首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cutting edge: impaired Toll-like receptor expression and function in aging   总被引:31,自引:0,他引:31  
Toll-like receptors (TLR) are pattern recognition receptors that recognize conserved molecular patterns on microbes and link innate and adaptive immune systems. We investigated whether the enhanced susceptibility to bacterial, yeast, and viral infections and poor adaptive immune responses in aging are a result of diminished expression and function of TLRs. We examined the expression and function of all murine TLRs on macrophages from young and aged mice. Both splenic and activated peritoneal macrophages from aged mice expressed significantly lower levels of all TLRs. Furthermore, macrophages from aged mice secreted significantly lower levels of IL-6 and TNF-alpha when stimulated with known ligands for TLR1 and 2, 2 and 6,TLR3, TLR4, TLR5, and TLR9 when compared with those from young mice. These results support the concept that increased susceptibility to infections and poor adaptive immune responses in aging may be due to the decline in TLR expression and function.  相似文献   

2.
The roles of Toll-like receptor (TLR) 2 and TLR4 in the host inflammatory response to infection caused by Chlamydia trachomatis have not been elucidated. We examined production of TNF-alpha and IL-6 in wild-type TLR2 knockout (KO), and TLR4 KO murine peritoneal macrophages infected with the mouse pneumonitis strain of C. trachomatis. Furthermore, we compared the outcomes of genital tract infection in control, TLR2 KO, and TLR4 KO mice. Macrophages lacking TLR2 produced significantly less TNF-alpha and IL6 in response to active infection. In contrast, macrophages from TLR4 KO mice consistently produced higher TNF-alpha and IL-6 responses than those from normal mice on in vitro infection. Infected TLR2-deficient fibroblasts had less mRNA for IL-1, IL-6, and macrophage-inflammatory protein-2, but TLR4-deficient cells had increased mRNA levels for these cytokines compared with controls, suggesting that ligation of TLR4 by whole chlamydiae may down-modulate signaling by other TLRs. In TLR2 KO mice, although the course of genital tract infection was not different from that of controls, significantly lower levels of TNF-alpha and macrophage-inflammatory protein-2 were detected in genital tract secretions during the first week of infection, and there was a significant reduction in oviduct and mesosalpinx pathology at late time points. TLR4 KO mice responded to in vivo infection similarly to wild-type controls and developed similar pathology. TLR2 is an important mediator in the innate immune response to C. trachomatis infection and appears to play a role in both early production of inflammatory mediators and development of chronic inflammatory pathology.  相似文献   

3.
GPIs isolated from Toxoplasma gondii, as well as a chemically synthesized GPI lacking the lipid moiety, activated a reporter gene in Chinese hamster ovary cells expressing TLR4, while the core glycan and lipid moieties cleaved from the GPIs activated both TLR4- and TLR2-expressing cells. MyD88, but not TLR2, TLR4, or CD14, is absolutely needed to trigger TNF-alpha production by macrophages exposed to T. gondii GPIs. Importantly, TNF-alpha response to GPIs was completely abrogated in macrophages from TLR2/4-double-deficient mice. MyD88(-/-) mice were more susceptible to death than wild-type (WT), TLR2(-/-), TLR4(-/-), TLR2/4(-/-), and CD14(-/-) mice infected with the ME-49 strain of T. gondii. The cyst number was higher in the brain of TLR2/4(-/-), but not TLR2(-/-), TLR4(-/-), and CD14(-/-), mice, as compared with WT mice. Upon infection with the ME-49 strain of T. gondii, we observed no decrease of IL-12 and IFN-gamma production in TLR2-, TLR4-, or CD14-deficient mice. Indeed, splenocytes from T. gondii-infected TLR2(-/-) and TLR2/4(-/-) mice produced more IFN-gamma than cells from WT mice in response to in vitro stimulation with parasite extracts enriched in GPI-linked surface proteins. Together, our results suggest that both TLR2 and TLR4 receptors may participate in the host defense against T. gondii infection through their activation by the GPIs and could work together with other MyD88-dependent receptors, like other TLRs or even IL-18R or IL-1R, to obtain an effective host response against T. gondii infection.  相似文献   

