首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have re-examined the nectar status of Cistus creticus, aplant that was previously thought to be an almost exclusivepollen donor. Although attempts to extract nectar with the microcapillarymethod failed, rinsates of the flower interior yielded considerableamounts of sugar, yet with high interplant variation. Enzymaticmicroassays revealed that secreted sugar is adsorbed onto thesurfaces of the numerous filaments surrounding the nectary,on the dense pubescence of the ovary surrounded by the nectaryand on the yellow base of the purplish-pink, free, obovate petals.The conclusion that C. creticus is an efficient nectar donorwas further strengthened by video recording the behaviour ofbees and by the high frequency of nectar thieves. We proposethat the shallow flower shape and the overheating caused bysolar tracking facilitate evaporative concentration of nectar.Alternatively (or in addition), the morphological proximityof the nectary to the filaments and the ovary pubescence facilitatesadsorption and the capillary action of the cell walls worksantagonistically to glass microcapillaries precluding nectarcollection. Addition of artificial nectar in the field had noeffect on bee visit frequency but it increased visit durationsignificantly and decreased abortion rates. In addition, seedyield was increased, especially under insect-limited conditions.We conclude that C. creticus is a nectar donor, and that nectarvariation in the field may modify pollinator behaviour and affectpollination success and the fitness of the plant. Copyright2000 Annals of Botany Company Cistus creticus, insect behaviour, nectar manipulation, pollination success, visit duration  相似文献   

2.
ZER  HAGIT; FAHN  ABRAHAM 《Annals of botany》1992,70(5):391-397
The nectary of Rosmarinus officinalis L. has the form of a four-lobed,asymmetrical disc situated around the base of the ovary. Thenectary lobe facing the lower flower lip is enlarged and isthe only one to have modified stomata. Vascular strands consistingof phloem only occur in the nectariferous tissue. It is suggestedthat the pre-nectar originating in the phloem accumulates primarilyas starch grains in plastids of the nectariferous cells. Thenumber of grains is very large before anthesis and decreasesconsiderably at anthesis. The transport of the pre-nectar tothe various nectariferous cells appears to be mainly via thesymplast. It could not be determined whether the process ofelimination of the nectar is solely eccrine or partly granulocrine. Rosmarinus officinalis, nectary, nectar secretion, starch grains, phloem  相似文献   

3.
The influence of temperature on nectar secretion in non-pollinatedflorets of Trifolium repens was investigated in growth chambersat 10, 14, 18 and 22°C. The effect of temperature on therate of nectar secretion was significant in all clones. Theoptimum temperature for secretion in three clones varied from10°C for a clone of Icelandic origin, to 18°C in a cloneselected from a Danish variety. Similarly, the average nectaryield varied significantly among clones of different geographicalorigin. One clone secreted two to four times more than othersat 10°C. The optimum day temperature for nectar secretionwas higher when the plants were exposed to low night temperature,presumably a result of decreased night respiration. Nectar accumulatedat the floret base until senescence. Evidence for reabsorptionof nectar was obtained in four clones. Sucrose, fructose andglucose were identified as the major sugars in the nectar. Highnight temperatures led to decreased sucrose percentage in favourof glucose and fructose. The frequency of new florets openingper day was not influenced by temperatures between 10 and 22°Cin one clone, whereas low temperatures significantly decreasedthe number of new florets in another. Few or no modified stomatawere observed in the epidermis of the nectary. The high variationwith respect to nectar secretion at low temperatures, alongwith the high heritability of this quality, suggests that breedingfor high nectar production at low temperature is plausible.The significance of nectar yield in pollination biology is discussed.Copyright1994, 1999 Academic Press Trifolium repens, white clover, nectar, temperature, floret age, flowering, nectary  相似文献   

