首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Acquired resistance to endocrine therapy represents a major clinical obstacle to the successful management of estrogen-dependent breast cancers expressing estrogen receptor alpha (ERalpha). Because a switch from ligand-dependent to ligand-independent activation of ERalpha-regulated breast cancer cell growth and survival may define a path to endocrine resistance, enhanced mechanistic insight concerning the ligand-independent fate and function of ERalpha, including a more complete inventory of its ligand-independent cofactors, could identify novel markers of endocrine resistance and possible targets for therapeutic intervention in breast cancer. Here, we identify the deleted in breast cancer 1 gene product DBC-1 (KIAA1967) to be a principal determinant of unliganded ERalpha expression and survival function in human breast cancer cells. The DBC-1 amino terminus binds directly to the ERalpha hormone-binding domain both in vitro and in vivo in a strict ligand-independent manner. Furthermore, like estrogen, the antiestrogens tamoxifen and ICI 182,780 (7alpha,17beta-[9-[(4,4,5,5,5-pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17-diol) disrupt the DBC-1/ERalpha interaction, thus revealing the DBC-1/ERalpha interface to be a heretofore-unrecognized target of endocrine compounds commonly used in hormonal therapy. Notably, RNA interference-mediated DBC-1 depletion reduces the steady-state level of unliganded but not liganded ERalpha protein, suggesting that DBC-1 may stabilize unliganded ERalpha by virtue of their direct association. Finally, DBC-1 depletion promotes hormone-independent apoptosis of ERalpha-positive, but not ERalpha-negative, breast cancer cells in a manner reversible by endocrine agents that disrupt the DBC-1/ERalpha interaction. Collectively, these findings establish a principal biological function for DBC-1 in the modulation of ERalpha expression and hormone-independent breast cancer cell survival.  相似文献   

3.
4.
5.
Estrogen-related receptor alpha (ERRalpha), a member of the nuclear receptor superfamily, is closely related to the estrogen receptors (ERalpha and ERbeta). The ERRalpha gene is estrogen-responsive in several mouse tissues and cell lines, and a multiple hormone-response element (MHRE) in the promoter is an important regulatory region for estrogen-induced ERRalpha gene expression. ERRalpha was recently shown to be a negative prognostic factor for breast cancer survival, with its expression being highest in cancer cells lacking functional ERalpha. The contribution of ERRalpha in breast cancer progression remains unknown but may have important clinical implications. In this study, we investigated ERRalpha gene expression and chromatin structural changes under the influence of 17beta-estradiol in both ER-positive MCF-7 and ER-negative SKBR3 breast cancer cells. We mapped the nucleosome positions of the ERRalpha promoter around the MHRE region and found that the MHRE resides within a single nucleosome. Local chromatin structure of the MHRE exhibited increased restriction enzyme hypersensitivity and enhanced histone H3 and H4 acetylation upon estrogen treatment. Interestingly, estrogen-induced chromatin structural changes could be repressed by estrogen antagonist ICI 182 780 in MCF-7 cells yet were enhanced in SKBR3 cells. We demonstrated, using chromatin immunoprecipitation assays, that 17beta-estradiol induces ERRalpha gene expression in MCF-7 cells through active recruitment of co-activators and release of co-repressors when ERRalpha and AP1 bind and ERalpha is tethered to the MHRE. We also found that this estrogen effect requires the MAPK signaling pathway in both cell lines.  相似文献   