4.
We determined whether T cell-independent Ig isotype responses to isolated pneumococcal polysaccharides (PPS) required TLR signaling in vivo. IgG anti-PPS responses to PPS3, PPS14, and C-polysaccharide (C-PS) were virtually undetectable in TLR2(-/-) mice, whereas specific IgM induction was variably reduced compared with wild-type mice. All PPS-containing preparations induced IL-6 and TNF-alpha from wild-type, but not TLR2-/-, macrophages. TLR2 activity was distinct from that of PPS, in that it was phenol extractable. Immunization of wild-type mice with phenol-extracted PPS14 also resulted in a marked reduction in the IgG, although not the IgM-anti-PPS14, response compared with untreated PPS14. The commercial 23-valent PPS vaccine, Pneumovax-23 also contained TLR ligands (TLR2 and TLR4), which were absolutely critical for the IgG-inducing activity of the vaccine in mice. Finally, the commercial pneumococcal conjugate vaccine, Prevnar, contained a TLR2 ligand(s) that substantially enhanced both the primary and secondary anti-PPS responses in mice, especially the type 1 IgG isotypes. These data strongly suggest the absolute need for a distinct, TLR-dependent second signal for inducing in vivo IgG T cell-independent humoral immune responses to isolated pneumococcal polysaccharide Ags and highlight the potential importance of previously unappreciated copurified and/or contaminating TLR ligands in PPS vaccine preparations.  相似文献   

5.
The in vitro production of TNF-alpha and IFN-gamma in response to Candida albicans was investigated in wild type, TLR2-/- and TLR4-/- murine cells. TLR2-/- resident peritoneal macrophages showed a strong impairment of TNF-alpha production in response to viable and non-viable (heat-killed, antimycotic-treated and formaldehyde-fixed) yeasts and hyphae (germ tube-bearing cells) of the high virulence C. albicans ATCC 26555 strain, as compared with macrophages from wild-type and TLR4-/- mice. The in vitro production of IFN-gamma was investigated in murine splenocytes obtained three days after intravenous injection with the low virulence, non-germinative C. albicans PCA2 strain, and again, TLR2-/- splenocytes showed a strong impairment of the in vitro production of IFN-gamma in response to non-viable (heat-killed, antimycotic-treated and formaldehyde-fixed) C. albicans ATCC 26555 yeasts, as compared with splenocytes of TLR4-/- and wild type mice. These results indicate that the TLR2-mediated recognition of C. albicans leading to a proinflammatory Th1 host response appears to be well conserved in killed C. albicans cells, regardless of the inactivating treatment employed.  相似文献   

6.
Endotoxin from Gram-negative bacteria bound to CD14 signals through Toll-like receptor (TLR) 4, while components of Gram-positive bacteria, fungi, and Mycobacterium tuberculosis (M.tb.) preferentially use TLR2 signaling. We asked whether TLR4 plays any role in host resistance to M.tb. infection in vivo. Therefore, we infected the TLR4 mutant C3H/HeJ mice and their controls, C3H/HeN mice, with M.tb. by aerosol. TLR4 mutant mice had a reduced capacity to eliminate mycobacteria from the lungs, spread the infection to spleen and liver, with 10-100 times higher CFU organ levels than the wild-type mice and succumbed within 5-7 mo, whereas most of the wild-type mice controlled infection and survived the duration of the experiment. The lungs of TLR4 mutant mice showed chronic pneumonia with increased neutrophil infiltration, reduced macrophages recruitment, and abundant acid-fast bacilli. Furthermore, the pulmonary expression of TNF-alpha, IL-12p40, and monocyte chemoattractant protein 1 was significantly lower in C3H/HeJ mice when compared with the wild-type controls. C3H/HeJ-derived macrophages infected in vitro with M.tb. produced lower levels of TNF-alpha. Finally, the purified mycobacterial glycolipid, phosphatidylinositol mannosides, induced signaling in both a TLR2- and TLR4-dependent manner, thus suggesting that recognition of phosphatidylinositol mannosides in vivo may influence the development of protective immunity. In summary, macrophage recruitment and the proinflammatory response to M.tb. are impaired in TLR4 mutant mice, resulting in chronic infection with impaired elimination of mycobacteria. Therefore, TLR4 signaling is required to mount a protective response during chronic M.tb. infection.  相似文献   