4.
Development and Ultrastructure of Cucurbita pepo Nectaries of Male Flowers   总被引:2,自引:0,他引:2  
The development of the nectary of the male flower ofCucurbitapepo L. was studied from 5d before to 2d after anthesis. Thenectary consists of parenchyma that stores starch in the presecretorystages, and epidermis. An hour before nectar secretion begins,the starch is hydrolyzed. The nectar exudes from the stomataand forms a continuous layer on the nectary surface. Duringanthesis the nectar may all be collected by pollinators or someor all of it may remain in the nectary and be successively resorbed.The nectary parenchyma stores material for synthesizing thesugar component of nectar and stores similar material againafter nectar resorption. It is also responsible for nectar productionand secretion. The epidermis is actively involved in the reabsorptionprocess. The resorption of nectar is a phenomenon that allowsthe plant to recover invested energy. Few observations on thisphenomenon have hitherto been published. Amyloplasts; Cucurbita pepo L.; courgette; nectaries; Nectar resorption; plastid; secretion; starch  相似文献   

5.
The floral nectary of the foxglove (Digitalis purpureaL.), locatedat the base of the ovary, was examined by: scanning electronmicroscopy; quantitative bright-field microscopy via computer-aided3-D reconstruction from serial sections; morphometric procedures;transmission electron microscopy and measurement of nectar effluxunder different experimental conditions. Time-lapse video recordingvia a microscope with incident light clearly showed that thenectar escaped from the apertures of modified stomata. The volumeflux via individual stomatal apertures was 0.31±0.1 nlmin-1; therefore only a fraction of the total number of stomataper nectary (115±8) would be sufficient to dischargethe amount of nectar reported in previous publications. Thestomatal apertures are continuous with intercellular spacestraversing the small-celled nectariferous tissue. The latteris vascularized only by phloem, whose termini consists of rowsof slender cells. These sieve-like cells are surrounded by moreor less isodiametrical sheath cells with dimensions similarto the secretory cells. Details of nectary functioning are basedon enhanced structural information, complementary data on nectardischarge after experimental manipulations and the nature ofthe effluence.Copyright 1998 Annals of Botany Company Digitalis purpureaL.; foxglove; floral nectary; (ultra-)structure; 3-D reconstruction; morphometry; nectar flow; time-lapse video recording.  相似文献   

6.
The occurrence, morphology, ontogeny, structure and preliminary nectar analysis of floral and extrafloral nectaries are studied inKigelia pinnata of the Bignoniaceae. The extrafloral nectaries occur on foliage leaves, sepals and outer wall of the ovary, while the floral nectary is situated around the ovary base as an annular, massive, yellowish ring on the torus. The extrafloral nectaries originate from a single nectary initial. The floral nectary develops from a group of parenchymatous cells on the torus. The extrafloral nectaries are differentiated into multicellular foot, stalk and cupular or patelliform head. The floral nectary consists of parenchymatous tissue. The floral nectaries are supplied with phloem tissue. The secretion is copious in floral nectary. Function of the nectary, preliminary nectar analysis, and symbiotic relation between nectaries and animal visitors are discussed.  相似文献   

7.
荆条花蜜腺发育解剖学研究   总被引:2,自引:0,他引:2  
荆条(Vitex chinensis Mill.)花蜜腺属于淀粉型子房蜜腺,呈圆筒状环绕于子房的基部。蜜腺外观上无特殊结构,表面有。由分泌表皮和泌蜜组织组成,包括分泌表皮、气孔器、泌蜜薄壁组织和维管束。密腺和子房壁起源相同。花蕾膨大期,泌蜜组织细胞中产生大液泡;露冠期,泌蜜组织中形成维管束;花蕾初放期,分泌表皮细胞分化形成气孔器,无气孔下室,淀粉粒的积累在此期达到高峰;盛花期,蜜腺中已无淀粉粒,密  相似文献   

8.
Chwil M  Chwil S 《Protoplasma》2012,249(4):1059-1069
The Polemoniaceae family forms flowers diverse in the terms of pollination methods and nectar types. The micromorphology of the nectary surface and the tissue structures as well as the ultrastructure of the cells of the floral nectaries in Polemonium caeruleum L. were examined using light, scanning and transmission electron microscopy. A bowl-shaped nectary, detached from the ovary, grows at its base. Its contour shows folds with depressions in the places where the stamens grow, forming five-lobed disc (synapomorphic character). Nectar is secreted through modified anomocytic stomata, which are formed in the epidermis covering the tip and the lateral wall of the projection located between the staminal filaments. The undulate nectary consists of a single-layered epidermis and three to nine layers of parenchymal cells. The cells of the nectary contain a dense cytoplasm, numerous plastids with an osmophilic stroma and starch grains, well-developed endoplasmic reticulum, as well as a large number of mitochondria interacting with the Golgi bodies. The ultrastructure of nectary cells indicates the granulocrine secretion mechanism and diversified transport of nectar.  相似文献   

