首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mitochondrial protein, the voltage-dependent anion channel (VDAC), is implicated in the control of apoptosis, including via its interaction with the pro- and antiapoptotic proteins. We previously demonstrated the direct interaction of Bcl2 with VDAC, leading to reduced channel conductance. VDAC1-based peptides interacted with Bcl2 to prevent its antiapoptotic activity. Here, using a variety of approaches, we show the interaction of the antiapoptotic protein, Bcl-xL, with VDAC1 and reveal that this interaction mediates Bcl-xL protection against apoptosis. C-terminally truncated Bcl-xL(Δ21) interacts with purified VDAC1, as revealed by microscale thermophoresis and as reflected in the reduced channel conductivity of bilayer-reconstituted VDAC1. Overexpression of Bcl-xL prevented staurosporine-induced apoptosis in cells expressing native VDAC1 but not certain VDAC1 mutants. Having identified mutations in VDAC1 that interfere with the Bcl-xL interaction, certain peptides representing VDAC1 sequences, including the N-terminal domain, were designed and generated as recombinant and synthetic peptides. The VDAC1 N-terminal region and two internal sequences were found to bind specifically, and in a concentration- and time-dependent manner, to immobilized Bcl-xL(Δ21), as revealed by surface plasmon resonance. Moreover, expression of the recombinant peptides in cells overexpressing Bcl-xL prevented protection offered by the protein against staurosporine-induced apoptosis. These results point to Bcl-xL acting as antiapoptotic protein, promoting tumor cell survival via binding to VDAC1. These findings suggest that interfering with Bcl-xL binding to the mitochondria by VDAC1-based peptides may serve to induce apoptosis in cancer cells and to potentiate the efficacy of conventional chemotherapeutic agents.  相似文献   

2.
The voltage-dependent anion-selective channel 1 (VDAC1), i.e. eukaryotic porin, functions as a channel in membranous structures as described for the outer mitochondrial membrane, the cell membrane, endosomes, caveolae, the sarcoplasmatic reticulum, synaptosomes, and post-synaptic density fraction.The identification of VDAC1 interacting proteins may be a promising approach for better understanding the biological context and function of the channel protein. In this study human VDAC1 was used as a bait protein in a two-hybrid screening, which is based on the Sos recruitment system (SRS). hVDAC1 interacts with the dynein light chain Tctex-1 and the heat-shock protein peptide-binding protein 74 (PBP74)/mitochondrial heat-shock protein 70 (mtHSP70)/glucose-regulated protein 75 (GRP75)/mortalin in vivo. Both interactions were confirmed by overlay-assays using recombinant partner proteins and purified hVDAC1. Indirect immunofluorescence on HeLa cells indicates a co-localisation of hVDAC1 with the dynein light chain and the PBP74. In addition, HeLa cells were transfected transiently with enhanced green fluorescent protein (EGFP)-hVDAC1 fusion proteins, which also clearly co-localise with both proteins. The functional relevance of the identified protein interactions was analysed in planar lipid bilayer (PLB) experiments. In these experiments both recombinant binding partners altered the electrophysiological properties of hVDAC1. While rTctex-1 increases the voltage-dependence of hVDAC1 slightly, the rPBP74 drastically minimises the voltage-dependence, indicating a modulation of channel properties in each case. Since the identified proteins are known to be involved in the transport or processing of proteins, the results of this study represent additional evidence of membrane-associated trafficking of the voltage-dependent anion-selective channel 1.  相似文献   