7.
We investigated the effect of Toll-like receptor 4 (TLR4) on the progression of murine Pneumocystis pneumonia. TLR4-mutant C3H/HeJ and wild-type C3H/HeN mice were infected with Pneumocystis after depletion of CD4 T cells. Mutant mice lost body weight more quickly and showed exacerbated pulmonary injury even though there was no difference in Pneumocystis organism burden in the lung. Mutant mice showed reduced levels of IL-10, IL-12p40 and MIP-2 accompanied by elevated levels of TNF-alpha and IL-6 in the bronchoalveolar lavage fluid compared with those of wild-type mice 8 weeks after the infection. In response to stimulation with Pneumocystis antigen, the production of IL-10, IL-12p40 and MIP-2 by alveolar macrophages was partially impaired in mutant mice, while that in wild-type mice was suppressed by the anti-TLR4/MD-2 mAb, MTS510. Unlike the response to lipopolysaccharide stimulation, TLR4-reconstituted HEK293 cells showed no elevated NF-kappaB activation after stimulation with Pneumocystis antigen. Taken together, these findings suggest that recognition of Pneumocystis by TLR4 helps to regulate the host inflammatory responses through cytokine and chemokine production by alveolar macrophages.  相似文献   

8.
Jones CL  Weiss DS 《PloS one》2011,6(6):e20609
BACKGROUND: Early detection of microorganisms by the innate immune system is provided by surface-expressed and endosomal pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs). Detection of microbial components by TLRs initiates a signaling cascade leading to the expression of proinflammatory cytokines including IL-6 and IL-1β. Some intracellular bacteria subvert the TLR response by rapidly escaping the phagosome and entering the cytosol. However, these bacteria may be recognized by the inflammasome, a multi-protein complex comprised of a sensor protein, ASC and the cysteine protease caspase-1. Inflammasome activation leads to release of the proinflammatory cytokines IL-1β and IL-18 and death of the infected cell, an important host defense that eliminates the pathogen's replicative niche. While TLRs and inflammasomes are critical for controlling bacterial infections, it is unknown whether these distinct host pathways cooperate to activate defenses against intracellular bacteria. METHODOLOGY/SIGNIFICANT FINDINGS: Using the intracellular bacterium Francisella novicida as a model, we show that TLR2(-/-) macrophages exhibited delayed inflammasome activation compared to wild-type macrophages as measured by inflammasome assembly, caspase-1 activation, cell death and IL-18 release. TLR2 also contributed to inflammasome activation in response to infection by the cytosolic bacterium Listeria monocytogenes. Components of the TLR2 signaling pathway, MyD88 and NF-κB, were required for rapid inflammasome activation. Furthermore, TLR2(-/-) mice exhibited lower levels of cell death, caspase-1 activation, and IL-18 production than wild-type mice upon F. novicida infection. CONCLUSIONS/SIGNIFICANCE: These results show that TLR2 is required for rapid inflammasome activation in response to infection by cytosolic bacterial pathogens. In addition to further characterizing the role of TLR2 in host defense, these findings broaden our understanding of how the host integrates signals from spatiotemporally separated PRRs to coordinate an innate response against intracellular bacteria.  相似文献   