9.
We studied the morphology of the androecium in 168 species andsubspecies of Fabaceae from SW Europe and its relationship withnectar production. Six androecium types were recognized: monadelphous;pseudomonadelphous without basal fenestration; pseudomonadelphouswith basal fenestration; diadelphous; reduced diadelphous; andandroecium with free stamens. The monadelphous androecium appearsin the tribe Genisteae, inOnonis, and inGalega officinalis,andthe pseudomonadelphous without basal fenestration only in thegenusCoronilla,with both types having the same functionality—theyare linked to the absence of nectar from an intrastaminal nectary,their taxa being mostly polliniferous. The pseudomonadelphousandroecium with basal fenestration appears in around 38% ofthe taxa studied and has the same functionality as the diadelphousandroecium: there is nectar secretion from an intrastaminalnectary in both. The reduced diadelphous androecium only appearsin three species (Biserrula pelecinus, Vicia pubescensandAstragalusepiglottis), and its functionality could be related to the syndromeaccompanying autogamy in Angiosperms. The free stamen androeciummay imply a greater nectar production than other types.Copyright1999 Annals of Botany Company. Fabaceae, Leguminosae, androecium, nectar, floral biology.  相似文献   

10.
牛至花蜜腺的发育解剖学研究   总被引:1,自引:0,他引:1  
牛至花蜜腺位于子房基部的花盘上,属于盘状蜜腺。蜜腺组织由分泌表皮和产蜜组织组成。分泌表皮液泡化明显,并分布有气孔器。在子房发育成熟后,由花盘表面细胞恢复分裂能力形成蜜腺原基。产蜜组织在发育过程中,液泡、淀粉粒都呈现出一定的消长规律,此种规律与蜜汁的合成和分泌有关。原蜜汁由蜜腺周围的韧皮部提供,经产蜜组织积聚合成,然后通过气孔器泌出。本文还对霜冻条件下蜜腺的结构和功能进行了初步分析。  相似文献   

11.
耿华美  付强  郭骏  王虹 《植物研究》2012,32(1):22-27
垂花青兰(Dracocephalum nutans Linn.)花蜜腺分布于子房基部的花托上,盘状蜜腺的上部裂成三小一大的四枚裂片,基部在膨大的花托外环绕一圈。蜜腺组织由分泌表皮、产蜜组织和维管束三部分组成,是典型的结构蜜腺;组织化学染色显示淀粉粒动态明显,因此又属淀粉蜜腺。在发育的过程中细胞液泡化动态明显,且淀粉粒和蛋白质具有明显的消长变化,蜜汁通过气孔器和表皮细胞的角质层泌出。  相似文献   

12.
The nectary structure and chemical nectar composition of 15 species belonging to 12 genera ofBignoniaceae are analyzed. All taxa bear a conspicuous nuptial nectary surrounding the ovary base. The secretory tissue is mostly supplied by phloem branches. The stomata are located in the middle and upper part of the nectary epidermis with an homogeneous distribution. The nuptial nectary is proportionally large in relation to the ovary (15–30%), disregarding the nectary volume. Most species have extranuptial nectaries in both inner and outer surfaces of the calyx. Both kinds of nectaries lack a vascular tissue that straightly supplies them. Nuptial nectar concentration (wt/wt) ranges from 19 to 68%. Sugars and amino acids are found in all species. Half of the species have hexose predominant nectars, the remaining sucrose predominant. Phenols are detected in only three species, whereas reducing acids exclusively inTecoma stans. Alkaloids and lipids were never detected. Extranuptial nectar chemical composition is analyzed in two species:Dolichandra cynanchoides andPodranea ricasoliana. Bees constitute the main flower visitors of the species studied whereas hummingbirds were seen visiting three species. A correlation analysis is performed with the data obtained. There are a few significant correlations which indicate a parallel increase of three parameters: the longer the flower length, the more voluminous the nectary and the higher stomata number, independently of the floral biotype. Phenograms are obtained using 24 floral characters including nectary and nectar data. The clusters obtained do not reflect taxonomic relationships but are useful in the understanding of animal-plant interactions when the flower biotype is considered.This paper is based on a chapter of a doctoral thesis presented at the University of Córdoba (Argentina).  相似文献   

