共查询到20条相似文献,搜索用时 0 毫秒
1.
Evolution at silent sites is often used to estimate the pace of selectively neutral processes or to infer differences in divergence times of genes. However, silent sites are subject to selection in favor of preferred codons, and the strength of such selection varies dramatically across genes. Here, we use the relationship between codon bias and synonymous divergence observed in four species of the genus Saccharomyces to provide a simple correction for selection on silent sites. 相似文献
2.
Intragenic Hill-Robertson interference influences selection intensity on synonymous mutations in Drosophila 总被引:3,自引:1,他引:3
Natural selection influences synonymous mutations and synonymouscodon usage in many eukaryotes to improve the efficiency oftranslation in highly expressed genes. Recent studies of genecomposition in eukaryotes have shown that codon usage also variesindependently of expression levels, both among genes and atthe intragenic level. Here, we investigate rates of evolution(Ks) and intensity of selection (s) on synonymous mutationsin two groups of genes that differ greatly in the length oftheir exons, but with equivalent levels of gene expression andrates of crossing-over in Drosophila melanogaster. We estimates using patterns of divergence and polymorphism in 50 Drosophilagenes (100 kb of coding sequence) to take into account possiblevariation in mutation trends across the genome, among genesor among codons. We show that genes with long exons exhibithigher Ks and reduced s compared to genes with short exons.We also show that Ks and s vary significantly across long exons,with higher Ks and reduced s in the central region comparedto flanking regions of the same exons, hence indicating thatthe difference between genes with short and long exons can bemostly attributed to the central region of these long exons.Although amino acid composition can also play a significantrole when estimating Ks and s, our analyses show that the differencesin Ks and s between genes with short and long exons and acrosslong exons cannot be explained by differences in protein composition.All these results are consistent with the Interference Selection(IS) model that proposes that the Hill-Robertson (HR) effectcaused by many weakly selected mutations has detectable evolutionaryconsequences at the intragenic level in genomes with recombination.Under the IS model, exon size and exon-intron structure influencethe effectiveness of selection, with long exons showing reducedeffectiveness of selection when compared to small exons andthe central region of long exons showing reduced intensity ofselection compared to flanking coding regions. Finally, ourresults further stress the need to consider selection on synonymousmutations and its variationamong and across genes andexonsin studies of protein evolution. 相似文献
3.
Kim Y 《Molecular biology and evolution》2004,21(2):286-294
The fixation of weakly selected mutations can be greatly influenced by strong directional selection at linked loci. Here, I investigate a two-locus model in which weakly selected, reversible mutations occur at one locus and recurrent strong directional selection occurs at the other locus. This model is analogous to selection on codon usage at synonymous sites linked to nonsynonymous sites under strong directional selection. Two approximations obtained here describe the expected frequency of the weakly selected preferred alleles at equilibrium. These approximations, as well as simulation results, show that the level of codon bias declines with an increasing rate of substitution at the strongly selected locus, as expected from the well-understood theory that selection at one locus reduces the efficacy of selection at linked loci. These solutions are used to examine whether the negative correlation between codon bias and nonsynonymous substitution rates recently observed in Drosophila can be explained by this hitchhiking effect. It is shown that this observation can be reasonably well accounted for if a large fraction of the nonsynonymous substitutions on genes in the data set are driven by strong directional selection. 相似文献
4.