9.
Toll-like receptors (TLRs) are involved in pathogen recognition by the innate immune system. Different TLRs and the adaptor molecule myeloid differentiation factor 88 (MyD88) were previously shown to mediate in vitro cell activation induced by group B streptococcus (GBS). The present study examined the potential in vivo roles of TLR2 and MyD88 during infection with GBS. When pups were infected locally with a low bacterial dose, none of the TLR2- or MyD88-deficient mice, but all of the wild-type ones, were able to prevent systemic spread of GBS from the initial focus. Bacterial burden was higher in MyD88- than in TLR2-deficient mice, indicating a more profound defect of host defense in the former animals. In contrast, a high bacterial dose induced high level bacteremia in both mutant and wild-type mice. Under these conditions, however, TLR2 or MyD88 deficiency significantly protected mice from lethality, concomitantly with decreased circulating levels of TNF-alpha and IL-6. Administration of anti-TNF-alpha Abs to wild-type mice could mimic the effects of TLR2 or MyD88 deficiency and was detrimental in the low dose model, but protective in the high dose model. In conclusion, these data highlight a dual role of TLR2 and MyD88 in the host defense against GBS sepsis and strongly suggest TNF-alpha as the molecular mediator of bacterial clearance and septic shock.  相似文献   

10.
Filarial nematodes, parasites of vertebrates, including humans, secrete immunomodulatory molecules into the host environment. We have previously demonstrated that one such molecule, the phosphorylcholine-containing glycoprotein ES-62, acts to bias the immune response toward an anti-inflammatory/Th2 phenotype that is conducive to both worm survival and host health. For example, although ES-62 initially induces macrophages to produce low levels of IL-12 and TNF-alpha, exposure to the parasite product ultimately renders the cells unable to produce these cytokines in response to classic stimulators such as LPS/IFN-gamma. We have investigated the possibility that a TLR is involved in the recognition of ES-62 by target cells, because phosphorylcholine, a common pathogen-associated molecular pattern, appears to be responsible for many of the immunomodulatory properties of ES-62. We now demonstrate that ES-62-mediated, low level IL-12 and TNF-alpha production by macrophages and dendritic cells is abrogated in MyD88 and TLR4, but not TLR2, knockout, mice implicating TLR4 in the recognition of ES-62 by these cells and MyD88 in the transduction of the resulting intracellular signals. We also show that ES-62 inhibits IL-12 induction by TLR ligands other than LPS, bacterial lipopeptide (TLR2) and CpG (TLR9), via this TLR4-dependent pathway. Surprisingly, macrophages and dendritic cells from LPS-unresponsive, TLR4-mutant C3H/HeJ mice respond normally to ES-62. This is the first report to demonstrate that modulation of cytokine responses by a pathogen product can be abrogated in cells derived from TLR4 knockout, but not C3H/HeJ mice, suggesting the existence of a novel mechanism of TLR4-mediated immunomodulation.  相似文献   

11.
The Candida albicans gpi7/gpi7 null mutant strain (Deltagpi7), which is affected in glycosylphosphatidylinositol (GPI) anchor biosynthesis, showed a reduced virulence following systemic infection of C57BL/6 mice. In vitro production of TNF-alpha, IL-6 and IL-1beta by macrophages in response to Deltagpi7 cells was significantly increased as compared to control (wild type GPI7/GPI7 and revertant gpi7/GPI7) cells; this probably contributes to the enhanced recruitment of neutrophils to the peritoneal cavity in response to Deltagpi7 cells. Survival of knockout mice for Toll-like receptor (TLR) 2 and TLR4 following intravenous injection of Deltagpi7 cells showed no significant differences as compared to C57BL/6 mice. In vitro production of TNF-alpha by macrophages and neutrophil recruitment were significantly inhibited in TLR2-/- mice in response to control yeast strains. Interestingly both TNF-alpha production and neutrophil recruitment in response to Deltagpi7 were significantly increased in all three types of mice, with no differences among them, and laminarin failed to inhibit this increased production of TNF-alpha. These results indicate that the enhanced proinflammatory response to Deltagpi7 does not involve recognition through TLR2, TLR4 nor dectin-1. Therefore, complete GPI anchors confer surface properties that are involved in modulation of cytokine production by macrophages in response to C. albicans.  相似文献   

