首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marek's disease herpesvirus A antigen was purified greater than 200-fold with a 24% recovery by ion exchange column chromatography, isoelectric focusing, and preparative polyacrylamide gel electrophoresis. The antigen had an isoelectric point of 6.68 ± 0.03 in the presence of 1 M urea and 0.05% Brij 35, a nonionic detergent, and approximately 6.5 in the absence of dissociating agents. When analyzed by electrophoresis on analytical polyacrylamide gels, the purified antigen migrated as a single broad band which stained for both protein and carbohydrate, suggesting that it was a highly purified heterogeneous glycoprotein. However, the antigen was not purified to homogeneity as determined by electrophoresis on polyacrylamide gels in the presence of sodium dodecyl sulfate and by immunodiffusion analysis. Antibody to Marek's disease herpesvirus A antigen was prepared in a rabbit, and antibody to two contaminating antigens was removed by adsorption to yield monospecific antisera.  相似文献   

2.
Sera from chickens naturally infected with Marek's disease herpesvirus (MDHV) form preciptin lines with at least two immunologically distinct soluble antigens designated MDHV-A and MDHV-B. Partial purification and characterization of the glycoprotein MDHV-A antigen was previously reported. MDHV-B was found predominantly in the sonically treated extracts of infected cells, in contrast to the predominantly extracellular MDHV-A. Analysis of these extracts from [14C]glucosamine-labeled cells by immunodiffusion with chicken anti MDHV-B serum negative for MDHV-A followed by autoradiography confirmed that MDHV-B was a common antigen between MDHV and herpesvirus of turkeys and revealed that it was also a glycoprotein. Because of their glycoprotein nature, both MDHV-A and MDHV-B bound to concanavalin A affinity chromatography columns and could then be eluted by alpha-methyl-D-mannoside and recovered for further analysis. Concanavalin A affinity chromatography was an excellent technique for initial purification of MDHV-A and MDHV-B, since approximately 5- and 15- fold purification, respectively, was achieved in a single simple step. MDHV-B was resistant to trypsin under conditions where MDHV-A was sensitive, but was similar to MDHV-A in resistance to pH 2.0 and to 1.0 or 2.0 M urea and 0.05% Brij 35. Partially purified MDHV-B was analyzed by sucrose gradient sedimentation, isoelectric focusing, and gel filtration on Sephadex G-200 in the presence of 1.0 or 2.0 M urea and 0.05% Brij 35 to purify the antigen and to determine its physical and chemical properties in comparison with those already reported for MDHV-A. MDHV-B had a much lower isoelectric point in pH 4,54, a higher sedimentation coefficient of 4.4S, and a greater molecular weight of 58,250. These data indicate that MDHV-B is physically distinct from MDHV-A antigen, although the size difference is not sufficient to allow for effective separation. In contrast, the isoelectric point difference of greater than 2 pH units makes isoelectric focusing an effective means of purifying the antigens free of one another. The four-step purification procedure achieved greater than 200-fold purification of MDHV-B. Immunization of rabbits with this highly purified antigen results in the preparation of antisera that appeared monospecific for MDHV-B in immunodiffusion.  相似文献   

3.
Marek's disease herpesvirus A antigen (MDHV-A) was identified as a 61,000- to 65,000-dalton glycoprotein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after immunoprecipitation from the culture medium of both [35S]methionine- and [14C]glucosamine-labeled infected cells by specific rabbit serum directed against MDHV-A. Rigorous identification was accomplished by selective blocking of this specific immunoprecipitation of the glycoprotein with purified MDHV-A that was isolated at its characteristic isoelectric point. These results identify and characterize MDHV-A in terms of the previously determined physical and chemical properties of the antigen. A molecule of similar size was immunoprecipitated from the culture medium of cells infected with herpesvirus of turkeys, extending previous observations about the identity of a potentially important common antigen shared by MDHV and the nonpathogenic vaccine virus, herpesvirus of turkeys.  相似文献   