Resch AM Carmel L Mariño-Ramírez L Ogurtsov AY Shabalina SA Rogozin IB Koonin EV 《Molecular biology and evolution》2007,24(8):1821-1831
Evolution of protein sequences is largely governed by purifying selection, with a small fraction of proteins evolving under positive selection. The evolution at synonymous positions in protein-coding genes is not nearly as well understood, with the extent and types of selection remaining, largely, unclear. A statistical test to identify purifying and positive selection at synonymous sites in protein-coding genes was developed. The method compares the rate of evolution at synonymous sites (Ks) to that in intron sequences of the same gene after sampling the aligned intron sequences to mimic the statistical properties of coding sequences. We detected purifying selection at synonymous sites in approximately 28% of the 1,562 analyzed orthologous genes from mouse and rat, and positive selection in approximately 12% of the genes. Thus, the fraction of genes with readily detectable positive selection at synonymous sites is much greater than the fraction of genes with comparable positive selection at nonsynonymous sites, i.e., at the level of the protein sequence. Unlike other genes, the genes with positive selection at synonymous sites showed no correlation between Ks and the rate of evolution in nonsynonymous sites (Ka), indicating that evolution of synonymous sites under positive selection is decoupled from protein evolution. The genes with purifying selection at synonymous sites showed significant anticorrelation between Ks and expression level and breadth, indicating that highly expressed genes evolve slowly. The genes with positive selection at synonymous sites showed the opposite trend, i.e., highly expressed genes had, on average, higher Ks. For the genes with positive selection at synonymous sites, a significantly lower mRNA stability is predicted compared to the genes with negative selection. Thus, mRNA destabilization could be an important factor driving positive selection in nonsynonymous sites, probably, through regulation of expression at the level of mRNA degradation and, possibly, also translation rate. So, unexpectedly, we found that positive selection at synonymous sites of mammalian genes is substantially more common than positive selection at the level of protein sequences. Positive selection at synonymous sites might act through mRNA destabilization affecting mRNA levels and translation. 相似文献
5.
Susanta K. Behura David W. Severson 《Biological reviews of the Cambridge Philosophical Society》2013,88(1):49-61
Codon usage bias refers to the phenomenon where specific codons are used more often than other synonymous codons during translation of genes, the extent of which varies within and among species. Molecular evolutionary investigations suggest that codon bias is manifested as a result of balance between mutational and translational selection of such genes and that this phenomenon is widespread across species and may contribute to genome evolution in a significant manner. With the advent of whole‐genome sequencing of numerous species, both prokaryotes and eukaryotes, genome‐wide patterns of codon bias are emerging in different organisms. Various factors such as expression level, GC content, recombination rates, RNA stability, codon position, gene length and others (including environmental stress and population size) can influence codon usage bias within and among species. Moreover, there has been a continuous quest towards developing new concepts and tools to measure the extent of codon usage bias of genes. In this review, we outline the fundamental concepts of evolution of the genetic code, discuss various factors that may influence biased usage of synonymous codons and then outline different principles and methods of measurement of codon usage bias. Finally, we discuss selected studies performed using whole‐genome sequences of different insect species to show how codon bias patterns vary within and among genomes. We conclude with generalized remarks on specific emerging aspects of codon bias studies and highlight the recent explosion of genome‐sequencing efforts on arthropods (such as twelve Drosophila species, species of ants, honeybee, Nasonia and Anopheles mosquitoes as well as the recent launch of a genome‐sequencing project involving 5000 insects and other arthropods) that may help us to understand better the evolution of codon bias and its biological significance. 相似文献
6.
转座因子对水稻同义密码子使用偏性的影响 总被引:1,自引:0,他引:1
利用635个包含完整转座因子插入的粳稻CDS序列,对转座因子如何影响基因编码区的碱基组成及基因的表达水平,进而对基因同义密码子的使用偏性产生影响进行了详细分析。结果表明:转座因子插入极显著地影响到基因编码区的同义密码子使用但并非唯一因素;转座因子对不同基因的表达水平具有多重影响,有的基因表达被抑制,有的反而增强,但总的来说它减少了基因表达水平对同义密码子使用的影响程度。 相似文献
7.
We have investigated patterns of within-species polymorphism and between-species divergence for synonymous and nonsynonymous variants at a set of autosomal and X-linked loci of Drosophila miranda. D. pseudoobscura and D. affinis were used for the between-species comparisons. The results suggest the action of purifying selection on nonsynonymous, polymorphic variants. Among synonymous polymorphisms, there is a significant excess of synonymous mutations from preferred to unpreferred codons and of GC to AT mutations. There was no excess of GC to AT mutations among polymorphisms at noncoding sites. This suggests that selection is acting to maintain the use of preferred codons. Indirect evidence suggests that biased gene conversion in favor of GC base pairs may also be operating. The joint intensity of selection and biased gene conversion, in terms of the product of effective population size and the sum of the selection and conversion coefficients, was estimated to be approximately 0.65. 相似文献
8.