12.
Toll-like receptor 9 (TLR9) induces an inflammatory response by recognition of unmethylated CpG dinucleotides, mainly present in prokaryotic DNA. So far, TLR9-deficient mice have been shown to be more sensitive than wild-type mice to viral, but not to bacterial infections. Here, we show that mice deficient in TLR9 but not in TLR1, TLR2, TLR4 and TLR6 or IL-1R/IL-18R are more susceptible to a respiratory tract bacterial infection caused by Streptococcus pneumoniae. Intranasal challenge studies revealed that TLR9 plays a protective role in the lungs at an early stage of infection prior to the entry of circulating inflammatory cells. Alveolar as well as bone marrow-derived macrophages deficient in either TLR9 or the myeloid adaptor differentiation protein MyD88 were impaired in pneumococcal uptake and in pneumococcal killing. Our data suggest that in the airways, pneumococcal infection triggers a TLR9 and MyD88-dependent activation of phagocytic activity from resident macrophages leading to an early clearance of bacteria from the lower respiratory tract.  相似文献   

13.
Brucella abortus is a facultative intracellular bacterium that infects humans and domestic animals. The enhanced susceptibility to virulent B. abortus observed in MyD88 knockout (KO) mice led us to investigate the mechanisms involved in MyD88-dependent immune responses. First, we defined the role of MyD88 in dendritic cell (DC) maturation. In vitro as well as in vivo, B. abortus-exposed MyD88 KO DCs displayed a significant impairment on maturation as observed by expression of CD40, CD86, and MHC class II on CD11c+ cells. In addition, IL-12 and TNF-alpha production was totally abrogated in MyD88 KO DCs and macrophages. Furthermore, B. abortus-induced IL-12 production was found to be dependent on TLR2 in DC, but independent on TLR2 and TLR4 in macrophages. Additionally, we investigated the role of exogenous IL-12 and TNF-alpha administration on MyD88 KO control of B. abortus infection. Importantly, IL-12, but not TNF-alpha, was able to partially rescue host susceptibility in MyD88 KO-infected animals. Furthermore, we demonstrated the role played by TLR9 during virulent B. abortus infection. TLR9 KO-infected mice showed 1 log Brucella CFU higher than wild-type mice. Macrophages and DC from TLR9 KO mice showed reduced IL-12 and unaltered TNF-alpha production when these cells were stimulated with Brucella. Together, these results suggest that susceptibility of MyD88 KO mice to B. abortus is due to impaired DC maturation and lack of IL-12 synthesis. Additionally, DC activation during Brucella infection plays an important regulatory role by stimulating and programming T cells to produce IFN-gamma.  相似文献   

14.
Toll-like receptors (TLR) are crucial pattern recognition receptors in innate immunity. The importance of TLR2 in host defense against Gram-positive bacteria has been suggested by the fact that this receptor recognizes major Gram-positive cell wall components, such as peptidoglycan and lipoteichoic acid. To determine the role of TLR2 in pulmonary Gram-positive infection, we first established that TLR2 is indispensable for alveolar macrophage responsiveness toward Streptococcus pneumoniae. Nonetheless, TLR2 gene-deficient mice intranasally inoculated with S. pneumoniae at doses varying from nonlethal (with complete clearance of the infection) to lethal displayed only a modestly reduced inflammatory response in their lungs and an unaltered antibacterial defense when compared with normal wild-type mice. These data suggest that TLR2 plays a limited role in the innate immune response to pneumococcal pneumonia, and that additional pattern recognition receptors likely are involved in host defense against this common respiratory pathogen.  相似文献   