3.
The voltage-dependent anion channel (VDAC), located in the mitochondrial outer membrane, functions as gatekeeper for the entry and exit of mitochondrial metabolites, and thus controls cross-talk between mitochondria and the cytosol. VDAC also serves as a site for the docking of cytosolic proteins, such as hexokinase, and is recognized as a key protein in mitochondria-mediated apoptosis. The role of VDAC in apoptosis has emerged from various studies showing its involvement in cytochrome c release and apoptotic cell death as well as its interaction with proteins regulating apoptosis, including the mitochondria-bound isoforms of hexokinase (HK-I, HK-II). Recently, the functional HK-VDAC association has shifted from being considered in a predominantly metabolic light to the recognition of its major impact on the regulation of apoptotic responsiveness of the cell. Here, we demonstrate that the HK-VDAC1 interaction can be disrupted by mutating VDAC1 and by VDAC1-based peptides, consequently leading to diminished HK anti-apoptotic activity, suggesting that disruption of HK binding to VDAC1 can decrease tumor cell survival. Indeed, understanding structure-function relationships of VDAC is critical for deciphering how this channel can perform such a variety of differing functions, all important for cell life and death. By expressing VDAC1 mutants and VDAC1-based peptides, we have identified VDAC1 amino acid residues and domains important for interaction with HK and protection against apoptosis. These include negatively- and positively-charged residues, some of which are located within β-strands of the protein. The N-terminal region of VDAC1 binds HK-I and prevents HK-mediated protection against apoptosis induced by STS, while expression of a VDAC N-terminal peptide detaches HK-I-GFP from mitochondria. These findings indicate that the interaction of HK with VDAC1 involves charged residues in several β-strands and in the N-terminal domain. Displacing HK, serving as the ‘guardian of the mitochondrion’, from its binding site on VDAC1 may thus be exploited as an approach to cancer therapy.  相似文献   

4.
Liu B  Wang P  Wang Z  Zhang W 《PloS one》2011,6(2):e16985
Voltage-dependent anion channel (VDAC) is mainly located in the mitochondrial outer membrane and participates in many biological processes. In mammals, three VDAC subtypes (VDAC1, 2 and 3) have been identified. Although VDAC has been extensively studied in various tissues and cells, there is little knowledge about the distribution and function of VDAC in male mammalian reproductive system. Several studies have demonstrated that VDAC exists in mammalian spermatozoa and is implicated in spermatogenesis, sperm maturation, motility and fertilization. However, there is no knowledge about the respective localization and function of three VDAC subtypes in human spermatozoa. In this study, we focused on the presence of VDAC2 in human spermatozoa and its possible role in the acrosomal integrity and acrosome reaction using specific anti-VDAC2 monoclonal antibody for the first time. The results exhibited that native VDAC2 existed in the membrane components of human spermatozoa. The co-incubation of spermatozoa with anti-VDAC2 antibody did not affect the acrosomal integrity and acrosome reaction, but inhibited ionophore A23187-induced intracellular Ca(2+) increase. Our study suggested that VDAC2 was located in the acrosomal membrane or plasma membrane of human spermatozoa, and played putative roles in sperm functions through mediating Ca(2+) transmembrane transport.  相似文献   

5.
Proapoptotic proteins such as Bax, undergo translocation to the mitochondria during apoptosis, where they mediate the release of intermembrane space proteins including cytochrome c. Bax binds to the voltage-dependent anion channel (VDAC). VDAC is a beta-barrel protein located in the outer mitochondrial membrane. In planar lipid bilayers, Bax and VDAC form a channel through which cytochrome c can pass. Hexokinase II (HXK II) also binds to VDAC. HXK II catalyzes the first step of glycolysis and is highly expressed in transformed cells, where over 70% of it is bound to the mitochondria. The present study demonstrates that HXK II interferes with the ability of Bax to bind to mitochondria and release cytochrome c. Detachment of HXK II from the mitochondria-enriched fraction isolated from HeLa cells promoted the binding of recombinant Bax-Delta19 and subsequent cytochrome c release. Similarly, the addition of recombinant HXK II to the mitochondria-enriched fraction isolated from hepatocytes, cells that do not express HXK II endogenously, prevented the ability of recombinant Bax-Delta19 to bind to the mitochondria and promote cytochrome c release. Similar results were found in intact cells, in which the detachment of mitochondrial bound HXK II or its overexpression potentiated and inhibited, respectively, Bax-induced mitochondrial dysfunction and cell death.  相似文献   