4.
将禽流感病毒M2基因克隆于真核表达质粒pIRES-EGFP中,使其位于pCMV启动子的调控下,并与绿色荧光蛋白基因(EGFP)串联后,将上述串联基因插入到含MDV CVI988的非必需区US基因的重组质粒pUS2中,构建带标记的重组质粒,然后将此重组质粒转染感染了MDV CVI988的鸡胚成纤维细胞,利用同源重组的方法,筛选了表达禽流感病毒M2基因的重组病毒MDV1。经PCR、Dot-blotting,Western-blotting等实验的结果表明,禽流感病毒M2基因的确插入到MDV1(CVI988)基因组中并获得表达。重组MDV1免疫1日龄SPF鸡21天后,用ELISA可检测到M2蛋白的特异性抗体。接种了重组病毒rMDV的鸡体内针对H9N2疫苗血凝素的抗体滴度(p<0.05)明显提高,以禽流感病毒AIV A/Chicken/Guangdong/00(H9N2)攻毒后进行病毒重分离试验的结果发现,重组病毒能有效地降低病毒的排出量(p<0.01),说明该重组病毒可以用于防制禽流感的免疫。  相似文献   

5.
SYNOPSIS. The carbohydrate of variant-specific surface antigen glycoproteins from bloodstream forms of 13 cloned variants of Trypanosoma brucei was analyzed by gas-liquid chromatography. The glycoproteins contained from 6 to 17% carbohydrate by weight, and all contained the same 4 sugars: mannose, galactose, glucose, and glucosamine (probably as N-acetyl-glucosamine). The glycoprotein from variant 048, strain 427 contained (±20%) 11 mannose, 4 galactose, 4 glucose, and 5 glucosamine residues/mole of glycoprotein (molecular weight 65,000). Glucose was an integral component of the glycoproteins, not dissociable by sodium dodecyl sulphate, 8 M urea, or 1 M acetic acid. Some of the glucose was dissociated by trichloroacetic acid. Most of the glycoproteins formed precipitin bands with concanavalin A in Ouchterlony double diffusion, but none formed such bands with wheat germ agglutinin or Ricinus communis lectin (molecular weight 120,000).  相似文献   

6.
The carbohydrate of variant-specific surface antigen glycoproteins from bloodstream forms of 13 cloned variants of Trypanosoma brucei was analyzed by gas-liquid chromatography. The glycoproteins contained from 6 to 17% carbohydrate by weight, and all contained the same 4 sugars: mannose, galactose, glucose, and glucosamine (probably as N-acetylglucosamine). The glycoprotein from variant 048, strain 427 contained (+20%) 11 mannose, 4 galactose, 4 glucose, and 5 glucosamine residues/mole of glycoprotein (molecular weight 65,000). Glucose was an intergral component of the glycoproteins, not dissociable by sodium dodecyl sulphate, 8 M urea, or 1 M acetic acid. Some of the glucose was dissociated by trichloroacetic acid. Most of the glycoproteins formed precipitin with concanavalin A in Ouchterlony double diffusion, but none formed such bands with wheat germ agglutinin or Ricinus communis lectin (molecular weight 120, 000).  相似文献   

7.
A total of 50 antibody-secreting hybridoma cells against Marek's disease virus (MDV) and turkey herpesvirus (HVT) have been produced. Eleven hybridomas were used for serotyping a panel of 15 pathogenic and nonpathogenic strains of MDV and HVT, representing three serotypes. The antibodies from the culture medium have fluorescence antibody (FA) titers of up to 100 and those from mouse ascitic fluid have titers ranging from 10(4) to 10(6). Monoclonal antibody T81 is type-common, i.e., it reacts at equal titer with all MDV and HVT tested. Of the remaining 10 antibodies, eight react only with pathogenic and attenuated strains of MDV (presumably serotype 1), one reacts only with nonpathogenic MDV (presumably) serotype 2), and one reacts only with strains of HVT (presumably serotype 3). Two hybridomas belong to IgG2a and IgG2b subclasses, respectively, and the remaining nine belong to IgG1 subclass. None of the antibodies specific for MDV strains reacted with homologous viruses in serum neutralization (SN), agar gel precipitin (AGP), or membrane immunofluorescence tests. Antibody L78, which is specific for HVT, was reactive with its homologous virus in the SN test; antibody from the culture medium showed an SN titer of 10 and that from mouse ascites a titer of 10,000. None of the antibodies specific for MDV or HVT reacted with other avian or mammalian herpesviruses, avian leukosis viruses (ALV), reticuloendotheliosis viruses (REV), or Marek's disease tumor-associated surface antigen (MATSA) expressed in a lymphoblastoid cell line, MDCC-MSB-1.  相似文献   