15.
Cathepsin E, an intracellular aspartic proteinase, is predominantly localized in the endosomal compartments of immune system cells. In the present study, we investigated the role of cathepsin E in immune defense systems against bacterial infection. Cathepsin E-deficient (CatE(-/-)) mice showed dramatically increased susceptibility to infection with both the Gram-positive bacterium Staphyrococcus aureus, and the Gram-negative bacterium Porphyromonas gingivalis when compared with syngeneic wild-type mice, most likely due to impaired regulation of bacterial elimination. Peritoneal macrophages from CatE(-/-) mice showed significantly impaired tumor necrosis factor-alpha and IL-6 production in response to S. aureus and decreased bactericidal activities toward this bacterium. Moreover, the cell surface levels of Toll-like receptor-2 (TLR2) and TLR4, which recognize specific components of Gram-positive and -negative bacteria, respectively, were decreased in CatE(-/-) macrophages, despite no significant difference in the total cellular expression levels of these receptors between the wild-type and CatE(-/-) macrophages, implying trafficking defects in these surface receptors in the latter. These results indicate an essential role of cathepsin E in immune defense against invading microorganisms, most probably due to regulation of the cell surface expression of TLR family members required for innate immune responses.  相似文献   

16.
Toll-like receptors (TLRs) are a family of mammalian homologues of Drosophila Toll and play important roles in host defense. Two of the TLRs, TLR2 and TLR4, mediate the responsiveness to LPS. Here the gene expression of TLR2 and TLR4 was analyzed in mouse macrophages. Mouse splenic macrophages responded to an intraperitoneal injection or in vitro treatment of LPS by increased gene expression of TLR2, but not TLR4. Treatment of a mouse macrophage cell line with LPS, synthetic lipid A, IL-2, IL-15, IL-1beta, IFN-gamma, or TNF-alpha significantly increased TLR2 mRNA expression, whereas TLR4 mRNA expression remained constant. TLR2 mRNA increase in response to synthetic lipid A was severely impaired in splenic macrophages isolated from TLR4-mutated C3H/HeJ mice, suggesting that TLR4 plays an essential role in the process. Specific inhibitors of mitogen-activated protein/extracellular signal-regulated kinase kinase and p38 kinase did not significantly inhibit TLR2 mRNA up-regulation by LPS. In contrast, LPS-mediated TLR2 mRNA induction was abrogated by pretreatment with a high concentration of curcumin, suggesting that NF-kappaB activation may be essential for the process. Taken together, our results indicate that TLR2, in contrast to TLR4, can be induced in macrophages in response to bacterial infections and may accelerate the innate immunity against pathogens.  相似文献   

17.
TLRs are highly conserved pathogen recognition receptors. As a result, TLR4-deficient C3H/HeJ mice are highly susceptible to Gram-negative sepsis. We have previously demonstrated that tolerance induced by bacterial lipoprotein (BLP) protects wild-type mice against polymicrobial sepsis-induced lethality. In this study, we assessed whether pretreatment of C3H/HeJ mice with BLP could induce resistance to a subsequent Gram-negative Salmonella typhimurium infection. Pretreatment with BLP resulted in a significant survival benefit in TLR4-deficient C3H/HeJ mice (p < 0.0002 vs control C3H/HeJ) after challenge with live S. typhimurium (0.25 x 10(6) CFU/mouse). This survival benefit was associated with enhanced bacterial clearance from the circulation and in the visceral organs (p < 0.05 vs control C3H/HeJ). Furthermore, pretreatment with BLP resulted in significant increases in complement receptor type 3 (CR3) and FcgammaIII/IIR expression on polymorphonuclear neutrophils (PMNs) and macrophages (p < 0.05 vs control C3H/HeJ). There was impaired bacterial recognition and phagocytosis in TLR4-deficient mice compared with wild-type mice. However, a significant augmented uptake, ingestion, and intracellular killing of S. typhimurium by PMNs and peritoneal macrophages was evident in BLP-pretreated C3H/HeJ mice (p < 0.05 vs control C3H/HeJ). An up-regulation of inducible NO synthase and increased production of intracellular NO were observed in peritoneal macrophages from BLP-pretreated C3H/HeJ mice (p < 0.05 vs control C3H/HeJ). Depletion of PMNs did not diminish the beneficial effects of BLP with regard to both animal survival and bacterial clearance. These results indicate that BLP, a TLR2 ligand, protects highly susceptible TLR4-deficient mice from Gram-negative sepsis via enhanced bacterial clearance.  相似文献   