6.
The voltage-dependent anion channels (VDACs), VDAC1, VDAC2, and VDAC3, are pore-forming proteins that control metabolite flux between mitochondria and cytoplasm. VDAC1 and VDAC2 have voltage-dependent gating activity, whereas VDAC3 is thought to have weak activity. The aim of this study was to analyze the channel properties of all three human VDAC isoforms and to clarify the channel function of VDAC3. Bacterially expressed recombinant human VDAC proteins were reconstituted into artificial planar lipid bilayers and their gating activities were evaluated. VDAC1 and VDAC2 had typical voltage-dependent gating activity, whereas the gating of VDAC3 was weak, as reported. However, gating of VDAC3 was evoked by dithiothreitol (DTT) and S-nitrosoglutathione (GSNO), which are thought to suppress disulfide-bond formation. Several cysteine mutants of VDAC3 also exhibited typical voltage-gating. Our results indicate that channel gating was induced by reduction of a disulfide-bond linking the N-terminal region to the bottom of the pore. Thus, channel gating of VDAC3 might be controlled by redox sensing under physiological conditions.  相似文献   

7.
Thus far, only three channel-forming activities have been identified in the outer membrane of the yeast Saccharomyces cerevisiae mitochondria. Two of them, namely the TOM complex channel (translocase of the outer membrane) and the PSC (peptide-sensitive channel) participate in protein translocation and are probably identical, whereas a channel-forming protein called VDAC (voltage-dependent anion channel) serves as the major pathway for metabolites. The VDAC is present in two isoforms (VDAC1 and VDAC2) of which only VDAC1 has been shown to display channel-forming activity. Moreover, the permeability of VDAC1 has been reported to be limited in uncoupled mitochondria of S. cerevisiae. The presented data indicate that in S. cerevisiae-uncoupled mitochondria, external NADH, applied at higher concentrations (above 50 nmoles per 0.1 mg of mitochondrial protein), may use the TOM complex channel, besides VDAC1, to cross the outer membrane. Thus, the permeability of VDAC1 could be a limiting step in transport of external NADH across the outer membrane and might be supplemented by the TOM complex channel.  相似文献   

8.
The maxianion channel is widely expressed in many cell types, where it fulfills a general physiological function as an ATP-conductive gate for cell-to-cell purinergic signaling. Establishing the molecular identity of this channel is crucial to understanding the mechanisms of regulated ATP release. A mitochondrial porin (voltage-dependent anion channel (VDAC)) located in the plasma membrane has long been considered as the molecule underlying the maxianion channel activity, based upon similarities in the biophysical properties of these two channels and the purported presence of VDAC protein in the plasma membrane. We have deleted each of the three genes encoding the VDAC isoforms individually and collectively and demonstrate that maxianion channel (approximately 400 picosiemens) activity in VDAC-deficient mouse fibroblasts is unaltered. The channel activity is similar in VDAC1/VDAC3-double-deficient cells and in double-deficient cells with the VDAC2 protein depleted by RNA interference. VDAC deletion slightly down-regulated, but never abolished, the swelling-induced ATP release. The lack of correlation between VDAC protein expression and maxianion channel activity strongly argues against the long held hypothesis of plasmalemmal VDAC being the maxianion channel.  相似文献   

9.
Excess superoxide (O(2)(-)) and nitric oxide (NO) forms peroxynitrite (ONOO(-)) during cardiac ischemia reperfusion (IR) injury, which in turn induces protein tyrosine nitration (tyr-N). Mitochondria are both a source of and target for ONOO(-). Our aim was to identify specific mitochondrial proteins that display enhanced tyr-N after cardiac IR injury, and to explore whether inhibiting O(2)(-)/ONOO(-) during IR decreases mitochondrial protein tyr-N and consequently improves cardiac function. We show here that IR increased tyr-N of 35 and 15kDa mitochondrial proteins using Western blot analysis with 3-nitrotyrosine antibody. Immunoprecipitation (IP) followed by LC-MS/MS identified 13 protein candidates for tyr-N. IP and Western blot identified and confirmed that the 35kDa tyr-N protein is the voltage-dependent anion channel (VDAC). Tyr-N of native cardiac VDAC with IR was verified on recombinant (r) VDAC with exogenous ONOO(-). We also found that ONOO(-) directly enhanced rVDAC channel activity, and rVDAC tyr-N induced by ONOO(-) formed oligomers. Resveratrol (RES), a scavenger of O(2)(-)/ONOO(-), reduced the tyr-N levels of both native and recombinant VDAC, while L-NAME, which inhibits NO generation, only reduced tyr-N levels of native VDAC. O(2)(-) and ONOO(-) levels were reduced in perfused hearts during IR by RES and L-NAME and this was accompanied by improved cardiac function. These results identify tyr-N of VDAC and show that reducing ONOO(-) during cardiac IR injury can attenuate tyr-N of VDAC and improve cardiac function.  相似文献   