13.
长药景天花蜜腺的发育解剖学研究   总被引:3,自引:0,他引:3  
长药景天花蜜腺5枚,呈侧向扁平的舌形或弯月形,分别位于5株离生心皮的外侧,两者的基部相连,属于子房蜜腺。蜜腺由分泌表皮、产蜜组织和仅含韧皮部的维管束组成。长药景天花蜜腺起源于心皮外侧基部的表层结构。产蜜组织在发育过程中,细胞中的液泡体积及淀粉粒呈现有规律的消长变化。泌蜜后期,蜜腺组织从上往下液泡化,具明显的方向性。根据其结构及多糖变化分析,来自韧皮部的原蜜汁以淀粉粒形式贮存于产蜜组织中,泌蜜期水解  相似文献   

14.
The floral nectary of Tropaeolun majus L. was studied with theaid of a microscope with transmitting and incident light, atransmission electron microscope and a scanning electron microscope.The Gomori method was used for the localization of acid phosphatase.As a result of this investigation the previously accepted viewthat nectar in this plant is secreted only from the hair tipsof the inner epidermis of the calyx spur was found to be inaccurate.The present studies showed that the parenchyma cells locatedbetween the inner epidermis and the region of the vascular bundlesof the lowest third of the spur, are the main nectar-secretingelements of the nectary. These secretory cells release the nectarsolution into intercellular spaces leading to modified stomata,through which it is exuded into the spur cavity. The modifiedstomata occur in the lowest portion of the spur only. At thestage of secretion small droplets of liquid of high viscositywere observed on the epidermal hairs. These droplets presumablycontain polysaccharides and a certain amount of sugar.  相似文献   

15.
Background and Aims Despite the number of orchid speciesthat are thought to be pollinated by hummingbirds, our knowledgeof the nectaries of these orchids is based solely on a singlespecies, Maxillaria coccinea (Jacq.) L.O. Williams ex Hodge.Nevertheless, it is predicted that such nectaries are likelyto be very diverse and the purpose of this paper is to comparethe nectary and the process of nectar secretion in Hexisea imbricata(Lindl.) Rchb.f. with that of Maxillaria coccinea so as to beginto characterize the nectaries of presumed ornithophilous Neotropicalorchids. • Methods Light microscopy, transmission electronmicroscopyand histochemistry were used to examine the histology and chemicalcomposition of nectary tissue and the process of nectar secretionin H. imbricata. • Key Results and Conclusions The nectary of H. imbricatahas a vascular supply, is bound by a single-layered epidermiswith few stomata and comprises two or three layers of subepidermalsecretory cells beneath which lie several layers of palisade-likeparenchymatous cells, some of which contain raphides or mucilage.The secretory cells are collenchymatous and their walls havenumerous pits with associated plasmodesmata. They contain thefull complement of organelles characteristic of secretory cellsas well as intravacuolar protein bodies but some of the secretoryepidermal cells, following secretion, collapse and their anticlinalwalls seem to fold. Nectar secretion is thought to be granulocrineand, following starch depletion, lipid droplets collect withinthe plastids. The nectar accumulates beneath the cuticle whichsubsequently forms swellings. Finally, nectar collects in thesaccate nectary spur formed by the fusion of the margins ofthe labellum and the base of the column-foot. Thus, althoughthe nectary of H. imbricata and M. coccinea have many featuresin common, they nevertheless display a number of important differences.  相似文献   

16.
Summary The floral nectary ofPisum sativum L. is situated on the receptacle at the base of the gynoecium. The gland receives phloem alone which departed the vascular bundles supplying the staminal column. Throughout the nectary, only the companion cells of the phloem exhibited wall ingrowths typical of transfer cells. Modified stomata on the nectary surface served as exits for nectar, but stomatal pores developed well before the commencement of secretion. Furthermore, stomatal pores on the nectary usually closed by occlusion, not by guard-cell movements. Pore occlusion was detected most frequently in post-secretory and secretory glands, and less commonly in pre-secretory nectaries. A quantitative stereological study revealed few changes in nectary fine structure between buds, flowers secreting nectar, and post-secretory flowers. Dissolution of abundant starch grains in plastids of subepidermal secretory cells when secretion commenced suggests that starch is a precursor of nectar carbohydrate production. Throughout nectary development, mitochondria were consistently the most plentiful organelle in both epidermal and subepidermal cells, and in addition to the relative paucity of dictyosomes, endoplasmic reticulum, and their associated vesicles, the evidence suggests that floral nectar secretion inP. sativum is an energy-requiring (eccrine) process, rather that granulocrine.Abbreviations ER endoplasmic reticulum - GA glutaraldehyde - SEM scanning electron microscopy  相似文献   