18.
Regulation of the inflammatory infiltrate is critical to the successful outcome of pneumonia. Alveolar macrophage apoptosis is a feature of pneumococcal infection and aids disease resolution. The host benefits of macrophage apoptosis during the innate response to bacterial infection are incompletely defined. Because NO is required for optimal macrophage apoptosis during pneumococcal infection, we have explored the role of macrophage apoptosis in regulating inflammatory responses during pneumococcal pneumonia, using inducible NO synthase (iNOS)-deficient mice. iNOS(-/-) mice demonstrated decreased numbers of apoptotic macrophages as compared with wild-type C57BL/6 mice following pneumococcal challenge, greater recruitment of neutrophils to the lung and enhanced expression of TNF-alpha. Pharmacologic inhibition of iNOS produced similar results. Greater pulmonary inflammation was associated with greater levels of early bacteremia, IL-6 production, lung inflammation, and mortality within the first 48 h in iNOS(-/-) mice. Labeled apoptotic alveolar macrophages were phagocytosed by resident macrophages in the lung and intratracheal instillation of exogenous apoptotic macrophages decreased neutrophil recruitment in iNOS(-/-) mice and decreased TNF-alpha mRNA in lungs and protein in bronchial alveolar lavage, as well as chemokines and cytokines including IL-6. These changes were associated with a lower probability of mice becoming bacteremic. This demonstrates the potential of apoptotic macrophages to down-regulate the inflammatory response and for the first time in vivo demonstrates that clearance of apoptotic macrophages decreases neutrophil recruitment and invasive bacterial disease during pneumonia.  相似文献   

19.
Protein-energy malnutrition (PEM) modifies resistance to infection, impairing a number of physiological processes, including hematopoiesis. In this study, we examined a few aspects of the inflammatory response to LPS in a model of PEM. We evaluated the cellularity of the blood, bone marrow and spleen, as well as phagocytic, fungicidal and spreading activity, the production in vivo and in vitro of TNF-alpha, IL-1alpha and IL-6, and the expression of CD14 and TLR-4/MD-2 receptors in macrophages. Two-month-old male Swiss mice were submitted to PEM with a low-protein diet containing 4% protein as compared to 20% protein in the control diet. When the experimental group had attained about 20% loss of their original body weight, they were used in the experiments. Malnourished animals presented anemia, leucopenia and severe reduction in bone marrow, spleen and peritoneal cavity cellularity. The production of TNF-alpha, IL-1alpha and IL-6 stimulated in vivo with LPS and the production of IL-6 in bone marrow cells cultured with LPS and the production of TNF-alpha in bone marrow, spleen and peritoneal cells cultured with LPS were significantly lower in malnourished animals. The expression of CD14 and TLR-4/MD-2 receptors was found to be significantly lower in macrophages of malnourished animals. These findings suggest that malnourished animals present a deficient response to LPS. The lower expression of the CD14 and TLR-4/MD-2 receptors may be partly responsible for the immunodeficiency observed in the malnourished mice. These data lead us to infer that the nutritional state interferes with the activation of macrophages and with the capacity to mount an immune response.  相似文献   

20.
Pattern recognition via Toll-like receptors (TLR) by antigen-presenting cells is an important element of innate immunity. We report that wild-type measles virus but not vaccine strains activate cells via both human and murine TLR2, and this is a property of the hemagglutinin (H) protein. The ability to activate cells via TLR2 by wild-type MV H protein is abolished by mutation of a single amino acid, asparagine at position 481 to tyrosine, as is found in attenuated strains, which is important for interaction with CD46, the receptor for these strains. TLR2 activation by MV wild-type H protein stimulates induction of proinflammatory cytokines such as interleukin-6 (IL-6) in human monocytic cells and surface expression of CD150, the receptor for all MV strains. Confirming the specificity of this interaction, wild-type H protein did not induce IL-6 release in macrophages from TLR2-/- mice. Thus, the unique property of MV wild-type strains to activate TLR2-dependent signals might essentially contribute not only to immune activation but also to viral spread and pathogenicity by upregulating the MV receptor on monocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号