation mechanism remains unclear. We report that adhesion molecule with IgG-like domain 2 (AMIGO2) is a novel scaffold protein that regulates PDK1 membrane localization and Akt activation. Loss of AMIGO2 in endothelial cells (ECs) led to apoptosis and inhibition of angiogenesis with Akt inactivation. Amino acid residues 465–474 in AMIGO2 directly bind to the PDK1 pleckstrin homology domain. A synthetic peptide containing the AMIGO2 465–474 residues abrogated the AMIGO2–PDK1 interaction and Akt activation. Moreover, it effectively suppressed pathological angiogenesis in murine tumor and oxygen-induced retinopathy models. These results demonstrate that AMIGO2 is an important regulator of the PDK1–Akt pathway in ECs and suggest that interference of the PDK1–AMIGO2 interaction might be a novel pharmaceutical target for designing an Akt pathway inhibitor. 相似文献