6.
17beta-Estradiol (E2) induces and represses gene expression in breast cancer cells; however, the mechanisms of gene repression are not well understood. In this study, we show that E2 decreases vascular endothelial growth factor receptor 2 (VEGFR2) mRNA levels in MCF-7 cells, and this gene was used as a model for investigating pathways associated with E2-dependent gene repression. Deletion analysis of the VEGFR2 promoter indicates that the proximal GC-rich motifs at -58 and -44 are critical for the E2-dependent decreased response in MCF-7 cells. Mutation or deletion of these GC-rich elements results in loss of hormone responsiveness and shows that the -60 to -37 region of the VEGFR2 promoter is critical for both basal and hormone-dependent decreased VEGFR2 expression in MCF-7 cells. Western blot, immunofluorescent staining, RNA interference, and EMSAs support a role for Sp proteins in hormone-dependent down-regulation of VEGFR2 in MCF-7 cells, primarily through estrogen receptor (ER)alpha/Sp1 and ERalpha/Sp3 interactions with the VEGFR2 promoter. Using chromatin immuno-precipitation and transient transfection/RNA interference assays we show that the ERalpha/Sp protein-promoter interactions are accompanied by recruitment of the co-repressors SMRT (silencing mediator of retinoid and thyroid hormone receptor) and NCoR (nuclear receptor corepressor) to the promoter and that SMRT and NCoR knockdown reverse E2-mediated down-regulation of VEGFR2 expression in MCF-7 cells. This study illustrates that both SMRT and NCoR are involved in E2-dependent repression of VEGFR2 in MCF-7 cells.  相似文献   

7.
Deoxybenzoins are plant compounds with similar structure to isoflavones. In this study, we evaluated the ability of two synthesized deoxybenzoins (compound 1 and compound 2) (a) to influence the activity of the estrogen receptor subtypes ERalpha and ERbeta in HeLa cells co-transfected with an estrogen response element-driven luciferase reporter gene and ERalpha- or ERbeta-expression vectors, (b) to modulate the IGFBP-3 and pS2 protein in MCF-7 breast cancer cells, (c) to induce mineralization of KS483 osteoblasts and (d) to affect the cell viability of endometrial (Ishikawa) and breast (MCF-7, MDA-MB-231) cancer cells. Docking and binding energy calculations were performed using the mixed Monte Carlo/Low Mode search method (Macromodel 6.5). Compound 1 displayed significant estrogenic activity via ERbeta but no activity via ERalpha. Compound 2 was an estrogen-agonist via ERalpha and antagonist via ERbeta. Both compounds increased, like the pure antiestrogen ICI182780, the IGFBP-3 levels. Compound 2 induced, like 17beta-estradiol, significant mineralization in osteoblasts. The cell viability of Ishikawa cells was unchanged in the presence of either compound. Compound 1 increased MCF-7 cell viability consistently with an increase in pS2 levels, whereas compound 2 inhibited the cell viability. Molecular modeling confirmed the agonistic or antagonistic behaviour of compound 2 via ER subtypes. Compound 2, being an agonist in osteoblasts, an antagonist in breast cancer cells, with no estrogenic effects in endometrial cancer cells, makes it a potential selective estrogen receptor modulator and a choice for hormone replacement therapy.  相似文献   

8.
Although there are studies published about the neuroprotective effect of estrogen, little is known about the mechanisms and cellular targets of the hormone. Recent reports demonstrate that estrogen down-regulates the expression of monoamine oxidase A and B (MAO-A and MAO-B) in the hypothalamus of the Macaques monkey, both of which are key isoenzymes in the neurotransmitter degradation pathway. Additionally, estrogen-related receptor alpha (ERRalpha) up-regulates MAO-B gene expression in breast cancer cells. ERRalpha recognizes a variety of estrogen response elements and shares many target genes and coactivators with estrogen receptor alpha (ERalpha). In this study, we investigate the interplay of ERs and ERRs in the regulation of MAO-B promoter activity. We demonstrate that ERRalpha and ERRgamma up-regulate MAO-B gene activity, whereas ERalpha and ERbeta decrease stimulation in both a ligand-dependent and -independent manner. Ectopically expressed ERRalpha and ERRgamma stimulate the expression of MAO-B mRNA and protein as well as increase the MAO-B enzymatic activity in ER-negative HeLa cells. The ability of ERRs to stimulate MAO-B promoter activity was reduced in ER-positive MCF-7 and T47D cells. Several AGGTCA motifs of the MAO-B promoter are responsible for up-regulation by ERRs. Interestingly, ERalpha or ERbeta alone have no effect on MAO-B promoter activity but can down-regulate the activation function of ERRs, whereas glucocorticoid receptor does not. By using chromatin immunoprecipitation assay, we demonstrate that ERs compete with ERRs for binding to the MAO-B promoter at selective AGGTCA motifs, thereby changing the chromatin status and cofactor recruitment to a repressed state. These studies provide new insight into the relationship between ERalpha, ERbeta, ERRalpha, and ERRgamma in modulation of MAO-B gene activity.  相似文献   