An approximately 6.9-kb region encompassing the RpII215 gene was sequenced for 24 individuals of the island endemic species Drosophila guanche. The comparative analysis of synonymous polymorphism and divergence in D. guanche and D. subobscura, two species with pronounced differences in population size, allows contrasting the nearly neutral character of synonymous mutations. In D. guanche, unlike in D. subobscura, (1) the ratio of preferred to unpreferred synonymous changes was similar for polymorphic and fixed changes, (2) the numbers of preferred and unpreferred changes, both polymorphic and fixed, could be explained by the mutational process, and (3) the estimated scaled selection coefficient for unpreferred mutations did not differ significantly from zero. Additionally, the comparative analysis revealed that both the ratio of preferred to unpreferred synonymous changes and the frequency spectrum of unpreferred polymorphic mutations differed significantly between species. All these results indicate that a large fraction of synonymous mutations in the RpII215 gene behave as effectively neutral in D. guanche, whereas they are weakly selected in D. subobscura. The reduced efficacy of selection in the insular species constitutes strong evidence of the nearly neutral character of synonymous mutations and, therefore, of the role of weak selection in maintaining codon bias. 相似文献
9.
It has been suggested that codon volatility (the proportion of the point-mutation neighbors of a codon that encode different amino acids) can be used as an index of past positive selection. We compared codon volatility with patterns of synonymous and nonsynonymous nucleotide substitution in genome-wide comparisons of orthologous genes between three pairs of related genomes: (1) the protists Plasmodium falciparum and P. yoelii, (2) the fungi Saccharomyces cerevisiae and S. paradoxus, and (3) the mammals mouse and rat. Codon volatility was not consistently associated with an elevated rate of nonsynonymous substitution, as would be expected under positive selection. Rather, the most consistent and powerful correlate of elevated codon volatility was nucleotide content at the second codon position, as expected, given the nature of the genetic code. 相似文献
10.
We develop a new model for studying the molecular evolution of protein-coding DNA sequences. In contrast to existing models, we incorporate the potential for site-to-site heterogeneity of both synonymous and nonsynonymous substitution rates. We demonstrate that within-gene heterogeneity of synonymous substitution rates appears to be common. Using the new family of models, we investigate the utility of a variety of new statistical inference procedures, and we pay particular attention to issues surrounding the detection of sites undergoing positive selection. We discuss how failure to model synonymous rate variation in the model can lead to misidentification of sites as positively selected. 相似文献
11.
In Drosophila melanogaster, synonymous codons corresponding to the most abundant cognate tRNAs are used more frequently, especially in highly expressed genes. Increased use of such "optimal" codons is considered an adaptation for translational efficiency. Need it always be the case that selection should favor the use of a translationally optimal codon? Here, we investigate one possible confounding factor, namely, the need to specify information in exons necessary to enable correct splicing. As expected from such a model, in Drosophila many codons show different usage near intron-exon boundaries versus exon core regions. However, this finding is in principle also consistent with Hill-Robertson effects modulating usage of translationally optimal codons. However, several results support the splice model over the translational selection model: 1) the trends in codon usage are strikingly similar to those in mammals in which codon usage near boundaries correlates with abundance in exonic splice enhancers (ESEs), 2) codons preferred near boundaries tend to be enriched for A and avoid C (conversely those avoided near boundaries prefer C rather than A), as expected were ESEs involved, and 3) codons preferred near boundaries are typically not translationally optimal. We conclude that usage of translationally optimal codons usage is compromised in the vicinity of splice junctions in intron-containing genes, to the effect that we observe higher levels of usage of translationally optimal codons at the center of exons. On the gene level, however, controlling for known correlates of codon bias, the impact on codon usage patterns is quantitatively small. These results have implications for inferring aspects of the mechanism of splicing given nothing more than a well-annotated genome. 相似文献
12.
Carlini DB 《Journal of evolutionary biology》2004,17(4):779-785
The ethanol tolerance of adult transgenic flies of Drosophila containing between zero and ten unpreferred synonymous mutations that reduced codon bias in the alcohol dehydrogenase (Adh) gene was assayed. As the amino acid sequences of the ADH protein were identical in the four genotypes assayed, differences in ethanol tolerance were due to differences in the abundance of ADH protein, presumably driven by the effects of codon bias on translational efficiency. The ethanol tolerance of genotypes decreased with the number of unpreferred synonymous mutations, and a positive correlation between ADH protein abundance and ethanol tolerance was observed. This work confirms that the fitness effects of unpreferred synonymous mutations that reduce codon bias in a highly expressed gene are experimentally measurable in Drosophila melanogaster. 相似文献
13.