8.
9.
The presence of Marek's disease tumor-associated surface antigen (MATSA) was demonstrated by the direct and indirect membrane immunofluorescent tests, in chicks inoculated 7-10 days earlier with herpesvirus of turkeys (HVT), O1 strain. In in vitro cultures of spleen lymphocytes and ovaries obtained from these chicks, MATSA-positive cells were also detected after 1-7 days cultivation. A possible mechanism of protection by HVT vaccine against Marek's disease is proposed.  相似文献   

10.
A qualitative radial immunodiffusion technique is described which detects antigen(s) in feathers from live or dead chickens infected with Marek's disease herpesvirus. Antiserum, which is incorporated into a support medium, reacts with antigen(s) in the feather tip producing a radial precipitin ring. Antigen(s) was detected in 93.3% of experimentally inoculated chickens 21 days postinoculation and in 100% of infected birds subsequently tested through 6 weeks. No antigen was detectable in the feathers of uninoculated control chickens. The technique is simple and rapid to perform. Positive tests could be detected after 1 to 2 hours of incubation. Antigen detection by the radial immunodiffusion test correlated well with other criteria of infection. This technique should have application as a laboratory research tool and as an adjunct for a rapid flock diagnosis of Marek's disease.  相似文献   

11.
Marek's disease tumor-associated surface antigen (MATSA) has been claimed to be the target of cytotoxic lymphocytes in in vitro tests for Marek's disease immunity. Treatment with papain, but not with trypsin or mixed glycosidases, removed MATSA from certain Marek's disease lymphoblastoid cell lines. Tumor cells with and without MATSA were used as target cells for in vitro studies on cell-mediated immune responses with sensitized spleen cells in a chromium release assay. The removal of MATSA did not influence the results of the chromium release assay. Attempts to block the cell-mediated cytotoxicity in vitro by coating tumor cells with an anti-MATSA serum failed. It was concluded that cell-mediated immune responses against Marek's disease tumor cells are directed against an as yet undefined antigen(s).  相似文献   

12.
A cell line tentatively designated as MDCC-BO1(T), was established from spleen cells of an apparently healthy chicken inoculated with herpesvirus of turkey (HVT). BO1(T) cells were T lymphoblastoid cells and the more than 95% of them had Marek's disease (MD) tumor-associated surface antigen (MATSA). However, no viral internal antigens or membrane antigens could be demonstrated in them by immunofluorescence tests using chicken anti-HVT and -MD virus (MDV) sera. The virus could be rescued from BO1(T) cells by co-cultivation with chick embryo fibroblasts (CEF). The DNA of the rescued virus was characterized as HVT DNA by its sedimentation profile in a neutral glycerol gradient and its endonuclease Hind III cleavage-pattern. Ultrastructural studies on CEF infected with the rescued virus revealed the presence of HVT-like virions. However, DNA-DNA reassociation kinetics showed that the BO1(T) cells contained a few copies of NVT and also MDV genomes.  相似文献   

13.
Duck embryo fibroblast (DEF) and chicken embryo fibroblast (CEF) cultures infected with Marek's disease virus were studied by combined fluorescent antibody and electron microscopy techniques. In both DEF and CEF cultures, cells containing immunofluorescent (IF) antigen also contained herpesvirus particles; conversely, cells lacking this antigen lacked herpesvirus particles. Two morphologically distinct IF antigens were detected in the cytoplasm. (i) A granular antigen in the perinuclear region was brightly stained with the conjugated antibody. This antigen was composed of a granular mass of osmiophilic material and did not contain virions. (ii) A diffuse antigen, present throughout the cytoplasm of infected cells, was less brightly stained. The area of the cell with the highest concentration of this antigen contained small vesicles, folded membranes, and fine electron-dense granules. Naked virions were occasionally seen in these areas. A diffuse nuclear IF antigen was occasionally seen in infected cells. This antigen was often separated from the nuclear membrane and the nucleolus by a clear margin. The intranuclear IF antigen was composed of a fine granular aggregate and naked herpesvirus particles which were randomly distributed throughout the nucleus. Viral capsids in antibody-treated cells were coated with fine filamentous material.  相似文献   