10.
Voltage-dependent anion channel (VDAC) is reported to be the receptor for plasminogen kringle5. In this paper, the interaction of VDAC from rat brain mitochondria with plasminogen protein has been investigated through bilayer electrophysiological studies. We report for the first time that interaction of plasminogen with VDAC leads to partial closure of the channel on a lipid bilayer. This could be a mechanism of modulation of VDAC gating in a cellular system.  相似文献   

11.
Calcium (Ca2+) is widely recognized as a key second messenger in mediating various plant adaptive responses. Here we show that calcineurin B-like interacting protein kinase CIPK9 along with its interacting partner VDAC3 identified in the present study are involved in mediating plant responses to methyl viologen (MV). CIPK9 physically interacts with and phosphorylates VDAC3. Co-localization, co-immunoprecipitation, and fluorescence resonance energy transfer experiments proved their physical interaction in planta. Both cipk9 and vdac3 mutants exhibited a tolerant phenotype against MV-induced oxidative stress, which coincided with the lower-level accumulation of reactive oxygen species in their roots. In addition, the analysis of cipk9vdac3 double mutant and VDAC3 overexpressing plants revealed that CIPK9 and VDAC3 were involved in the same pathway for inducing MV-dependent oxidative stress. The response to MV was suppressed by the addition of lanthanum chloride, a non-specific Ca2+ channel blocker indicating the role of Ca2+ in this pathway. Our study suggest that CIPK9-VDAC3 module may act as a key component in mediating oxidative stress responses in Arabidopsis.  相似文献   

12.
The chloroplastic outer envelope protein OEP24 from pea forms a high-conductance low specificity solute channel as shown by in vitro studies. In order to establish its function also in an in vivo-like system, the gene encoding OEP24 was transformed into a yeast strain which lacks the general mitochondria solute channel porin, also known as voltage-dependent anion channel (VDAC). Transformation of the yeast VDAC(-) strain with the OEP24 gene resulted in the recovery of a phenotype indistinguishable from the wild-type. The OEP24 polypeptide is targeted to the mitochondrial outer membrane in this heterologous system. We conclude that OEP24 forms a solute channel in pea chloroplasts in planta.  相似文献   

13.
The mitochondrial antiviral signaling protein MAVS (IPS-1, VISA, or Cardif) plays an important role in the host defense against viral infection by inducing type I interferon. Recent reports have shown that MAVS is also critical for virus-induced apoptosis. However, the mechanism of MAVS-mediated apoptosis induction remains unclear. Here, we show that MAVS binds to voltage-dependent anion channel 1 (VDAC1) and induces apoptosis by caspase-3 activation, which is independent of its role in innate immunity. MAVS modulates VDAC1 protein stability by decreasing its degradative K48-linked ubiquitination. In addition, MAVS knockout mouse embryonic fibroblasts (MEFs) display reduced VDAC1 expression with a consequent reduction of the vesicular stomatitis virus (VSV)-induced apoptosis response. Notably, the upregulation of VDAC1 triggered by VSV infection is completely abolished in MAVS knockout MEFs. We thus identify VDAC1 as a target of MAVS and describe a novel mechanism of MAVS control of virus-induced apoptotic cell death.  相似文献   