Mitogen activated protein kinase (MAPK) genes provide resistance to various biotic and abiotic stresses. Codon usage profiling of
the genes reveals the characteristic features of the genes like nucleotide composition, gene expressivity, optimal codons etc. The
present study is a comparative analysis of codon usage patterns for different MAPK genes in three organisms, viz. Arabidopsis
thaliana, Glycine max (soybean) and Oryza sativa (rice). The study has revealed a high AT content in MAPK genes of Arabidopsis and
soybean whereas in rice a balanced AT-GC content at the third synonymous position of codon. The genes show a low bias in codon
usage profile as reflected in the higher values (50.83 to 56.55) of effective number of codons (Nc). The prediction of gene expression
profile in the MAPK genes revealed that these genes might be under the selective pressure of translational optimization as reflected
in the low codon adaptation index (CAI) values ranging from 0.147 to 0.208. 相似文献
14.
Archetti M 《Journal of evolutionary biology》2006,19(2):353-365
Synonymous codons are neutral at the protein level, therefore natural selection at the protein level should have no effect on their frequencies. Synonymous codons, however, differ in their capacity to reduce the effects of errors: after mutation, certain codons keep on coding for the same amino acid or for amino acids with similar properties, while other synonymous codons produce very different amino acids. Therefore, the impact of errors on a coding sequence (genetic robustness) can be measured by analysing its codon usage. I analyse the codon usage of sequenced nuclear and cytoplasmic genomes and I show that there is an extensive variation in genetic robustness at the DNA sequence level, both among genomes and among genes of the same genome. I also show theoretically that robustness can be adaptive, that is natural selection may lead to a preference for codons that reduce the impact of errors. If selection occurs only among the mutants of a codon (e.g. among the progeny before the adult phase), however, the codons that are more sensitive to the effects of mutations may increase in frequency because they manage to get rid more easily of deleterious mutations. I also suggest other possible explanations for the evolution of genetic robustness at the codon level. 相似文献
15.
比较分析了嗜热泉生古细菌(Aeropyrum pernix K1)和其他两种系统发育相关的泉古菌[嗜气菌(Pyrobaculum aerophi-lumstr.IM2)和嗜硫菌(Sulfolobus acidocaldarius DSM 639)]的同义密码子使用偏向性。结果表明嗜热泉生古细菌(Aeropyrum pernix K1)的密码子偏向性很小,并且与GC3S成高度的相关性。这3种泉古菌的密码子使用模式在进化上很保守。与基因的功能对密码子使用的影响相比,这些泉古菌密码子的使用偏向性更是由其物种所决定的。嗜热泉生古细菌(A.pernix K1),嗜气菌(P.aerophilum str.IM2)和嗜硫菌(S.acidocaldarius DSM 639)生存在不同的极限环境中。推测正是这些极限环境决定了这些泉古菌的密码子使用偏向性模式。此外在这些泉古菌的基因组中并没有发现其正义链和反义链的密码子使用偏向性差别。嗜热泉生古细菌(A.pernix K1)和嗜硫菌(S.acidocaldarius DSM 639)的密码子偏向性程度与基因表达水平有高度的相关性,而嗜气菌(P.aerophilum str.IM2)的基因组并没有发现这种规律。 相似文献
16.
Analysis of synonymous codon usage bias in Chlamydia 总被引:9,自引:0,他引:9
Chlamydiae are obligate intracellular bacterial pathogens that cause ocular and sexuallytransmitted diseases,and are associated with cardiovascular diseases.The analysis of codon usage mayimprove our understanding of the evolution and pathogenesis of Chlamydia and allow reengineering of targetgenes to improve their expression for gene therapy.Here,we analyzed the codon usage of C.muridarum,C.trachomatis(here indicating biovar trachoma and LGV),C.pneumoniae,and C.psittaci using the codonusage database and the CUSP(Create a codon usage table)program of EMBOSS(The European MolecularBiology Open Software Suite).The results show that the four genomes have similar codon usage patterns,with a strong bias towards the codons with A and T at the third codon position.Compared with Homosapiens,the four chlamydial species show discordant seven or eight preferred codons.The ENC(effectivenumber of codons used in a gene)-plot reveals that the genetic heterogeneity in Chlamydia is constrained bythe G+C content,while translational selection and gene length exert relatively weaker influences.Moreover,mutational pressure appears to be the major determinant of the codon usage variation among the chlamydialgenes.In addition,we compared the codon preferences of C.trachomatis with those of E.coli,yeast,adenovirus and Homo sapiens.There are 23 codons showing distinct usage differences between C.trachomatisand E.coli,24 between C.trachomatis and adenovirus,21 between C.trachomatis and Homo sapiens,butonly six codons between C.trachomatis and yeast.Therefore,the yeast system may be more suitable for theexpression of chlamydial genes.Finally,we compared the codon preferences of C.trachomatis with those ofsix eukaryotes,eight prokaryotes and 23 viruses.There is a strong positive correlation between the differ-ences in coding GC content and the variations in codon bias(r=0.905,P<0,001).We conclude that thevariation of codon bias between C.trachomatis and other organisms is much less influenced by phylogeneticlineage and primarily determined by the extent of disparities in GC content. 相似文献
17.