9.
NH2-terminal amino acid sequence of the pS2 protein produced and secreted by human gastric cancer cells, MKN-45, was determined to be identical to that of MCF-7 cells. A clone encoding pS2 protein was isolated from the cDNA library constructed from MKN-45 cells. The nucleotide sequence was identical to that of pS2 cDNA previously isolated from human breast cancer cells, MCF-7, except for one nucleotide in the 3' untranslated region. Thus, in this cell line, the pS2 gene product is translated and secreted as in MCF-7 cells. RNA blot hybridization analysis revealed that pS2 gene was expressed well in two (MKN-45 and KATO-III; derived from poorly differentiated adenocarcinoma) but not in three cell lines (MKN-1, MKN-28 and MKN-74; from well differentiated adenocarcinoma), suggesting that expression of the pS2 gene depends on the state of cell differentiation. These results suggest that pS2 is expressed in human gastric cancer cells in an estrogen-independent manner and is possibly associated with the malignant state of cells.  相似文献   

10.
Structure of the human oestrogen-responsive gene pS2.   总被引:12,自引:1,他引:12       下载免费PDF全文
  相似文献   

11.
12.
13.
14.
Estrogen-dependent regulation of several genes associated with cell cycle progression, proliferation, and nucleotide metabolism in breast cancer cells is associated with interactions of estrogen receptor (ER)alpha/Sp1 with GC-rich promoter elements. This study investigates ligand-dependent interactions of ERalpha and Sp1 in MCF-7 breast cancer cells using fluorescence resonance energy transfer (FRET). Chimeric ERalpha and Sp1 proteins fused to cyan fluorescent protein or yellow fluorescent protein were transfected into MCF-7 cells, and a FRET signal was induced after treatment with 17beta-estradiol, 4'-hydroxytamoxifen, or ICI 182,780. Induction of FRET by these ERalpha agonists/antagonists was paralleled by their activation of gene expression in cells transfected with a construct (pSp1(3)) containing three tandem Sp1 binding sites linked to a luciferase reporter gene. In contrast, interactions between ERalpha and Sp1DeltaDBD [a DNA binding domain (DBD) deletion mutant of Sp1] are not observed, and this is consistent with the critical role of the C-terminal DBD of Sp1 for interaction with ERalpha. Results of the FRET assay are consistent with in vitro studies on ERalpha/Sp1 interactions and transactivation, and confirm that ERalpha and Sp1 interact in living breast cancer cells.  相似文献   

15.
16.
《Translational oncology》2020,13(2):423-440
Tamoxifen is a successful endocrine therapy drug for estrogen receptor–positive (ER+) breast cancer. However, resistance to tamoxifen compromises the efficacy of endocrine treatment. In the present study, we identified potential tamoxifen resistance–related gene markers and investigated their mechanistic details. First, we established two ER + breast cancer cell lines resistant to tamoxifen, named MCF-7/TMR and BT474/TMR. Gene expression profiling showed that CXXC finger protein 4 (CXXC4) expression is lower in MCF-7/TMR cells than in MCF-7 cells. Furthermore, CXXC4 mRNA and protein expression are lower in the resistant cell lines than in the corresponding parental cell lines. We also investigated the correlation between CXXC4 and endocrine resistance in ER + breast cancer cells. CXXC4 knockdown accelerates cell proliferation in vitro and in vivo and renders breast cancer cells insensitive to tamoxifen, whereas CXXC4 overexpression inhibits cancer cell growth and increases tamoxifen sensitivity of resistant cells. In addition, we demonstrated that CXXC4 inhibits Wnt/β-catenin signaling in cancer cells by modulating the phosphorylation of GSK-3β, influencing the integrity of the β-catenin degradation complex. Silencing the CXXC4 gene upregulates expression of cyclinD1 and c-myc (the downstream targets of Wnt signaling) and promotes cell cycle progression. Conversely, ectopic expression of CXXC4 downregulates the expression of these proteins and arrests the cell cycle in the G0/G1 phase. Finally, the small-molecule inhibitor XAV939 suppresses Wnt signaling and sensitizes resistant cells to tamoxifen. These results indicate that components of Wnt pathway that are early in response to tamoxifen could be involved as an intrinsic factor of the transition to endocrine resistance, and inhibition of Wnt signaling may be an effective therapeutic strategy to overcome tamoxifen resistance.  相似文献   