14.
15.
Apoptotic cell death is an essential process in the development of the central nervous system and in the pathogenesis of its degenerative diseases. Efflux of K(+) and Cl(-) ions leads to the shrinkage of the apoptotic cell and facilitates the activation of caspases. Here, we present electrophysiological and immunocytochemical evidences for the activation of a voltage-dependent anion channel (VDAC) in the plasma membrane of neurons undergoing apoptosis. Anti-VDAC antibodies blocked the channel and inhibited the apoptotic process. In nonapoptotic cells, plasma membrane VDAC1 protein can function as a NADH (-ferricyanide) reductase. Opening of VDAC channels in apoptotic cells was associated with an increase in this activity, which was partly blocked by VDAC antibodies. Hence, it appears that there might be a dual role for this protein in the plasma membrane: (1) maintenance of redox homeostasis in normal cells and (2) promotion of anion efflux in apoptotic cells.  相似文献   

16.
Saccharomyces cerevisiae Snf1 is a member of the conserved Snf1/AMP-activated protein kinase (Snf1/AMPK) family involved in regulating responses to energy limitation, which is detected by mechanisms that include sensing adenine nucleotides. Mitochondrial voltage-dependent anion channel (VDAC) proteins, also known as mitochondrial porins, are conserved in eukaryotes from yeast to humans and play key roles in mediating mitochondrial outer membrane permeability to small metabolites, including ATP, ADP, and AMP. We previously recovered the yeast mitochondrial porin Por1 (yVDAC1) from a two-hybrid screen for Snf1-interacting proteins. Here, we present evidence that Snf1 interacts with Por1 and its homolog Por2 (yVDAC2). Cells lacking Por1 and Por2, but not respiratory-deficient rho0 cells lacking the mitochondrial genome, exhibit reduced Snf1 activation loop phosphorylation in response to glucose limitation. Thus, Por1 and Por2 contribute to the positive control of Snf1 protein kinase. Physical proximity to the VDAC proteins and mitochondrial surface could facilitate Snf1''s ability to sense energy limitation.  相似文献   

17.
Structural studies place the VDAC1 (voltage-dependent anion channel 1) N-terminal region within the channel pore. Biochemical and functional studies, however, reveal that the N-terminal domain is cytoplasmically exposed. In the present study, the location and translocation of the VDAC1 N-terminal domain, and its role in voltage-gating and as a target for anti-apoptotic proteins, were addressed. Site-directed mutagenesis and cysteine residue substitution, together with a thiol-specific cross-linker, served to show that the VDAC1 N-terminal region exists in a dynamic equilibrium, located within the pore or exposed outside the β-barrel. Using a single cysteine-residue-bearing VDAC1, we demonstrate that the N-terminal region lies inside the pore. However, the same region can be exposed outside the pore, where it dimerizes with the N-terminal domain of a second VDAC1 molecule. When the N-terminal region α-helix structure was perturbed, intra-molecular cross-linking was abolished and dimerization was enhanced. This mutant also displays reduced voltage-gating and reduced binding to hexokinase, but not to the anti-apoptotic proteins Bcl-2 and Bcl-xL. Replacing glycine residues in the N-terminal domain GRS (glycine-rich sequence) yielded less intra-molecular cross-linked product but more dimerization, suggesting that GRS provides the flexibility needed for N-terminal translocation from the internal pore to the channel face. N-terminal mobility may thus contribute to channel gating and interaction with anti-apoptotic proteins.  相似文献   