Significant transition/transversion mutation bias is a well-appreciated aspect of mammalian nuclear genomes; however, patterns of bias among genes within a genome and among species remain largely uncharacterized. Understanding these patterns is important for understanding similarities and differences in mutational patterns among genomes and genomic regions. Therefore, we have conducted an analysis of 7,587 pairs of sequences of 4,347 mammalian protein-coding genes from seven species (human, mouse, rat, cow, sheep, pig, and macaque) and from the introns of 51 gene pairs and multiple intergenic regions (37 kbp, 52 kbp and 65 kbp) from the human, chimpanzee, and baboon genomes. Our analyses show that genes and regions with widely varying base composition exhibit uniformity of transition mutation rate both within and among mammalian lineages, as long as the transitional mutations caused by CpG hypermutability are excluded. The estimates show no relationship to potential intrachromosomal or interchromosomal effects. This uniformity points to similarity in point mutation processes in genomic regions with substantially different GC-content biases. 相似文献
18.
Codon bias is the non-random use of synonymous codons, a phenomenon that has been observed in species as diverse as bacteria, plants and mammals. The preferential use of particular synonymous codons may reflect neutral mechanisms (e.g. mutational bias, G|C-biased gene conversion, genetic drift) and/or selection for mRNA stability, translational efficiency and accuracy. The extent to which these different factors influence codon usage is unknown, so we dissected the contribution of mutational bias and selection towards codon bias in genes from 15 eudicots, 4 monocots and 2 mosses. We analysed the frequency of mononucleotides, dinucleotides and trinucleotides and investigated whether the compositional genomic background could account for the observed codon usage profiles. Neutral forces such as mutational pressure and G|C-biased gene conversion appeared to underlie most of the observed codon bias, although there was also evidence for the selection of optimal translational efficiency and mRNA folding. Our data confirmed the compositional differences between monocots and dicots, with the former featuring in general a lower background compositional bias but a higher overall codon bias. 相似文献
19.
Proline is a special imino acid in protein and the isomerization of the prolyl peptide bond has notable biological significance and influences the final structure of protein greatly, so the correlation between proline synonymous codon usage and local amino acid, the correlation between proline synonymous codon usage and the isomerization of the prolyl peptide bond were both investigated in the Escherichia coli genome by using a novel method based on information theory. The results show that in peptide chain, the residue at the first position C-terminal influences the usage of proline synonymous codon greatly and proline synonymous codons contain some factors influencing the isomerization of the prolyl peptide bond. 相似文献
20.
In many organisms, selection acts on synonymous codons to improve translation. However, the precise basis of this selection remains unclear in the majority of species. Selection could be acting to maximize the speed of elongation, to minimize the costs of proofreading, or to maximize the accuracy of translation. Using several data sets, we find evidence that codon use in Escherichia coli is biased to reduce the costs of both missense and nonsense translational errors. Highly conserved sites and genes have higher codon bias than less conserved ones, and codon bias is positively correlated to gene length and production costs, both indicating selection against missense errors. Additionally, codon bias increases along the length of genes, indicating selection against nonsense errors. Doublet mutations or replacement substitutions do not explain our observations. The correlations remain when we control for expression level and for conflicting selection pressures at the start and end of genes. Considering each amino acid by itself confirms our results. We conclude that selection on synonymous codon use in E. coli is largely due to selection for translational accuracy, to reduce the costs of both missense and nonsense errors. 相似文献