17.
18.
Estrogen receptors (ERs) are a recognized prognostic factor and therapeutic target in breast cancer. The loss of ER expression relates to poor prognosis, poor clinical outcome and impairs the use of anti-estrogenic treatment. Histone deacetylase inhibitors are candidate drugs for cancer therapy. Among them, valproic acid (VPA) is a long used and safe anti-epileptic drug. We studied the biological consequences of the chromatin remodeling action of VPA in a normal human mammary epithelial cell line and in ERalpha-positive and ERalpha-negative breast cancer cell lines. In these cells and regardless of their ER status, VPA-induced cell differentiation, as shown by increased milk lipids production, decreased expression of the CD44 antigen and growth arrest in the G(0)-G(1) phase of the cell cycle. These effects were accompanied by decreased Rb phosphorylation, hyperacetylation of the p21(WAF1/CIP1) gene promoter and increased p21 protein expression. Only in breast cancer cells, cyclin B1 expression was decreased and the cells accumulated also in G(2). ERalpha expression decreased in ERalpha-positive, increased in ERalpha-negative and was unchanged in normal mammary epithelial cells, as did the expression of progesterone receptor, a physiological ERalpha target. VPA decreased the expression of the invasiveness marker pS2 in ERalpha-positive breast cancer cells, but did not cause its re-expression in ERalpha-negative cells. Overall, these data suggest that in both ERalpha-positive and -negative malignant mammary epithelial cells VPA reprograms the cells to a more differentiated and "physiologic" phenotype that may improve the sensitivity to endocrine therapy and/or chemotherapy in breast cancer patients.  相似文献   

19.
The 17β-estradiol (E2)/estrogen receptor alpha (ERα) signaling pathway is one of the most important pathways in hormone-dependent breast cancer. E2 plays pivotal roles in cancer cell growth, survival, and architecture as well as in gene expression regulatory mechanisms. In this study, we established stably transfected MCF-7 cells by knocking down the ERα gene (designated as MCF-7/SP10 + cells), using specific shRNA lentiviral particles, and compared them with the control cells (MCF-7/c). Interestingly, ERα silencing in MCF-7 cells strongly induced cellular phenotypic changes accompanied by significant changes in gene and protein expression of several markers typical of epithelial to mesenchymal transition (EMT). Notably, these cells exhibited enhanced cell proliferation, migration and invasion. Moreover, ERα suppression strongly affected the gene and protein expression of EGFR and HER2 receptor tyrosine kinases, and various extracellular matrix (ECM) effectors, including matrix metalloproteinases and their endogenous inhibitors (MMPs/TIMPs) and components of the plasminogen activation system. The action caused by E2 in MCF-7/c cells in the expression of HER2, MT1-MMP, MMP1, MMP9, uPA, tPA, and PAI-1 was abolished in MCF-7/SP10 + cells lacking ERα. These data suggested a regulatory role for the E2/ERα pathway in respect to the composition and activity of the extracellular proteolytic molecular network. Notably, loss of ERα promoted breast cancer cell migration and invasion by inducing changes in the expression levels of certain matrix macromolecules (especially uPA, tPA, PAI-1) through the EGFR–ERK signaling pathway.In conclusion, loss of ERα in breast cancer cells results in a potent EMT characterized by striking changes in the expression profile of specific matrix macromolecules highlighting the potential nodal role of matrix effectors in breast cancer endocrine resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号