18.
The channel-forming protein called VDAC forms the major pathway in the mitochondrial outer membrane and controls metabolite flux across that membrane. The different VDAC isoforms of a species may play different roles in the regulation of mitochondrial functions. The mouse has three VDAC isoforms (VDAC1, VDAC2 and VDAC3). These proteins and different versions of VDAC3 were expressed in yeast cells (S. cerevisiae) missing the major yeast VDAC gene and studied using different approaches. When reconstituted into liposomes, each isoform induced a permeability in the liposomes with a similar molecular weight cutoff (between 3,400 and 6,800 daltons based on permeability to polyethylene glycol). In contrast, electrophysiological studies on purified proteins showed very different channel properties. VDAC1 is the prototypic version whose properties are highly conserved among other species. VDAC2 also has normal gating activity but may exist in 2 forms, one with a lower conductance and selectivity. VDAC3 can also form channels in planar phospholipid membranes. It does not insert readily into membranes and generally does not gate well even at high membrane potentials (up to 80 mV). Isolated mitochondria exhibit large differences in their outer membrane permeability to NADH depending on which of the mouse VDAC proteins was expressed. These differences in permeability could not simply be attributed to different amounts of each protein present in the isolated mitochondria. The roles of these different VDAC proteins are discussed. Received: 19 June 1998/Revised: 1 April 1999  相似文献   

19.
In this study, we purified and characterized the voltage-dependent anion channel (VDAC) from the Torpedo electric organ. Using immunogold labeling, VDAC was colocalized with the voltage-gated Ca2+ channel in the synaptic plasma membrane. By immunoblot analysis, five protein bands in synaptosomes isolated from the Torpedo electric organ cross reacted with two monoclonal anti-VDAC antibody. No more than about 7 to 10% mitochondrial contains could be detected in any synaptosomal membrane preparation tested. This was estimated by comparing the specific activity in mitochondria and synaptosomes of succinate–cytochrome-c oxidoreductase and antimycin-insensitive NADH–cytochrome-c oxidoreductase activities; mitochondrial inner and outer membrane marker enzymes, respectively. [14C]DCCD (dicyclohexylcarbodiimide), which specifically label mitochondrial VDAC, labeled four 30–35 kDa protein bands that were found to interact with the anti-VDAC antibody. The distribution of the Torpedo VDAC protein bands was different among membranes isolated from various tissues. VDAC was purified from synaptosomes and a separation between two of the proteins was obtained. The two purified proteins were characterized by their single channel activity and partial amino acid sequences. Upon reconstitution into a planar lipid bilayer, the purified VDACs showed voltage-dependent channel activity with properties similar to those of purified mitochondrial VDAC. Amino acid sequence of four peptides, derived from VDAC band II, exhibited high homology to sequences present in human VDAC1 (98%), VDAC2 (91.8%), and VDAC3 (90%), while another peptide, derived from VDAC band III, showed lower homology to either VDAC1 (88.4%) or VDAC2 (79%). Two more peptides show high homology to the sequence present in mouse brain VDAC3 (100 and 78%). In addition, we demonstrate the translocation of ATP into synaptosomes, which is inhibited by DCCD and by the anion transport inhibitor DIDS. The possible function of VDAC in the synaptic plasma membrane is discussed.  相似文献   

20.
Porin isoform 1 or VDAC (voltage-dependent anion-selective channel) 1 is the predominant protein in the outer mitochondrial membrane. We demonstrated previously that a plasma membrane NADH-ferricyanide reductase activity becomes up-regulated upon mitochondrial perturbation, and therefore suggested that it functions as a cellular redox sensor. VDAC1 is known to be expressed in the plasma membrane; however, its function there remained a mystery. Here we show that VDAC1, when expressed in the plasma membrane, functions as a NADH-ferricyanide reductase. VDAC1 preparations purified from both plasma membrane and mitochondria fractions exhibit NADH-ferricyanide reductase activity, which can be immunoprecipitated with poly- and monoclonal antibodies directed against VDAC(1). Transfecting cells with pl-VDAC1-GFP, which carries an N-terminal signal peptide, directs VDAC1 to the plasma membrane, as shown by confocal microscopy and FACS analysis, and significantly increases the plasma membrane NADH-ferricyanide reductase activity of the transfected cells. This novel enzymatic activity of the well known VDAC1 molecule may provide an explanation for its role in the plasma membrane. Our data suggest that a major function of VDAC1 in the plasma membrane is that of a NADH(-ferricyanide) reductase that may be involved in the maintenance of cellular redox homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号