14.
Marek's disease virus (MDV) is an avian herpesvirus that causes rapid development of T-cell lymphomas in chickens. The MDV genes currently thought to be involved in lymphomagenesis include a bZIP transactivator that is homologous to fos and jun oncogenes but do not appear to have counterparts in other oncogenic herpesviruses.  相似文献   

15.
Sheep red blood cells (SRBC) were agglutinated by all six chicken anti-MSB-1 sera examined, but not by sera of thirty specific pathogen-free chickens. The SRBC-agglutination titer was greatly reduced by absorption with SRBC, bovine red blood cells (BRBC) or guinea-pig kidney cells (GPKC). The dissociation of heterophile antibody and antibody to so-called Marek's disease tumor-associated surface antigen (MATSA) is discussed.  相似文献   

16.
The glycoprotein gB related to neutralization of Marek's disease virus (MDV) and herpesvirus of turkeys (HVT) is composed of several glycosylated polypeptides, which were immunoprecipitated with monoclonal antibodies and rabbit antiserum cross-reactive to MDV-gB and HVT-gB, and analyzed by SDS-polyacrylamide gel electrophoresis. The present pulse-chase experiments showed that the precursor forms of MDV- and HVT-gB were glycoproteins with molecular weights of 110K to 115K (gp115/110) and 115K (gp115), respectively. These precursor forms were processed to smaller gB's (gp63 and gp50 for MDV; gp62, gp52, and gp48 for HVT), at least in part by sialylation. The proteins synthesized in the presence of tunicamycin were two polypeptides of 88K and 83K in MDV-infected cells and a 90K polypeptide in HVT-infected cells, indicating the presence of unglycosylated precursor forms of MDV- and HVT-gB. Differences between virulent and avirulent MDV's and between HVT's with and without protective activity against Marek's disease were observed in the processed forms of MDV- and HVT-gB, especially at the processing step of sialylation.  相似文献   

17.
A qualitative radial immunodiffusion technique is described which detects antigen(s) in feathers from live or dead chickens infected with Marek''s disease herpesvirus. Antiserum, which is incorporated into a support medium, reacts with antigen(s) in the feather tip producing a radial precipitin ring. Antigen(s) was detected in 93.3% of experimentally inoculated chickens 21 days postinoculation and in 100% of infected birds subsequently tested through 6 weeks. No antigen was detectable in the feathers of uninoculated control chickens. The technique is simple and rapid to perform. Positive tests could be detected after 1 to 2 hours of incubation. Antigen detection by the radial immunodiffusion test correlated well with other criteria of infection. This technique should have application as a laboratory research tool and as an adjunct for a rapid flock diagnosis of Marek''s disease.  相似文献   

18.
A GROUP B herpesvirus is important in the aetiology of Marek's disease, a highly contagious lymphoproliferative disease of chickens1,2. Chicks inoculated with enveloped Marek's disease herpesvirus (MDHV), extracted from feather follicle epithelium of chickens with the disease, developed tumour-like aggregates of lymphoid cells in the viscera and frequently in the peripheral nerves3,4. Cultures of chicken embryo fibroblast (CEF) cells infected with MDHV develop discrete foci of altered cells5. Our data show that MDHV infection of cultures of CEF cells, previously infected with an avian leucosis virus (RAV-2), results in both a reduction in the number of MDHV foci and an increase in the complement fixing avian leucosis antigen (COFAL)6 titre.  相似文献   

19.
Macrophages are shown to restrict the replication of Marek's disease virus (MDV) and isotope uptake by spleen cells from chickens bearing Marek's disease (MD) tumors. The titer of virus from duck embryo fibroblasts (DEF) co-cultivation with MDV-spleen cells pretreated to deplete marcophages was 4- to 18-fold higher than with untreated cells. Treated MDV-spleen cells increased isotope uptake by 2-fold. These restrictive activities are attributable to macrophage regulation of cell proliferation.  相似文献   

20.
Cell extracts of the JM and GA strains of Marek's disease herpesvirus and the FC 126 strain of turkey herpesvirus were lyophilized with various stabilizers. Much higher virus titers were obtained with stabilizer than without stabilizer. Titers increased even further in the case of the Marek's disease virus strains by the addition of a chelating agent, disodium ethylenediaminetetraacetate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号