17.
密花香薷花蜜腺的解剖学研究   总被引:6,自引:0,他引:6  
密花香薷花密腺分布于子房基部和子房表面,属于一朵花中具二种花蜜腺类型,子房基部的盘状蜜腺由分泌表皮、产蜜组织及维管束三部分组成,分泌表皮上角质层局部有小孔。子房蜜腺由分泌表皮和产蜜组织组成。  相似文献   

18.
The ultrastructure of the nectary spur of Limodorum abortivum(L) Sw. was examined before and after anthesis. In cross sectionthe nectary spur shows an internal epidermal layer of thin-walledcells bordering the secretory cavity and 10–12 layersof parenchyma cells. The ultrastructure of the secretory cellssuggests the involvement of ER, Golgi and plastids in nectarsecretion. The nectar accumulated in the sub-cuticular spaceis released into the nectariferous cavity by rupture of theouter layer of the cuticle. Limodorum abortivum (L) Sw., Orchidaceae, nectary spur, nectar secretion, ultrastructure, anthesis, endoplasmic reticulum, dictyosomes, plastids  相似文献   

19.
Ultrastructure, Development and Secretion in the Nectary of Banana Flowers   总被引:3,自引:1,他引:2  
The nectaries of Musa paradisiaca L. var. sapientum Kuntze werefound to secrete in addition to the sugar solution, a polysaccharidemucilage and a very electron dense, homogenous material whichwas apparently protein. The polysaccharide had already startedto appear outside the epithelial cells of the nectary at veryearly stages of nectary development. At somewhat later developmentalstages the very dense homogenous material appeared in the formof droplets between the plasmalemma and cell wall in massesin the nectary lumen. Nectar secretion started in flowers whenthe bract in the axil of which they occurred had just recoiled.The ER elements were dilated and formed vesicles and the Golgibodies were very active, at the stage of the nectar secretionand at stages preceding it, except at the stage just beforesecretion. In all stages of nectary development the dilatedER elements and most large Golgi vesicles contained fibrillarmaterial. It is suggested that both ER and the Golgi apparatusare involved in the secretion of the sugar solution and of thepolysaccharides. There was not enough evidence as to where inthe cell the very dense homogenous material is synthesized. A few developmental stages of the nectaries of the male flowersof the Dwarf Cavendish banana, which do not secrete nectar,were also studied. It was seen that at early stages of development,the ultra-structure of the nectary of this banana variety wassimilar to that of M. paradisiaca var. sapientum. However, theepithelial nectary cells of the Dwarf Cavendish banana disintegratedbefore maturation of the nectary. Musa paradisiaca L, banana, floral nectaries, ultrastructure  相似文献   

20.
Various secretory glands are observed on Asphodelus aestivus flower, a common geophyte of Mediterranean type ecosystem. The floral nectary has the form of individual slits between the gynecium carpels (septal nectary). The septal slits extend downwards to the ascidiate zone of the carpels. The nectar is secreted by the epidermal cells of the slits, which differentiate into epithelial cells. The latter contain numerous organelles, among which endoplasmic reticulum elements and golgi bodies predominate. Nectar secretion results in an expansion of the space between the septa. The nectar becomes discharged through small holes on the ovary wall. Six closely packed stamens surround the ovary and bear numerous papillae at their basis. These papillae are actually osmophores, i.e. secretory structures responsible for the manufacture, secretion and dispersion of terpenic scent. A mucilage gland (obturator) exists between the lateral ovule and the ovary septa, giving a positive reaction with Schiff’s reagent. This gland secretes a mucoproteinaceous product to nourish the pollen tube and to facilitate its penetration into the ovary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号